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CHAPTER ONE

Particle Kinematics

INEMATICS is a branch of dynamics that studies aspects of motion apart

from considerations of masses and forces. Essentially, Kinematics is a col-
lection of vector/matrix methods to describe positions, velocities and accelera-
tions of particles and rigid bodies, as viewed from various reference frames. The
sub-field of Particle Kinematics considers only the motion of particles. This
in itself can be quite challenging at times. As an example, consider a person
driving a car on the highway. The road itself is fixed to a constantly rotating
Earth which in turn is orbiting the sun. What is your velocity and acceleration
relative to a Sun-fixed coordinate system? This chapter will help answer these
and many related questions.

1.1 Particle Position Description

1.1.1 Basic Geometry

When studying the kinematics of particle motion, one is not concerned about
the physical dimensions or mass of a particle. Let P be a point in a three-
dimensional space as illustrated in Figure 1.1. To define the position of the
point P, a coordinate system along with its origin must be chosen. Without
this coordinate system, it is difficult to describe the position of point P. To
visualize this problem, imagine one person A telling another person B that
their location is “10 miles.” Without knowing from what reference point person
A measured 10 miles and in what direction it was measured, it is impossible for
person B to know the meaning of “10 miles.”

A coordinate system is defined by two things. First, a coordinate system
origin O must be established to specify its position in space. Second, the orien-
tation of the coordinate system must be chosen. By choosing the orientation of
the coordinate system a person will know what is considered “up” or “east” as
measured within this coordinate system. Three perpendicular (or orthogonal)
right-handed unit vectors are traditionally used to denote unit displacement

3



4 PARTICLE KINEMATICS CHAPTER1

directions along the orthogonal axes. In Figure 1.1 a standard cartesian coor-
dinate system labeled as £ is shown. The three unit vectors é;, é; and é3 are
used to define the orientation of £ and the coordinate system origin is denoted
by Og. We will label all unit vectors with a (*) symbol. When assigning the unit
vectors to the coordinate system, the first two unit vectors typically span the
local “horizontal plane,” while the third unit vector points in the “upwards” di-
rection normal to the plane of the first two unit vectors. However, this sequence
and interpretation is not required.

>
>
>

Figure 1.1: The Cartesian Coordinate System

A coordinate system, defined through the origin and the three unit direction
vectors, is often referred to as a reference frame. Vectors with components
taken in different coordinate systems are said to be written in different reference
frames. More generally, think of a reference frame as a rigid body. While the
Earth is a rigid body, there is an infinite set of coordinate systems that could be
embedded in the Earth-fixed reference frame. For the present, we will usually
associate only one coordinate system with a reference frame (rigid body).

Let 7 = OgP be the vector pointing from the coordinate origin Og to the
point P. Note that there are an infinite number of ways to parameterize that
vector in terms of orthogonal coordinate axis components. To write the posi-
tion vector r in the cartesian coordinate system & shown in Figure 1.1, it is
broken down (i.e. projected orthogonally) into the three components along the
coordinate system unit axes. Let the &; component of r be called x, the é5
component be called y and the é3 component be called z. Then the vector r is
written in the & cartesian coordinate system components as

r="% =xé; +yéy + zé3 (1.1)

The short hand notation ér is used when we wish to specify that the vector
components of r are taken along the unit directions vectors of the £ coordinate
system. The superscript coordinate system label is often omitted when it is
clear in which system the components are taken or, more likely, one wishes to
preserve the freedom to choose a particular coordinate system at a later point.
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When it is clear in context, we can also use “r to denote the & frame base vector
components of r as the 3x1 column vector (matrix)

&
x

& Yy (1.2)
z

For cartesian coordinate systems, the i-th entry of the column vector is the
component of the r vector along the i-th unit vector é;.

Care must be taken when performing vector operations if multiple coordinate
systems are used. Writing a vector addition as

q=7r+p

is correct since no coordinate systems have been assigned yet; this equation
has an infinity of possible component descriptions. We mention that one of
the subtle and powerful facts of vector algebra is the ability to derive vector
equations that hold for all possible component parameterizations of the vectors.
However, if the vectors have specific coordinate systems components as shown
in Eq. (1.2), then the following matrix vector addition would not be correct.

£ £ B
q1 1 p1
Q| = ||+ |p
q3 r3 D3

The vector p is here written in B frame components while all other vectors are
expressed in the £ frame. To add the B frame components of the p vector to £
frame vectors, these components would first have to be transformed (projected)
from the B frame to the £ frame. Later on in Chapter 3 it will be shown how
the direction cosine matrix can be used to perform this transformation.

Figure 1.2: The Cylindrical Coordinate System
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1.1.2 Cylindrical and Spherical Coordinate Systems

While the cartesian coordinate system is the most common and the easiest one
to visualize, many times it is not the easiest to use. This is particularly true
if the motion of Point P is of a rotational type or if the dominant forces are
radial. In these cases it is usually easier to use either a cylindrical or spherical
coordinate system. When we address dynamics in Chapter 2, we will provide
some insight on coordinate system selection in the context of solving example
problems.

A cylindrical coordinate system C is illustrated in Figure 1.2. Its orientation
is defined through the triad of unit vectors {éd,{;} ,¢3}. This system is partic-
ularly useful in describing particles rotating about an axis é3 which are free to
move parallel to the axis é3. For a large number of problems having rotational
symmetry of force fields or constraint surfaces, cylindrical coordinates would be
an attractive choice. For example, consider a particle constrained to move on
the surface of a cylinder. Contrary to the inertially fixed cartesian coordinate
system N, two unit orientation vectors of the cylindrical coordinate system are
varying with 6 as seen from N. These are the unit vector ¢4 and ¢ . They
rotate in the horizontal plane perpendicular to the é3 unit vector. The vector
¢4 tracks the heading of the projection of the r position vector in this horizontal
plane. The position vector r of point P is expressed in cylindrical coordinates
as

c

d
r=S%=dég+z2é5= |0 (1.3)
z

where the scalar d is the radial distance of point P from the ¢3 axis. The
second entry of the cylindrical coordinate system column vector in Eq. (1.3)
will always be zero. Any particle position vector expressed in a cylindrical
coordinate system will never have a component along the ¢ direction. Note
that in Eq. (1.3) the unit vector é4 has a variable direction as observed from
N. The angle 6§ describes how far ¢4 has rotated from the é; axis. Therefore,
instead of using (z,y, z) cartesian coordinates to describe a position, cylindrical
coordinates use d and z, and the angle 6§ provides the azimuth angle of the unit
vector ¢4 relative to é1. Assuming ¢ is aligned with é3, the unit vectors ¢4 and
{2 can be related to é; and és through

éq = cosfé; +sinfé, (1.4a)

¢ = —sinbé; + cosbé; (1.4b)

A spherical coordinate system § is illustrated in Figure 1.3 with its orienta-
tion defined through the triad of unit vectors {ér,.g ,85}. Note that all three
unit orientation vectors are time varying for the spherical coordinate system as
seen from N. The unit vector §, now points from O, towards point P. Let
the scalar r be the radial distance from the coordinate system center O¢ to
the point P. Then the position vector r is expressed as components along the
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53
O,
w

Figure 1.3: The Spherical Coordinate System

spherical coordinate triad {ér,.g , 85} as
r=5%=r5.= (0 (1.5)

A particle position vector written as a column vector with components taken
in the S frame will have a non-zero entry only in the first position. As shown
in Figure 1.3, the two angles 6 and ¢ completely describe the orientation of the
unit vectors §,., § and §, relative to the three é; (i = 1,2,3). Therefore, the
{.§T,.§ , 84} projection onto {€é1, é2, €3} with components a function of (r, 6, ¢)
are

8, = cos ¢ cosBéq + cos ¢psinfés + sin pés (1.6a)
§ = —sinfe; + cosfé; (1.6b)
84, = —sin¢gcosé, — sin ¢ sin Héy + cos pés (1.6¢)

Spherical coordinates and the associated triad of unit vectors {.§T,.§ ,84} are
very useful when describing a particle motion on the surface of a sphere or a
particle orbiting a body.

Example 1.1: Given a vector r written in the cartesian coordinate system
£ as

1‘:87':2é1—3é2—|—5é3

Express 7 in terms of the cylindrical coordinate system C where é3 = és.
From Eqs.fl .4), we can express é; and €z in terms of ¢4 and éy as
é1 = cos 0¢y — sinO¢éy

és = sinf¢éy + cos0¢éy
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Using this relationship the vector r is expressed in the C frame as
r =% = (2cos 6 — 3sinf) &5 — (2sin 0 + 3cos 0) &y + 5és

The angle 6 is resolved noting that in the C frame the éy component must
be zero. Therefore & must be

0=—tan ! (g) = —56.31°

which brings % to the desired result

r =5 =3.61é, + 5é;

1.2 Vector Differentiation

1.2.1 Angular Velocity Vector

In planar motion it is easy to define and visualize the concept of angular velocity
as is shown in Figure 1.4(i). For this single axis é; rotation case, the rotation
angles and rotation rates (angular velocities) are only scalar quantities. The
instantaneous angular rate w of a particle is given by

w=~0 (1.7)

where a positive rotation or rotation rate is defined to be in the increasing 6
(counterclockwise) direction shown. Angular velocity of a particle in a plane
simply describes at what rate the radius vector locating the particle is orbiting
the origin.

&
P
@ 0
N &
(i) Planar Case (ii) Three-

Dimensional Case

Figure 1.4: The Angular Velocity Vector

For the general three dimensional case, we will prove in Chapter 3 that a
general large angular displacement is not a vector quantity; however, paradox-
ically, angular velocity is a vector quantity. For the present, we limit ourselves
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to an argument based upon small angular displacements to introduce the an-
gular velocity vector. As the rigid body shown in Figure 1.4(ii) rotates about
the body- and space-fixed é axis by the small angle Af, the body-fixed point
at position P’ rotates to position P”. This rotation is described through the
rotation vector A@ defined as

A = Ahé (1.8)

The angular velocity vector is the instantaneous angular rate at which this
rotation occurs. Let the angular velocity vector magnitude be w, then the
vector w can be written as

w=weé (1.9)

The unit direction vector & defines an axis about which the rigid body or
coordinate system is instantaneously rotating. For the case of planar rotations
in Figure 1.4(i) the rotation axis is simply és. Note that any orientation of
a rigid body can be defined by the orientation of any body-fixed coordinate
system. Therefore position descriptions for rotating rigid bodies and rotating
coordinate systems are actually the same problem geometrically and there is no
need to formally distinguish between the two. For the case of constant & it is
natural to define

w— lim 22 (1.10)

The angular velocity vector w of a rigid body or coordinate system B relative
to another coordinate system N is typically expressed in B frame components.

Bw :wli)l +WQI;2+W363 (111)

Each component w; expresses the instantaneous angular rate of the body B
about the i-th coordinate axis b; as shown in Figure 1.5. The w; components
are obviously the orthogonal components of w. As will be evident in Chapter

3, it is often convenient to describe w with non-orthogonal components as well.

Figure 1.5: Illustration of Angular Velocity Body Frame Components
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1.2.2 Rotation about a Fixed Axis

It is instructive to study in detail the rotation of a rigid body about a fixed
axis. In particular, the velocity vector 7 of a body-fixed point P is examined.
Let a body B have a rod attached to it which is fixed in space at points A and
B as shown in Figure 1.6 so the rod is the axis of rotation. The rigid body
B is rotating about this rod with an angular velocity w. The origin O of the
coordinate system for B is located on the axis of rotation. Let P be a body-
fixed point located relative to O by the vector r. The angle between the angular
velocity vector w and the position vector r is 6.

Figure 1.6: Rigid Body Rotation about a Fixed Axis

Studying Figure 1.6 it is quite clear that the body-fixed point P will have
no velocity component parallel to the angular velocity vector w; i.e., P moves
in a plane perpendicular to the w axis. If one would look down the angular
velocity vector one would see P moving on a circle with radius rsiné while
being “transported” with the rotating rigid body. Thus the speed of P is given
by

|7#] = (rsinf)w (1.12)

Studying Figure 1.6 further it is apparent that the inertial velocity vector of P
will always be normal to the plane of » and w. This provides the direction of
which can then be written as

i = (rsinf)w (“’7”> (1.13)

|w x 7|
However, note that |w x r| = wrsiné, so the transport velocity is

T=wXT (1.14)
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The only restriction for Eq. (1.14) is that » must be a body- xed vector within B.
As was mentioned earlier, the concepts of rigid bodies and reference frames can
be used interchangeably. The above result would also hold if we are finding the
velocity vector fixed to any reference frame which is rotating relative to another;
as is evident below, this easily generalizes for three-dimensional motion.

1.2.3 Transport Theorem

As was mentioned earlier, it is simpler to define a particle position in terms
of cylindrical or spherical coordinate systems. However, when computing the
velocity of the particle and taking the time derivative of the position vector, one
must take into account that the base vector directions of the chosen coordinate
system may be time varying also. The following transport theorem allows one
to take the derivative of a vector in one coordinate system, even though the
vector itself has its components taken in another, possibly rotating, coordinate
system.

Let A be an inertially fixed reference frame with a corresponding triad of
N-fixed orthogonal base vectors {11, fia, 3 }. Let B be another reference frame
with the B-fixed base vectors {l;l, bo, 53} For simplicity, let the origin of the
two associated reference frames be coincident. Let Br be a vector written in the
B coordinate system.

r :B’I’:T’li)l —|—T2i)2+7’3i)3 (115)

We introduce the following notation: the angular velocity vector wp s defines
the angular velocity of the B frame relative to the N frame. An angular velocity
vector is typically written in the 5 frame. Therefore we write wp n as

BWB/N = wiby + wrby + wsbs (1.16)

At this point we introduce the notion of taking the vector time derivative
while accounting for the reference frame from which the vector’s time variations
are being observed. Imagine this: you are standing still on Earth’s surface. Let
B be an Earth fixed coordinate system with the origin in the center of the Earth.
Your position vector would point from the Earth’s center to your feet on the
surface. By calculating the derivative of your position vector within B, you are
determining how quickly this vector changes direction and/or magnitude as seen
from the B system. You would find the time variation of your position to be zero
when viewed from the Earth-fixed frame. This should be no big surprise; after
all, you are standing still and not walking around on Earth. Now, let’s introduce
another coordinate system N with the same origin, but this one is non-rotating
and therefore fixed in space. Calculating the derivative of your position vector
in the A/ frame, you wish to know how fast this vector is changing with respect
to the xed coordinate system N. Since Earth itself is rotating, in this case your
position derivative would be non-zero. This is because relative to A/, you are
moving at constant speed along a circle about the Earth’s spin axis.
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To indicate that a derivative is taken of a generic vector & as seen in the B
frame, we write

By
i (z)

The derivative of Br given in Eq. (1.15) with components taken in the B coor-
dinate system is denoted by

Bd Bd B . 3 .7 .7

pn (T) = pn ( ’l“) = 71by + 79by + 73b3 (1.17)
since the unit vectors b; are fixed (i.e. time invariant) within the B frame and
therefore the terms 2d/dt (BZ) are zero. When taking the inertial derivative of

By however, these unit vectors must now be considered time varying as seen in
N. Therefore, using the chain rule of differentiation, we get!

% (B’l“) = r1by + 172by + 73b3 +T1§ (bl) —I—TQE (bg) +T3§ (bg) (1.18)

However, since b; are body-fixed vectors within B, Eq. (1.14) can be used to
find their derivative in N.

N
dt
Using Egs. (1.17) and (1.19), Eq. (1.18) is rewritten as

(131-) — wp o x by (1.19)

ﬁ(r):E(T):E(T)—FwB’NX r (1.20)

However, note that it is not necessary for the vector r to be written in the B
coordinate frame for Eq. (1.20) to hold, because %r is simply one of the infinity
of possible components of the unique vector r. Rather, components can be
written in any arbitrary coordinate frame. This result leads to the general form

of the transport theorem.

Theorem 1.1 (Transport Theorem) Let A and B be two frames with a rel-
ative angular velocity vector of ws s, and let r be a generic vector, then the
derivative of = in the N frame can be related to the derivative of r in the B
frame as

M Bd
= (r)= o (r) twp /v xr (1.21)

This formula allows one to relate a vector derivative taken relative to frame B
to the corresponding vector derivative taken in frame A/, where B and A are
arbitrarily moving reference frames. This permits one to relate the derivative of
r as it would be seen from the N frame to the analogous rate of change of r as
seen in the B frame. It is a very fundamental and important result that is used
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almost every time kinematic equations are derived. In particular, we will find
that vectors are typically differentiated with respect to an inertial frame called
N. However, the notation V'd/dt (x) becomes cumbersome at times. When we
want to compact the equation, we will use the following shorthand notation:

M

= ()= (1.22)

Example 1.2:  The inertial velocity and acceleration vectors are sought
for a general planar motion described in terms of polar coordinates with
components taken along {é.,ép,€3}. The origin and base vectors of the
polar coordinate system £ are denoted

&= {07 é7‘7 é07 é3}

as shown in Figurel ./. The inertial coordinate system having the same origin
O is denoted
N = {07 'ﬁ/17 ﬁ27 ﬁfi}

where ni3 = é3. The position vector &p written in the £ coordinate system is

Let wg,n be the angular velocity vector of £ with respect to N. As is evident
in Figurel ./ this is simply

(J)g/N = 9é3 = 9&3

«——__Arbitrary Path of P

P

Figure 1.7: Polar Coordinates Illustration

Using the transport theorem in Eq.(1 .21 ), the inertial velocity vector of » is
found to be
£
= —d (S’I") + we/n X 87'
dt

Using the dé nition of r = ré, it is clear that
£ £
d d
@ "= @

7

(rér) =ré,
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After carrying out the cross product term, the inertial velocity vector 7 is
reduced to

7 =% =ré, +rféy (1.23)
where # and 76 are is the radial and the transverse velocity components,

respectively.

The inertial acceleration  is found by taking the inertial derivative of 7 using
the transport theorem.
vl
T = o (7")—|—wg/N X P
Using the result for 7 that was just found, we obtain
= (7) = e, + (7‘9 + r9) éo

Again after carrying out the cross product and collecting terms, the inertial
acceleration vector # is found to be

&= (r - réQ) &+ (ré + 27*9') éo (1.24)

P

where 7 is the radial component, r6? is the centrifugal component, rd is the
tangential component and 276 is the coriolis acceleration component.

It is instructive to obtain Eq.(1 24) by _brute force.” Notice we can write
the N frame rectangular components of position, velocity and acceleration
as

= TN + Yyne
= In —|—yﬁ2

7 = Iny + yne

Since 7; are. xed in A, the transport theorem is not required. Upon substi-
tuting the polar coordinate transformations

r =rcosf

y =rsinf

and taking two time derivatives, you can obtain the lengthy trigonometric
functions ax(r,0) and ay(r,0) in

7 = ax(r,0)n1 + ay(r,0)n.
Finally, substituting
M1 = cos e, — sinfégy
Ty = sin0é, + cos Oégy

and performing considerable algebra, you will. nd all trigonometric functions
of 0 cancel, leaving you with the same result as in Eq.(1 24).
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1.2.4 Particle Kinematics with Moving Frames

So far all coordinate systems or reference frames discussed were considered non-
translating. Their origins were fixed inertially in space. Now a more general
problem will be discussed where the coordinate frame origins are free to trans-
late, while the frame orientations (defined through the three respective unit
direction vectors) might be rotating.
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The velocity vector of the origin O’ in the A frame is defined to be

(vo’)A = % (R) (1.28)

Using the transport theorem and the definition in Eq. (1.28), the velocity vector
('UP)A of Eq. (1.27) can be written as

(vP)A = ('UO/)A + ('UP)B +wpAXp (1.29)

To find the acceleration (aP ) 4 of particle P in the A frame, the derivative
of Eq. (1.29) is taking in the A frame.

(@) = 2 (07),) = (07) , + (0)y emaxp) (130

Allowing the differentiation operator to apply term-by-term in the last term,
and using the transport theorem, (aP ) A becomes

Ad , By
(@)= ((+7) )+ G (7)) +wma x (07 +
Ad Bq
I (wBja) X p+wpax (E (p) +ws 4 X P) (1.31)

Looking at the first term, the acceleration of the origin O’ in the A frame is

defined to be
(aO/)A - % ((vO/)A) (1.32)

While looking at the second term, the acceleration of particle P in the B frame
is

(@) = = (07),) (133

The angular acceleration vector of the B frame relative to the A frame is defined
to be

Ad
oBA= o (wg,4) (1.34)

Using the definitions in Eqs. (1.26) and (1.32) — (1.34), the particle P accelera-
tion vector (aP ) 4 can be written as the useful result?

(aP)Az (ao,)A—i— (aP)B—i—aB//A ><p+2w3/fA X (UP)B—i—

WB/A X (WB,'.A X p) (135)
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The term 2wp 4 ¥ (’UP)B defines the coriolis acceleration and the term wp /4 X

(wg// A4 X p) is the centrifugal acceleration. The latter term can also be expressed
as

w4 X (wpra x p) =(wp a-P)wsa—lwsal’p (1.36)

which immediately reveals the centripical acceleration vector components along
wp 4 and p. Note that Eq. (1.35) holds between any two reference frames. It
is not necessary that A or B be inertially fixed. The vector components used in
the various terms on the right hand side of Eq. (1.35) can be taken along any
choice of unit vectors. It is important that we recognize the complete freedom
we have to use any basis vectors we wish to express components of any vector
in Eq. (1.35).

Example 1.3: A disk of radius p, attached to a rod of length L, is rolling
on the inside of a circular tube of radius R as shown in Figurel.4 The
rod is rotating at constant rate ;,= 0. Three dI° erent reference frames are
dé ned. The inertially. xed frame is N’ = {O, n1, iz, iz} with the origin
at the center of the tube. The second coordinate frame £ = {O, ér, és, €3}
has the same origin, but the direction axes track the center of disk O’. The
third frame B = {O’, b,, b, b3} has the origin in the center of the disk and
the direction unit vectors track a point P on the disk edge. Note that ngs
and é3 point out of the paper and bs = —ns points into the paper. What
is the inertial acceleration # of point P expressed in £ frame components?
Note that since three frames are present, we cannot directly use Eq.{1 . ).
Instead the result will be derived by dI* erentiation of the position vector by
applying the transport theorem.

S ) A
O
ép
’
0 by
I 0}
p
o' B(p
J

Figure 1.9: Disk Rolling inside Circular Tube

First, let,s determine an expression for relating the angular rates dandd = o
Since there is no slippage between the disk and the tube, then notice that
the _contact arcs” must be equal on the tube and the cylinder, giving the
constraint

OR = ¢p



13

PARTICLE KINEMATICS CHAPTER1

Taking the derivative of the above expression and using 6= o the term ng is

given as
. R
¢=—
oW

The angular velocity vectors of frame & relative to N and frame B relative
to £ are

we/N = 43
. R .
wp/e = ¢pbz = —;‘Jns

The angular velocity vector of frame B relative to frame A is
R—p |
WB/N =W/ T Weg/N = _T“m

The position vector r of point P relative to the origin O is
r=Lér, + plA)T-

Using the transport theorem in Eq.(1 .21 ), the inertial velocity vector 7 of P
is
£
. d
r=—
dt (
Note that since L and p are constants for this system, the derivatives within
the £ and B frames are zero since ér, isc xed in £ and b, is. xed in B, so

= Léo+ (R—p) obo
The inertial acceleration vector # of P is found by taking the derivative of 7
in the A/ frame.

& B

# = 0 ((La)+we ok (uLeo) + o ((R=p) obo) +esynx((R—p) o)

B
R R d ~ ~
Lér) 4+ we/n x Lér + = (pbr-) + wg/n X pby

Since , is constant, the inertial acceleration is then written as the simple
expression

R

. 2 ~

7 =— Léy — —— b,
P

To express the inertial acceleration only in unit direction vectors of, for ex-
ample, the £ frame, we eliminate b, by making use of the identity

b, = —cos ¢pér + sin péy

to obtain the. nal result
2 2
= — <“2L — 7(]% ; P) “2 cos qzﬁ) ér — 7(]% pp) “2 sin ¢gég

Although the result in Eq.(1 &) can be quite useful at times, when more
than two frames are present it is typically easier to derive the acceleration
terms by df* erentiating the position vector twice as in this example.
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Problems

1.1 The particle P moves along a space curve described by the cartesian coordinates
z(t) = cos(t
y(t) = sin(t
z(t) = sin(t

Describe the given motion in terms of cylindrical and spherical coordinates by
-« nding explicit equations for the coordinates.

1.2 The planar point acceleration vector is given in the cartesian coordinates as
7 = Zé1 + yé2
Directly transform this vector into polar coordinates r, 8, &, and &g by substi-

tuting ¢ = rcos®, y = rsin@. Verify the result in Eq.(1 .24) obtained through
the transport theorem.

1.3 Let a particle P be free to slide radially in a rotating tube as shown in Figurel 1 .
Assume the tube is rotating at a constant angular velocity ;. What is the inertia(r
velocity and acceleration of the particle P? Express your answer as functions of
r, 0, é. and éy.

Figure 1.10: Particle in Rotating Tube

1.4 &let N = {O,7n1,Mn2,73} be an inertial, non-rotating reference frame with its
center in the center of Earth. The Earth: xed, equatorial coordinate frame £ =
{0, é1, é2,mn3} has the same origin, but the unit direction vectors are: xed in
the Earth. The Earth: xed, topocentric coordinate frame 7 = {O' 4, é,n}
tracks a point on Earth as shown in Figurel 11. Notice the local _geometric”
interpretation _ 4 = _up”, € = .east” and i = _north”. Assuming that a
stationary person is at a latitude of ¢ = 4 [ and a longitude of )=@ i what
is the inertial velocity and acceleration of the point O’? Express your answer in
both {72} and {&} components as functions of 7, 6, ), ¢ and derivatives thereof.

1.5 When launching a vehicle into orbit, one typically tries to make use of Earth,s
rotation when choosing a launch site. From what place on Earth would it be the
simplest{ i.e. require least additional energy to be added) to launch vehicles into
space and how much initial eastward velocity{ as seen in an Earth: xed frame)
would a vehicle have there thanks to Earth,s rotation?
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R

Figure 1.11: Coordinate Frames of a Person on Earth

1.6 & The person in Problem1 .4 has boarded a high-speed train and is traveling due
south at a constant 4 .km/h as seen in an Earth: xed reference frame. What
is the inertial velocity and acceleration now?

1.7

A constantly rotating disk is mounted on a moving train as shown in Figurel 1 2.
The train itself is moving with a time varying linear velocity of v(t). Assume
the particle P is. xed on the disk, what are its inertial velocity and acceleration?
Express your answer with {d} components as functions of r, , and v(t).

Figure 1.12: Rotating Disk on Train

1.8 Repeat Problem 1.7, but this time assume that the particle P is free to move
radially on the disk. Again. nd the corresponding inertial velocity and accelera-
tion.
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1.9

1.10

Two rotating disks are are arranged as shown in Figurel 1€. Relative to an
inertial reference frame A/, Disk A has a relative angular velocity w4, and
disk B has a relative angular velocity wp . Each disk has a particle A or
B respectively xed to its rim. The orientation of the A frame is given by
{@.,a:, a3} and the orientation of the 1B frame is given by {b,, b;, b3}.
a) What is the relative inertial velocity p and acceleration p of particle B
versus A?

b) As seen from particle A, what is the relative velocity and acceleration of
particle B?

It is recommended that this problem be solved in two ways,_(l) By using
Eq.(1 a) and ! ?) by df* erentiation of the position and velocity vector using
the transport theorem.

Figure 1.13: Two Rotating Disks

Consider the overly simpli ed planetary system shown in Figurel 1 4. The Earth
is assumed to have a circular orbit of radius R about the sun and is orbiting at a
constant rate d) The moon is orbiting Earth also in a circular orbit at a constant
radius r at a constant rate . Assume the sun is inertially. xed in space by the
frame {71,712, 73 }. Further, a UFO is orbiting the sun at a radius Ry at. xed
rate 4. Let the Earth frame £ be given by the direction vectors {&,, €4, €3}, the
moon frame M by {7, 79, 73} and the UFO frame U by {4, @i+, Gs}.

a) Find the inertial velocity and acceleration of the moon relative to the sun.

b) Find the position vector of the moon relative to the UFO.

)
c) Find the angular velocity vectors we 7, and w -
)

d) What are the velocity and acceleration vectors of the moon as seen by the

UFO frame?
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Figure 1.14: Planar Planetary System

1.11 A disk of constant radius r is attached to a telescoping rod which is extending at
a constant rate as shown in Figurel 12, Both the disk and the rod are rotating
at a constant rate. Find the inertial velocity and acceleration of point P at the
rim of the disk.

Figure 1.15: Rotating Disk Attached to Telescoping Rod

1.12 A disk is rolling at a constant rate 6 on a moving conveyor belt as shown in
Figurel ? . The conveyor belt speed v is constant. Find the inertial velocity
and acceleration of Point P.

Figure 1.16: Disk Rolling on a Conveyor Belt
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1.13 A vertical disk of radius 7 is attached to a horizontal shaft of length R as shown
in Figurel 1 /. The shaft is rotating at a time varying rate ¢. A. xed point P is
on the rim of the disk, while a missile is [ ying overhead at a. xed height h with
the trajectory r,, = hns — tne.

a) Find the inertial velocity and acceleration of point P.

b) What is the velocity and acceleration of point P as seen by the missile.
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Figure 1.19: Person Riding Large Wheel
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CHAPTER TWwO

Newtonian Mechanics

The previous chapter on Particle Kinematics dealt with vector methods for
describing a motion. Now we would like to be able to establish complete motion
models which permit us to solve for the motion once the system forces and
torques are given. Mass distribution and point of application of forces of a
dynamical system clearly affect the resulting motion and must be taken into
account. The motions are found by solving the system equations of motion
which form the cause/effect model between the forces acting on the system and
the resulting translational, rotational and deformational accelerations.

In this chapter, we will first consider the dynamics of a single particle and
then that of a system of particles. An example of a system of particles would be
the solar system with the various planets within it idealized as particles. The
particle mechanics results will then be generalized to derive formulations for
the dynamics of continuous systems such as vibrating beams or some generally
deformable collection of matter (such as a bowl of Jello) where the system shape
may be time varying.

2.1 Newton’s Laws

The following laws of nature were discovered by Sir Isaac Newton over 200 years
ago in England. Later in the early 20th century Albert Einstein theorized that
these basic laws are only a low-speed approximation in his papers about special
relativity. However, relativistic e ects only become significant when the velocity
of a particle or body approaches that of the speed of light. In this discussion we
will assume that all systems studied are moving much slower than the speed of
light and we will therefore neglect relativistic effects. The following three laws
are commonly known as Newton’ s laws of motion.!

Newton’s First Law: Unless acted upon by a force, a particle will maintain
a straight line motion with constant inertial velocity.

Newton’s First Law is the most easily overlooked Law because it is a special

25
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case of the second law. It simply states that unless something pushes against
the particle, it will keep on moving in the same direction with constant velocity.

Newton’s Second Law: Let the vector F' be the sum of all forces acting on a
particle having a mass m with the inertial position vector r. Assume that A is
an inertial reference frame, then

Nd
F = s (m7) (2.1)
Or in words, the force acting on m is equal to the inertial time rate of change
of the particle linear momentum p = ms. If the mass m is constant then this
results simpli es to the well known result

F =mi (2.2)

We observe that if units are not chosen consistent with Egs. (2.1) and (2.2),
Newton’s second law requires an additional proportionality factor. Note that
all derivatives taken in Newton’s Second Law must be inertial derivatives. Since
it is typically necessary to also describe a position vector in a non-inertial co-
ordinate frame, the importance of proper kinematics skills becomes apparent.
Without correctly formulated kinematics, the dynamical system description will
be incorrect from the start. We mention that a large fraction of errors made in
practice have their origin in kinematics errors formulating # and similar vector
derivatives.

Newton’s Third Law: If mass m; is exerting a force F»; on mass ms, then
the force Fi5 experienced by m; due to interaction with mq will be

Fiy=—Fy (2.3)

This conforms to our intuitive experience. Anytime one pushes against an
object, the reaction force from the object to our hand is an equal force. Be sure
to keep that in mind when contemplating punching a solid wall, or jumping
from a canoe.

In order to write down Newton’s laws, it is important to make use of force
and moment sketches known as Free Body Diagrams (FBDs). In essence, FBDs
are used to specify and determine the force vector F in Eq. (2.2). Figure 2.1 is
an example of a FBD. There are several conventions for free body diagrams, we
adopt the following rule. The FBD should show all forces and moments acting
on the system. We exclude from our FBDs acceleration vectors and so-called
“inertia forces” which are subsets of the m# terms in Eq. (2.2) that may arise
in rotating coordinate systems.

Sir Isaac Newton is probably best known for the development of calculus
and the laws of gravity which by popular account were initiated when an apple
fell on his head while he was sitting under a tree. However, his laws of motion
form the foundation of all modern sciences and engineering.
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Newton’s Law of Universal Gravitation: Let the vector ri3 = r9 — ™
describe the position of mass ms relative to mass m; as shown in Figure 2.1.
Then the mutually attractive gravitational force between the objects will be

Gmima T12

Fip=—Fy =121
12 21 |’l"12|2 |’l"12|

(2.4)

where G = 6.6732 - 10—11;‘5% is the universal gravity constant.

Figure 2.1: Newton’s Law of Universal Gravitation

For example, this law of universal gravitation allows one to model accurately
the attractive forces between spacecraft and planets. Note however, that since
the universal gravity constant G is relatively small, the gravitational attraction
between two everyday objects such as a house and a car is very small and
typically ignored. Even Mount Everest makes a barely measurable perturbation
in the Earth’s total gravitational attraction on objects in the immediate vicinity
of Mount Everest.

One important aspect of the law of universal gravitation is that the gravity
force is conservative and can be calculated from a gravity field potential energy
function. A general potential energy function V' (7) is a scalar function which
depends on the system position vector . The potential function measures how
much work has to be done to the system to move an object from rest a reference
position 7y to rest at position r. A conservative force is defined as a force
derivable by taking the gradient of a corresponding potential energy function
V(r) as

F(r)=-VV(r) (2.5)

Given V| we can derive F from the gradient operator as in Eq. (2.5). Given F,
we can derive V by integration. Note that conservative forces only depend on
the position vector r and not the velocity vector © or time t. For example, the

classical viscous drag force F' = —cr would not be a conservative force.
The gravity potential energy function Vg experienced by the masses m; and
mo iSl’ 3
Gmlmg Gm1m2
Ve (ri2) = — = - (2.6)

|7’12| T12
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Ve (r12) is energy required to separate the two masses from the current distance
of |r12] to an infinite separation. We will subsequentially consider (in section
2.2.3) the relationship of potential energy and work in more detail. Let’s describe
the r15 vector through cartesian coordinates as

1
T12 = xTo (27)
r3

The magnitude of 715 is defined as

|r12] = \/2} + 23 + 23 (2.8)

and the partial derivatives of |r12| with respect to the cartesian coordinates z;
are given by

6|r12| €T;
= 2.9
8171' |’I’12| ( )
The gradient of the potential field Vi is given by
6VG - Gm1m2 6|r12| - Gm1m2 €T; (2 10)

Oz; B |7’12|2 Ox; B |7"12|2 |7"12|

The gravitational force F5; the mass mo experiences due to the mass m; at the
relative position 712 is given by

T

G 1 G
Fy =-VVg = —mil?— T2 | = —L?Tm (2.11)
[712]? |712] T3 |712]

Another example of a conservative force is the force exerted by a spring. Let
the spring have a spring constant k and a linear deflection x. Then its potential
function Vg is given by

Vs(z) = %/m? (2.12)

The current potential energy indicates how much work was performed to stretch
the spring from a zero reference deflection state to the deflection z. The force
exerted by the spring on a mass m is given by the famous Hook’s Law.

F=-VVg=—ka (2.13)

Example 2.1: Let us: nd a. rst order approximation of the gravity potential
function in Eq.{ % ) that a body with m would experience near the Earth s
surface. Assume a spherical Earth with radius R. and mass m.. The radial
distance r of the body to the center of Earth is written as

r=Re+h
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where h is the height above the Earth s surface. The gravity potential expe-
rienced by the body m due to Earth is

The function V(r) can be approximated about the distance R. through the
Taylor series expansion

2

B2 4. ..
r 2 o2

Re

V(r) = V(R.) + %%

The local gravity potential Vi,cai uses Re as its reference potential and can
approximated by

Vioeat(h) = V(r) — V(R) =~ | h+0m?)

Re

After carrying out the partial derivative the local gravity potential function
for the special case of a constant gravity. eld is found to be

_ Gme

‘/local(h) - R2 mh = mgh

where g = Gm./R? is the local gravitational acceleration.

2.2 Single Particle Dynamics

The equation of motion for a single particle is given by Newton’s second law in
Eq. (2.2) where it is assumed that the particle mass m is constant and # is the
second inertial derivative of the position vector . The following two sections
treat two cases of this simple dynamical system. In the first case the force
being applied to the mass is assumed to be constant and in the second case it
is assumed to be time varying.

2.2.1 Constant Force

If the force F' being applied to the mass m is a constant vector, then the equa-
tions of motion

m# = F = constant (2.14)

can be solved for the time varying position vector r(t). Eq. (2.14) can be solved
for the inertial acceleration vector # as

F(t) =

% (2.15)
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After integrating this equation once from an initial time ¢y to an arbitrary time
t we obtain the following velocity formulation for mass m.

#(t) = #(to) + % (t — to) (2.16)

After integrating the velocity formulation an expression for the time varying
position vector r(t) of mass m is found.

r(t) = r(to) + 7(to) (t — to) + % (t —to)? (2.17)

Note that Eqgs. (2.15) through (2.17) are actually each three sets of equations
since r = (z1,22,73)7 and F = (Fy, Fp, F3)T are each three-dimensional vec-
tors. Given an initial velocity vector 7(tp), the time required to reach a final
velocity under constant driving force F' can be solved from Eq. (2.16).

. . m
(f - to) = (I'l(t) — l‘i(to)) F (218)
i
Given an initial position vector 7(tp), the time required to reach a final position
vector under constant driving force is found by solving the quadratic equation
in Eq. (2.17) for the time t.

it =T <i\/i712(t0) + 2 (a0) — ) - ii(ﬁ))) (2.19)

%

Given an initial position and velocity vector and a final position vector, the
corresponding final velocity vector is found by substituting Eq. (2.18) into
Eq. (2.17) and solving for 7(t).

B(6) = (t0) + 21 (2:(0) — ) (220)

Example 2.2: The trajectory of a mass m is studied as it travels in a vertical
plane under the inf uence of a constant gravitational force F'. Determine an
equation that relates an arbitrary target location (z1, z2) to the corresponding
launch velocity vo and [ ight path angle q. As shown in Figure 2.2, the mass
is at the coordinate center at time zero with a speed of vy and a elevation
angle of ~g. The cartesian components of the initial position and velocity
vectors are therefore given by

o= (3) s (553

Since the gravitational force F' only acts along the vertical direction, the
equations of motion are given as

-3 (%)-()
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Figure 2.2: Ballistic Trajectories under Constant Gravity Force

where ¢ = F/m is the local constant gravitational acceleration. Using
Eq.( oF ) the velocity vector 7(¢) is

o-n(T2)- ()

The position vector =(t) is found through Eq.{ 21 1).

_(zi(t)\ cosyg) (O
r(t) = (:cz(t)> = vot (sin’m gt?2
By solving the z1(t) equation for the time ¢ and substituting it into the z2(t)
equation, one obtains the parabola expression relating x> to z1{ the equation
of the path or trajectory) _,
gsec® g

$2
2 1
2'[)0

T2 = x1tang —
An interesting question now arises. Given an initial speed vo, what would
the initial elevation angle vy have to be to make the mass m hit a target at
coordinates (Z1,Z2)? To answer this we rewrite the above expression relating
z1 and z2 making use of the trig identity sec? w=1+ tan? Q-

22 2025
tanzf;g— &tan\g—k voT2
gri

=2
gry

+1=0

This quadratic equation can be solved explicitly for tan~g.

=N

2 e
g Vo N 922

tan =L 4+ —/v? —2¢%Fs —

( \Q)l/z 971 gi1 0 g 0

If the point (Z1,Z2) is within the range limit, then this formula will return two
real answers. One corresponds to a lower trajectory and the other to a higher
trajectory as illustrated in Figure 2.2. If the point (Z1,Z2) is on the range
limit, then the formula will return a double root. If the real point (Z1,Z2) is
outside the range limit, then two complex variables will be returned, indicating
the reasonable truth that no real solutions exist.
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Figure 2.3: Ballistic Trajectories under Constant Gravity Force

Te. nd the envelope of all possible trajectories the case where only double
roots exist is examined. Setting the square root term to zero, the following
parabola is found.

2

$2_”Uo g:c2

=5 5371
29 2v%

Any targets that are accessible with the given vo must lie within this parabola.
The trajectory envelope parabola is shown as a dashed line in Figure 2.2. As
can be veri ed, the special case where 1 = ,gives T2 = vg/2g. You can
readily show that this is the apogee of a vertically launched projectile with
launch velocity vo. Another special case where is where 2 = 2 which provides
the maximum impact range z1 = v3/g if the surface is jat. Figure 2.§
compares the various launch angles required to hit a target a distance x:
away with a given initial velocity v3. For this constant gravity. eld case, the
maximum range launch angle is always 4 degrees. Later on this problem is
revisited in celestial mechanics where the inverse square gravity. eld case is
considered.

2.2.2 Time-Varying Force

When the force F' acting on the mass m is time varying, then there are typically
no closed form solutions for the velocity and position vectors. The equations of
motion are given as

i— Lr (2.21)

m
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Upon integrating Eq. (2.21) from ty to t the velocity vector 7(¢) at time t is
given as

#(t) = 7(to) +%/ F(r)dr (2.22)

The position vector r(¢) is obtain by integrating the velocity vector.

(1) = rlto) + #(to) (t — t0) + / / * P(r)drdrs (2.23)

Finding the time required to accelerate from one velocity to another or to travel
from one position to another under the influence of F'(¢) cannot be found gener-
ically as for the case of constant F'. These results would have to be found
explicitly for a given problem statement or through a numerical method if no
closed form solution exists.

Example 2.3: Let the mass m be restricted to travel only in one dimension.
It is attached to the coordinate frame origin through a linear spring with
spring constant k. The force acting on mass m is then given through Hook,s

Law as
F=—kx
and the equations of motion are then given through Newton,s second law in
Eq.(2.7) as
1

This can be rewritten in the form of the standard unforced oscillator df* er-
ential equation.
mi+kxr=0

The oscillator problem is known to have a solution of the type
z(t) = Acos 4t + Bsin jt

Where the constants A, B and ,, are yet to be determined. The velocity and
acceleration expressions are then given as

&(t) = —Asin (f + By cos ¢}
Z(t) = —A‘JQ cos 4} — sz sin 4t = —wzm(t)

Substituting the expression for Z(t) into the equation of motion the following
expression is obtained

(—m‘ﬁ + k) =0
which must hold for any position x. Therefore the natural frequency , is

given by
— k
—_

The constants A and B would be found through enforcing the solution to
satisfy the initial conditions x(to) = A and Z(to) = (5.
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2.2.3 Kinetic Energy

The kinetic energy T of a particle of mass m is given by

1
T= Emf T (2.24)
To find the work done on the particle we investigate the time derivative of the
kinetic energy T

dT
= mit i (2.25)

After using Eq. (2.14) the kinetic energy rate or power is given as

dr .
- = F.r (2.26)

If the force F' is conservative it can be expressed as the negative gradient of a
potential function V.
dr oV

el A 2.2
dt or " (2.27)

Noting that %77' = # BEq. (2.27) can be written as

ar dv
—+ —=0 2.28
dt + dt ( )

Therefore the total system energy F = T'+V is conserved. For conservative sys-
tems it is often convenient to obtain an expression relating coordinates and their
time derivatives using the system energy. This avoids having to perform difficult
integrations of the acceleration expressions to obtain the same relationship.
Let W be the work performed between times ¢; and t2. Upon integrating
Eq. (2.26) from time ¢; to t2 the following work/energy equation is obtained.

t2 ’I‘(tz)
T(ts) — T(t1) = F-q’«dt:/ F-dr=W (2.29)

ty

Example 2.4: A mass m ofl kg has an initial kinetic energy of 4 .Joules
(1 Joule =1 J =1 kg m?/s? =1 Nm). A constant force F' = 4 N is acting
on this mass from the initial position r(¢o) = @ to the: nal position at r(ty
=1 .m. What is the work done on the mass and what is the. nal velocity
at ty!

Using Eq.{ 9.9\‘,), the work W done to the mass m is

r(ty) 10m
W:/ F~dr:/ 4N - dr = 40Nm = 40J
r(ty) 0

m

The energy at ¢ty is given by
T(tf) =T (to) + W = 40J + 40J = 80J
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Using Eq.{ 2.74) the. nal velocity 7(t¢) is found to be

#(ts) = % — dm)s

2.2.4 Linear Momentum

The linear momentum vector p of a particle is defined as
p=mr (2.30)

The momentum measure provides a sense of how difficult it will be to change
a motion of a particle. Assume a locomotive has a large mass m and a very
small inertial velocity . Despite the slow motion, it makes intuitive sense
that it would be very difficult to stop the motion of this large object. The
linear momentum p of the locomotive is large due to the large mass. Similarly,
consider a bullet with a small mass and a very high inertial velocity. Again,
it makes intuitive sense that it would be difficult to deflect the motion of the
bullet once it has been fired. In this case the linear momentum of the bullet is
large not because of its mass, but because of its very large inertial velocity.

Using the linear momentum definition, we are able to rewrite Newton’s Sec-
ond Law in Eq. (2.1) in terms of p as

Nd Nd
F=—(mr)=— 2.31

- (m#) = = (p) (231)
Thus, the force acting on a particle can be defined as the inertial time rate of
change of the linear momentum of the particle. If no force is acting on the
particle, then p is zero and the linear momentum is constant. For the single
particle system, this is a rather trivial result. However, using the analogous
arguments on a multi-particle system will yield some very powerful conclusions.

2.2.5 Angular Momentum

Let P be an arbitrary point in space with the inertial position vector rp and
the mass m have an inertial position vector r. The relative position of m to
point P is given through

oc=r—rp (2.32)

The angular momentum vector Hp of the particle m about point P is defined
as

Hp =0 xmo (2.33)
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Taking the time derivative of Hp we find

Hp =0 xm6 + o xmé (2.34)

After noting that & = # —#p and that a vector cross product with itself is zero,
the vector Hp is

Hp = o x mit — o X mitp (2.35)
Using Eq. (2.14) this is rewritten as
Hp=0xF+mipxo (2.36)

Note that the term o x F' is the moment (or torque) vector Lp due to force F'
about point P. The angular momentum time derivative can then be written in
its most general form

Hp=Lp+mipxo (2.37)

Note that if the reference point P is inertially non-accelerating or » = rp, then
Eq. (2.37) is reduced to the famous Euler’s equation.!: 2

Hp=1Lp (2.38)

Example 2.5: A weightless cylinder of radius R with a mass m embedded
in it is rolling down a slope of angle } without slip under the inf uence of a
constant gravity- eld as shown in Figure 2.4. The mass is & set from the
cylinder center by a distance [. Let N : {O, fu1, fiz, i3} be an inertial frame
and £ : {O’,é,,ép, é3} be a rotating frame tracking the point mass within
the cylinder. Note that é3 = —ns.

Figure 2.4: Cylinder with Offset Mass Rolling Down a Slope

The angular velocity vector between the £ and the N frame is

wg//\/’ = éé:; = —H’flg
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Because of the no slip condition, the distance d that the center of the cylinder
travels downbhill is related to rotation angle 6 through

d= R0
The position vector r of the point mass relative to O is written as
r=dn; +1é. = Ron; + le,

Using the transport theorem, the inertial velocity and acceleration vectors are
found to be

7 = ROn, + 10&,
# = Rin, + 16éy — 16°e,
The € frame unit vectors are expressed in terms of N’ frame components as

é, = sin 01 + cos O1io

€9 = cos O, — sinOns

The acceleration vector of the point mass m is then expressed in the N frame
as

Nt = (R + 16 cos0 — 107 sin 0) 7 — (1dsin 0 + 16° cos 0) s
The forces acting on the rolling cylinder are the gravitational force F,
F, = mg (sin*f; — cos P )
the normal force IN pushing perpendicular from the surface,
N = Nno
and the frictional force F'y which is keeping the cylinder from slipping.
Fr=—Fpn,
Newton,s second law states that
m# = Fy+ N + Fy

After substituting Ni and the expressions for the forces into the above equa-
tion and equating the A frame components, the following two relationships
are found.

m (Ré—klcos@é —16° sin9) =mgsin? — Fy

-m (l sin 66 + 16? cos 9) =—mgcos? + N

Once an expression for 6 is found, the second equation could be used to solve
for the time varying normal force component N. To solve the: rst equation
for the angular acceleration, an expression for the frictional force component
Fy must be found. To do so we examine the angular momentum vector of
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the point mass about the &£ frame origin O’. The relative position vector o
of the point mass to O’ and its inertial derivative are given by

o=1& o =10¢&
The angular momentum vector H: can then be written as
Ho = o x mé = —ml*0n;
and its inertial derivative is given by
Ho/ = —ml2éﬁ3
The torque Lo, about point O is written as

LO/ZUXFQ—RfLQX(Ff+N)
= —mglsin (0 + 1) faz — RFyf3

The inertial position vector 7o/ of point O’ and its second inertial derivative
are given by

ror = dfy = ROA1 o, = Riny

Euler,s equation with moments about a general point in Eq.( 2&1) is for this
case

Ho/ = Lo + m'ﬁo/ X o
which leads to the desired expression for F in terms of .
RF; = ml®6 — mglsin (0 +1) + mRI0 cos 0

Substituting this expression back into the previous equation relating ¢ and
Fy results in the equations of motion in terms of the rotation angle 6.

(R2+12 +2Rlcos€)é—Rlézsinﬁ—gRsirﬂ —glsin(0+3)=0

This equation could be solved for the angular acceleration 6 which could then
be used to: nd the normal force component N purely in terms of 6 and 6.

2.3 Dynamics of a System of Particles

2.3.1 Equations of Motion

Until now we have only considered dynamical systems with a single particle. In
this section we will discuss systems of N particles each with a constant mass
m;. An example to visualize such dynamical systems would be our solar system.
To study the translational (orbital) motion of the planets and moons, due to
the large distances involved, they can usually be considered to be point masses
with each having different masses m;.



SECTION 2& DYNAMICS OF A SYSTEM OF PARTICLES <

Figure 2.5: System of N Particles

Since we are now dealing with a finite number of masses, we write Newton’s
second law in index form as

where Rl is the inertial acceleration vector of m; as shown in Figure 2.5. The
force acting on m; can be broken down into two subsets of forces as

N
F,=Fg+) F; (2.40)
j=1
where F;g is the vector sum of all external forces acting on mass m; and Fj; is

an internal force vector due to the influence of the j-th masses on the i-th mass.
The total force vector F' acting on the system of N particles is defined to be

N N
F=) Fi=) Fg (2.41)
i=1 i=1

The internal forces F;; don’t appear in F' because of Newton’s third law which
states that F;; = —F};, i.e., internal forces cancel in pairs. The total mass M
of the N particles is defined as

M=> "m; (2.42)

The system center of mass position vector R, is defined such that

N
> miri =0 (2.43)
=1
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where r; = (R; — R,) is the position vector of m; relative to R.. Thus Eq. (2.43)
can be rewritten as

N N
> miR.=> m;R, (2.44)
i=1 i=1
which is further simplified using the system mass definition in Eq. (2.42) to
N
MR, =Y m;R; (2.45)
i=1

The center of mass position vector R, is expressed in terms of the individual
inertial mass position vectors R; as

N
1
R. =+ Z} m;R; (2.46)
After taking two inertial derivatives of Eq. (2.45) we obtain
. N .. N
MR, => m;R; =) F, (2.47)
i=1 i=1

After substituting Eq. (2.41) we obtain the final result
MR,=F (2.48)

also known as the Super Particle Theorem. The dynamics of the mass center
of the system of N particles under the influence of the total external force
vector F' is the same as the dynamics of the “superparticle” M. Note that the
superparticle theorem only tracks the center of mass motion of the system. No
information is obtained about the size, shape or orientation of the cloud of N
particles.

Example 2.6: Let three masses be connected through springs with a spring
st! ness constant k£ as shown in Figure # . The second and third mass each
are subjected to a constant force where F> = f and F3 = 2f.

The total system mass M is given through
M =2m+m+m=4m
and the total external force F' being applied to the system is
F=f+4+2f=3f

The center of mass of the three-mass system is given found through Eq.( 2.4 )
to
A 2mr1 +mra+mrs  2r1 +r2+ 73

M 4
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Figure 2.6: Three-Mass System

Using the super particle theorem in Eq.( 2.4 3, the equations of motion for
the center of mass of the three-mass system is

dmi. = 3f

Assuming that the r. is originally at rest at the origin, the system center of
mass location is then integrated to obtain

re(t) = ;’—T{Lﬁ

Te. nd the equations of motion of the individual masses, we need to write
Eq.( ?.i’“’) for each mass.
2mi1 = k(re — r1)
mia = —k(re —r1) + k(rs —r2) + f
m¥s = —k’(?"3 — 7”2) —+ 2f

This can be written in a standard ODE matrix form for a vibrating system

2m 0 0 71 k -k 0 1 0
0 m 0 o | + |-k 2k —k re | = f
0 0 m ’F3 0 —k k T3 2f

which can be solved given a set of initial conditions for 7;(to) and 7;(to).

2.3.2 Kinetic Energy

The total kinetic energy T of the cloud of N particles can be written as the sum
of the kinetic energies of each particle.

N
1 . .
T=3 ; miR; - R; (2.49)

After making use of the expression R; = R. + 7;, the total kinetic energy is
rewritten as

N N 1 N
T = <Z mi> R, -R.+R.- <Z mi'l'“i> +3 > mari - 7 (2.50)
1=1 1=1

=1

N =
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where the middle term Zfil m;7; is zero due to the definition of the center of
mass in Eq. (2.43). The total kinetic energy of a system of N constant mass
particles m; can therefore be written as

N
1 . . 1 .
T = §MRC "R, + 3 ;21 Mt - T (2.51)

where the first term contains the system translational kinetic energy and the
second contains the system rotation and deformation kinetic energy.
To find the work done on the system we examine the energy rate d7'/dt.

dT . N
% =MR, R, + ;mlrl - (252)

After making use of the facts that M R, = F and that #; = R; — Rc, the energy
rate is written as

dT XL . . N
E =F R.+ ZmZRZ -7 — R, - (; miri> (253)

i=1

After using Eqgs. (2.39) and (2.43), the energy rate is written in the final form
as

T .
E:F-Rc—i—;ﬂ»-m (2.54)

If only conservative forces are acting on m;, then the forces F; can be written
as the gradient of a potential function V;(r;).

Vi
F=—— 2.
or, (2.55)

Noting that 1@% = V; and defining the total conservative potential function
to be

d Ay
LRV 2.
=V ;V (2.56)
Eq. (2.54) can be written as
ar dv .
4% _F.oR 2.57
dt + dt ( )

Studying Eq. (2.57) it is clear that for systems where the total applied force
vector F' is zero, the total system energy £ =T + V is conserved. If the total
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resultant force F is itself a conservative force due to a potential function V,.(R.),
then Eq. (2.57) can be written as

dr n av n dve
dt dt dt

=0 (2.58)

and the total system energy £ =T + V + V. is also conserved.

After integrating the kinetic energy rate equation in Eq. (2.54) with re-
spect to time, the change in kinetic energy between two times is given by the
work/energy equation

ta . N ta
T(t)) — T(t) = / F-R.dt + Z/ F, - vdt (2.59)
t i=1 t1

1
which can also be written as the spatial integral

R.(t2) N r(ta)

T(ty) — T(t) = / F.dR, + Z/ F, - dr (2.60)

Rc(t1) i—1 7 r(t1)

The first term on the right hand side of Eq. (2.60) is the translational work done
and the second term is the rotation and deformation work done on the system.

2.3.3 Linear Momentum

In Eq. (2.30) the linear momentum p; of a single particle is defined. For a
system of particles, the total linear momentum of the system is defined as the
sum

N

p= ipi = Z (msz) (2.61)

=1

Let r; be the i-th particle position vector relative to the system center of mass
as defined in Eq. (2.43). Taking the derivative of Eq. (2.45), we are able to write
the total linear momentum expression in Eq. (2.61) in terms of the total system
mass M and the center of mass inertial velocity vector R,.

p=MR, (2.62)

Note that the super particle theorem introduced in Eq. (2.48) also holds for the
linear momentum of a system of particles. The linear momentum of the mass
center of the system of N particles is the same as the linear momentum of the
“superparticle” M.

Let F; be the force acting on the i-th particle. Note that F; is composed
both of a net external force component F;r and the inertial force component
F;; due to interaction with other particles (see Eq. (2.40)). Using the particle
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equations of motion in Eq. (2.39), the inertial time rate of change of the total
linear momentum of the particle system is expressed as

N N
p=> (mif) =Y (F) (2:63)
i=1 i=1
Since the inertial forces Fj; will cancel each other in this summation due to
Newton’s third law, the time rate of change of the linear momentum of a particle
system is equal to the total external force acting on the system.
Nd
F=— 2.64
(p) (264)

If no external force F' is present, then the total system linear momentum vector
p will be constant. This leads to the important law of conservation of angular
momentum. Unless an external force is acting on a system of N particles,
the total linear momentum of the system is conserved. This property is used
extensively in collision problems or in the rocket propulsion problem. If two
bodies collide, then energy is used to deform the bodies. The total system
energy is not conserved during the collision. However, momentum is conserved
and can be used to compute the velocities of the bodies after the collision.

Example 2.7:  Assume the dynamical system of interest consists of only
two particles m1 and ma moving along a one-dimensional, frictionless track
at dff erent rates. Before a collision at time to they each have a constant
speed of v1(t; ) and v2(t, ) respectively. The total energy before the impact
is given by

T(t5) = 5 (mavs(65)? + mava(ty )

The total linear momentum is
p(to) = maivi(ty ) +mava(ty)

First, Let assume that the collision is perfectly elastic. In this case any
energy used to deform the bodies during the collision is regained when the
body shapes are restored( i.e. think of two rubber balls colliding). Both total
energy T(t3)

T(t) = = (mavi(td)? + mava(ts)?)

N =

and momentum p(t)
ptg) = mivi(tg) +mava(ty)

are conserved during the collision. Setting T'(t5) = T(tZ) and p(ty) =
p(tar), we are able to express the particles speeds after the collision as

01 (i) = 7 (01(t9) (ma = ma) + 20a (5 )mz)
0a(t) = 37 (02(69) (ma — ma) + 201 (65 )m)
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with M = m1 4+ m2 being the total system mass.

Second, we assume that the collision is such that the two particles join and
become onel i.e. think of two chunks of clay colliding). In this case the total
energy T'(tJ) after the collision is given by

() = %Mvz

where v is the speed of the joined particles after the collision. The linear
momentum of the joined particles is

p(ty) = Mv

Note that this collision in not perfectly elastic and that energy is not con-
served. However, linear momentum is conserved and we can set p(t,) =
p(td) to solve for the velocity v of the joined particle after the collision.

1 _
v = Vi (m1v1 (to ) + m2v2(t(;r))

The total energy after the collision is given by

1 1 B 2
T(tg) - §M’U2 = m (mwl(to ) —|—m2v2(tg))2 = QPW

The change in energy AT = T(t) — T(ty) is given by

mima

L (nlty) — e (1))

AT =

The energy lost during this plastic collision is used to permanently deform
the two bodies, as well as to radiate heat and produce sound waves.

These two examples are idealized situations. In reality the collisions are never
perfectly elastic or plastic. In this case more knowledge is required about the
how the bodies will deform to predict the motion after the collision.

2.3.4 Angular Momentum

As was done for the case of a single particle, let’s find the angular momentum of
the IV particle system about an arbitrary point P given by the inertial position
vector Rp. The relative position of each mass m; is given though the vector

g; = Rz — Rp (265)

The total system angular momentum vector H p about the point P is given as
the sum of all the single particle angular momentum vectors about this point.

N
Hp =) o;xm6; (2.66)

=1
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Taking the time derivative of Hp we get
N N
Hp =) &ixmio;+ Y 0y xmi&; (2.67)
i=1 i=1

After performing similar arguments as in the single particle case this expression
is rewritten as

N N
Hp = ZO’Z' X mZRl — <Z O'imi> X RP (268)
i=1

=1

Using Egs. (2.45), (2.65), the following mass center identity is found.

N N N
Zaimi = Z qul — (Z mi> RP =M (Rc — Rp) (269)
i=1 i=1 i=1

The total external moment Lp applied to the system is defined to be
N ) N
i=1 i=1
Using Egs. (2.69) and (2.70), the system angular momentum derivative Hp
about a point P is®
Hp=Lp+MRp x (R, — Rp) (2.71)

Note that if either R, = Rp or Rp is non-accelerating inertially, then Eq. (2.71)
reduces to the most familiar Euler equation

Hp=Lp (2.72)

Analogously to the linear momentum development, if no external torque Lp is
acting on the system of particles, then the total angular momentum rate vector
Hp is constant.

Example 2.8: Two particles are attached on strings and are moving in
a planar, circular manner as shown in Figure 2./. The plane on which the
particles are moving is level compared to the gravity. eld. Thus, given an
initial velocity and ignoring frictional € ects, the particles will continue to
move at a constant rate. Assume that the two circular paths meet tangentially
at one point. We would like to investigate how the velocities will change if
the particles meet at this point at time to. This condition is shown in grey in
the. gure. The total kinetic energy before the collision is

_ m _ m _
T(ty) = 71m1v1(t0 )+ {mm(to )?
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Figure 2.7: Illustration of two Particles Moving in a Circular Manner on
a Level Plane

while the angular momentum H along the plane normal direction is
H(ta) = Rimiv (ta) + Rgmﬂ]g(ta)

Assuming the collision is perfectly elastic, then both the total energy and
angular momentum are conserved. After the collision, we express them as

T(t5) = Srmuvi () + Simava(t)?
H(t0+) = lel’Ul (tar) + R2m21}2(tar)

Setting T'(ty) = T(ty) and H(t;) = H(td), we are able to solve for the
particle velocities after the collision _

miR} — ma2R3)v1(ty) + 2maR1 Rava (7))
mlRf + ’ITLQRE

() = 2m1 R Rovi (5 ) + (m2 R} — miRY)va(ty)
0 mlR% + ’ITIQR%

u(td) = <

2.4 Dynamics of a Continuous System

2.4.1 Equations of Motion

The development of the dynamical equations of motion of a continuous system
parallels that of the system of N particles. Any finite sums over all particles
are generally replaced with volume integrals over the body B. This allows us
to describe any constant mass body, even if it is flexible or does not have a
constant shape as in a chunk of jello. However, care must be taken to define a
control volume that contains the instantaneous mass of the system when actually
carrying out volume integrations.
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Figure 2.8: Mass Element of Continuous System

Let dm be an infinitesimal body element with the corresponding inertial
position vector R as shown in Figure 2.8. Then as such it can be considered to
be a particle and abides by Newton’s second law. The equations of motion for
this infinitesimal element are

dF = Rdm (2.73)

where dF is the total force acting on dm. The force vector dF is broken up into
external and internal components as

dF = dFg + dFy (2.74)

To express the volume integral over the body B let us use the shorthand notation
J5 = [l]5- The total force F' acting on this continuous body is given by

F:/BdF:/BdFE (2.75)

where the internal forces again cancel because of Newton’s third law. The total
body mass is given by

M = / dm (2.76)
B
The system center of mass is defined such that
/ rdm =0 (2.77)
B

where 7 = R — R, is again the internal position vector of dm relative to R..
Therefore Eq. (2.77) can be rewritten as

MR, = / Rdm (2.78)
B
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The center of mass vector R, is then expressed as

1
- M/ Rdm (2.79)

After twice differentiating Eq. (2.78) we obtain

MR, / Rdm = / dF (2.80)

After substituting Eq. (2.75) we obtain the equivalent super particle theorem for
a continuous body.

MR.=F (2.81)

2.4.2 Kinetic Energy

Let the inertial vector R define the position of the infinitesimal mass element
dm. The kinetic energy of the entire continuous body B is then given as

T= 1/ R-Rdm (2.82)
2 B

After substituting R = R, + 7 the kinetic energy is expressed as

T:l(/ dm>RC-RC+R0-/7"dm+l/¢-¢dm (2.83)
2 B B 2 B

Making use of Egs. (2.76) and (2.77), the kinetic energy for a continuous body
B is written as

R |
T:—MRC-RC+—/1'°-7'~dm (2.84)
2 2 /5

The first term in Eq. (2.84) represents the translational kinetic energy and the
second the rotational and deformational energy.
To find the work done on the continuous body B the kinetic energy rate is
found.
ar _ MRC-RC+/ 7 - idm (2.85)

After using Eq. (2.81) and the fact that # = R — R, the kinetic energy rate is
given as

ﬂzF-RC—i—/(Rdm)-i*—Rc-/i'dm (2.86)

Using Egs. (2.73) and (2.77) the kinetic energy rate for a continuous, constant
mass body B is given by
ar

—F. R+/dF-7'~ (2.87)
dt B
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The change in kinetic energy between two times is found by integrating the
kinetic energy rate expression with respect to time.

to . ta
T(tg)—T(tl):/ F-Rcdt+/ /dF-fdt (2.88)
t t1 B

1
This can be also written alternatively as a spatial integration:

R(t2)

T(tg)
F-dR. + / / dF - dr (2.89)
’I'(tl) B

where the first term expresses the translational work and the second term is the
rotational and deformational work done on the system.

T(ts) — T(t1) = /

R(t1)

2.4.3 Linear Momentum

To determine the total linear momentum of a continuous body B, we express
the linear momentum of an infinitesimal body element dm as

dp = Rdm (2.90)

Integrating the infinitesimal linear momentum contributions over the entire
body, the total linear momentum is given by

p:/de:/BRdm (2.91)

Using the center of mass property in Eq. (2.78), the total linear momentum of
the body is written directly in terms of the body mass M and the center of mass
motion R..

p=MR, (2.92)

Again the super particle theorem applies to the continuous body. The sum
of the individual infinitesimal linear momenta of the body is the same as the
linear momenta of a particle of mass M with the same velocity vector as the
body center of mass motion. Note that the body B is not restricted to be a rigid
body in this section. If the body center of mass is inertially stationary (i.e. the
body has zero linear momentum), it is still possible for various body components
to be moving inertially. For example, consider a heap of jello floating in space.
It is possible for the jello to be deforming without moving. While the individual
components of jello might have some linear momentum, the total sum of these
components cancel each other out to result in a zero net motion of the body
center of mass.

Taking the inertial derivative of Eq. (2.92) and making use of the inter-
nal/external force properties in Eqs. (2.74) and (2.75), we express the total
linear momentum rate as

p:/Rdm:/dF:F (2.93)
B B
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Thus, the time rate of change of the total linear momentum of a continuous
body B is equal to the total external force vector being applied to this body.
If no external is applied, then the total linear momentum is conserved and its
rate is zero.

2.4.4 Angular Momentum

To find the angular momentum vector of the continuous body B about an arbi-
trary point P, we write the relative position vector o of dm to P as

oc=R-Rp (2.94)

The total system angular momentum vector Hp about P is then given by
Hp = / o X adm (2.95)
B
Taking the derivative of Hp we get
sz/ dxddm—i—/ o x &dm (2.96)
B B

which can be rewritten as

sz/adem—(/ adm) x Rp (2.97)
B B

The term in the brackets can be expanded to

/Badm - /BRdm - (/B dm> Rp = M(R. — Rp) (2.98)

The total external moment Lp applied to the system is defined to be

Lpz/adem:/axdF (2.99)
B B

Using these two identities in Eqs. (2.98) and (2.99) the system angular momen-
tum derivative vector Hp about P is

Hp=Lp+MRp x (R, — Rp) (2.100)

As was the case with the system of N particles, if either R. = Rp or the
vector Rp is non-accelerating inertially, then Eq. (2.100) reduces to the Euler
equation?

Hp=Lp (2.101)

As was the case with the dynamical system of finite particles, the angular mo-
mentum of a continuous body is constant if no external torque vector Lp is
applied.
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2.5 The Rocket Problem

In this section we investigate the thrust that a rocket motor produces by ex-
pelling propellant at a high velocity from the spacecraft. Consider the one-stage
rocket shown in Figure 2.9. Let m be the mass of the rocket including any pro-
pellant that is currently on board. The propellant fuel is being burnt and ejected
at a mass flow rate of 7h. The current velocity vector of the rocket is v, while the
exhaust velocity of the ejected propellant particles dm relative to the rocket is
ve. Note that the orientation of the exhaust velocity vector v. does not have to
point aftward. If the nozzle would be pointing forward, then the engine would
be used to perform a breaking maneuver. The rocket is assumed to be flying
through an atmosphere with an ambient pressure I} . At the point where the
exhaust gases escape the engine nozzle the exhaust pressure is given by P..

Infinitesimal Fuel
Particle Am

Rocket Center of
Mass Motion

H—

v

Exhaust
pressure £,

Thruster Cross Ambient Pressure P,
Sectional Area A

Figure 2.9: A One-Stage Rocket Expelling a Propellant Particle Am
with an Ambient Atmosphere pg.

We would like to develop the thrust vector that the rocket engine is exerting
onto the spacecraft. To do so, we utilize Eq. (2.72) or (2.101) which state that
the external force F' exerted onto a system of particles or a continuous body is
equal time rate of change in linear momentum. Let us treat the rocket mass
m and the expelled propellant particle Am as a two particle system and track
their linear momentum change over a small time interval At. Using Eq. (2.72)
we can write the momentum equation as

FAt = p(t+ At) — p(t) (2.102)

The quantity F'At is the impulse being applied to the system over the time
interval dt. At time ¢ is the rocket and propellant mass is still m. At time
t + At, the rocket mass has been reduced to m — dm and the propellant particle
Am is about to leave the engine nozzle. Assume that the only external force
acting on this two-particle system is due to pressure differential at the engine
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nozzle. Let A be the nozzle cross sectional area, then the external force F' is
expressed as

F=-22A(P.-P) (2.103)

Ve

More generally, however, we write the external force vector F' as

F:—%A(PE—Q)—FFe (2.104)
e

where F, is the net sum of non-pressure related external forces such as gravi-
tational forces acting on the system. The pressure induced force is assumed to
be collinear with the exhaust velocity vector v.. Note that if P =P (exhaust
expands to ambient pressure) or ;; = P, = 0 (operating in a vacuum and ex-
haust expanding to zero pressure), then the net external force on the system is
zero. Further, if the direction of the exhaust velocity vector v, is in the oppo-
site direction to the rocket velocity vector v, then a positive pressure differential
P, — P > 0 results in an acceleration in the rocket velocity direction.

The linear momentum p of the system at time ¢ is

p(t) = mv (2.105)

since the propellant particle dm is still joined with the rocket. At time ¢ + At
the small propellant mass Am is being ejected from the rocket with a relative
velocity vector v.. Since the rocket is loosing mass, the mass difference Am
over time dt is a negative quantity. The linear momentum at time ¢ + At is

p(t + At) = (m + Am)(v + Av) — Am(v + v.) (2.106)

where (m+ Am) is the rocket mass without the escaping fuel particle and Awv is
the change in rocket velocity vector over the time interval At. Dropping higher
order differential terms in Eq. (2.106) and substituting the F', p(t) and p(t+ At)
expressions into Eq. (2.102) leads to

~2CA(P, - P) At + F.At = mAv — Amu, (2.107)

Ve
Dividing both sides by At and solving for the acceleration term we find

Av v Am
— =—-SAP.-P —v, + Fe 2.108
MAr T T AT ) et (2.108)
Allowing the time step At to become infinitesimally small, we arrive at the
rocket equations of motion:

dv A dm
mE—_Ue(v_e(Pe_a)_E)'i_Fe—Fs""Fe (2109)
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The F, force component is called the static thrust
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to accelerate the rocket will have a drastic effect on the rocket velocity at burn
out time.
A common measure of rocket thruster efficiency is the speci ¢ impulse I,
defined as® ®
F

and has units of seconds. The gravitational acceleration g used here is that
experienced on the Earth’s surface. The higher this I, value is, the more force
the rocket thruster is able to produce for a given mass flow rate. If the exhaust
pressure P is close to the ambient pressure I , the pressure contribution to the
static thrust Fs in Eq. (2.110) is negligible. In this case Fy ~ —rwv,. and the
specific impulse simplifies to

I, ~ < (2.116)

g

From this simplification it is evident that to achieve higher thruster efficiencies,
the exhaust velocity v, should be as high as possible. The faster a given fuel
particle is ejected from the rocket, the larger a momentum change (i.e. rocket
speed up) it will cause. Using the specific impulse definition, the rocket velocity
change Av for a given fuel ratio € burned is given by

1

The specific impulse ranges for different rocket thruster systems are shown in
Table 2.1.5 Note that the higher specific impulse propulsion methods, such as the
ion or arcjet thrusters, typically produce only a very small thrust. Such modes
of propulsion are able to achieve a desired Av with a much smaller amount of
fuel mass Am than a propulsion method with a lower I,. However, due to the
small amount of thrust produced, these efficient propulsion methods will take a
much longer time to produce this desired velocity change.

Example 2.9: Assume we are trying to launch an initially at rest sounding
rocket vertically from the Earth s surface and it is to only | y several miles high.
For these small altitudes, we are still able to assume that the gravitational
attraction g is constant during the | ight. The solid rocket motor produces a
constant I, for the duration of it burn. Since the only external force acting
on the rocket is the constant gravitational acceleration, the rocket equations
of motion in the vertical direction are given by Eq.{ 21 (“)»_

mo = Fy —mg = g(m — L) (2.118)

This equation illustrates the challenge that a highly e cient ion propulsion
system would have in attempting to launch this soundifjlg rocket. The change
in velocity expression given in Eq.{ 211 4) assumes that no external forces
are acting on the rocket except for the ambient and exhaust pressure. With
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Table 2.1: Specific Impulse and Thrust Ranges for Different Rocket
Thruster Designs

| Vacuum

fioh&5 7 07309
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2.5

2.6

A ball of mass m is sliding in a frictionless tube as shown in Figure 21 (..The
tube is rotating at a constant angular velocity w. Initially the ball is at rest
relative to the tube at Point A at r = Lé,..

a) What is the velocity vector when the ball exits the tube?

b) Up to the point where the ball exists the tube, how much work has been
performed onto the ball?

c) Find an expression for the angular momentum vector H 4 of the mass m
about point A.

A cannon tries to hit a target which is a distance R away with a projectile of mass
m as shown in Figure 211( i). However, at a distance R/4 there is an obstacle
of height H present. What is the smallest elevation angle 4 and corresponding
initial speed vg the projectile m must possess initially to hit the target and miss
the obstacle. Assume a constant gravity. eld is present.

T

(i) Clearing an Obstacle
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Figure 2.12: Spring Propelled Mass

2.10 A massless cylinder is rolling down a slope with an inclination angle * under the
inj uence of a constant gravity. eld. A mass m is attached to the cylinder and
is & set from the cylinder center by R/2 as shown in Figure 71%.

a) Find the equations of motion of the the mass m in terms of the angle 6.

b) What is the normal force N = Nniy that the ground is exerting against
the cylinder.

Figure 2.13: Rolling Cylinder with Offset mass

2.11 & A ball m is freely rolling in the lower half of a sphere under the inf uence of a
constant gravity. eld as shown in Figure 71 4. The sphere has a constant radius
r. Assume that ¢(to) is zero and that 0(to), 6(¢to) and ¢(to) are given.

a) Find the equation of motion of the ball rolling without slip inside the sphere
in terms of the spherical angle ¢. Hint: The angular momentum about
the ni3 axis is conserved.

b) What is the normal force that the wall of the sphere exerts onto the ball
at any point in time?

c) Since é(to) = 0, the ball is starting out on an extrema. Find an expression
in terms of Oy, 6y and ¢ that determines the other motion extrema where

¢ = 0. Hint: Use conservation of energy.



A

NEWTONIAN MECHANICS CHAPTER ?

2.12

2.13

2.14

Figure 2.14: Ball rolling inside a Sphere

A cloud contains four particles with masses m1 = ma =1 and m3 = m4 = 2.
The position vector of each particle is

1 -1 2 3
R =1|-1 Ry=|-3 R:;=1]-1 Ryi=1]-1
2 2 —1 —2

and their respective velocity vectors are

. 2 . 0 . 3 . 0
Ri=[(1] R=[-1|] Rs=|2]| Rui=|o0
1 1 -1 1

a) How much of the total cloud kinetic energy is translational kinetic energy
and how much is rotation and deformation energy?

b) What is the cloud angular momentum vector about the origin and about
the center of mass?

Two particles with mass m/2 are attached by a linear spring with a spring con-
stant k as shown in Figure 212 . Consider arbitrary initial position and velocity
of each mass on the plane. For simplicity however, assume that the initial sepa-
ration 2r¢ is the unstretched length of the spring, and that the mass center has
zero inertial velocity initially.

a) Determine the df* erential equations of motion whose solution would give
r(t) and 0(t) as functions of time and initial conditions _jt is not necessary
to solve these di* erential equations. '

b) Determine an expression that relates the radial velocity 7 and the angular
velocity 6 as functions of r, € and initial conditions.

A particle of mass m is free to sling along a vertical ring as shown in Figure oF .
The ring itself is rotating at a constant rate ¢.

a) Determine the equations of motion of the particle in terms of 6.

b) What are the normal forces produced by the ring onto the particle?
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Figure 2.15: Two Masses Moving in a Plane

Figure 2.16: Particle Sliding Along a Rotating Ring

2.15  Newtons second Law for a particle of mass m states that F' = d/dt(mwv). If m
is time varying, then one might expect F' = mhv 4+ md to be true. Explain why
this logic is incorrect and does not lead to the correct rocket thrust equation.

2.16  The static thrust F of a rocket is given in Eq.{ 21 @) Draw a freebody diagram
of a rocket engine test stand and verify that this is indeed that static force required
to keep the rocket in place.
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CHAPTER THREE

Rigid Body Kinematics

TTITUDE coordinates (sometimes also referred to as attitude parameters)
are sets of coordinates {x1,x2,... ,z,} that completely describe the orien-

tation of a rigid body relative to some reference coordinate frame. There is an
infinite number of attitude coordinates to choose from. Each set has strengths
and weaknesses compared to other sets. This is analogous to choosing among
the infinite sets of translational coordinates such as cartesian, polar or spherical
coordinates to describe a spatial position of a point. However, describing the at-
titude of an object relative to some reference frame does differ in a fundamental
way from describing the corresponding relative spatial position of a point. In
cartesian space, the linear displacement between two spatial positions can grow
arbitrarily large. On the other hand two rigid body (or coordinate frame) ori-
entations can differ at most by a 180° rotation, a finite rotational displacement.
If an object rotates past 180°, then its orientation actually starts to approach
the starting angular position again. This concept of two orientations only being
able to differ by finite rotations is important when designing control laws. A
smart choice in attitude coordinates will be able to exploit this fact and produce
a control law that is able to intelligently handle very large orientation errors.

The quest for “the best rigid body orientation description” is a very fun-
damental and important one. It has been studied by such great scholars as
Euler, Jacobi, Hamilton, Cayley, Klein, Rodrigues and Gibbs and has led to a
rich collection of elegant results. A good choice for attitude coordinates can
greatly simplify the mathematics and avoid such pitfalls as mathematical and
geometrical singularities or highly nonlinear kinematic differential equations.
Among other things, a bad choice of attitude coordinates can artificially limit
the operational range of a controlled system by requiring it to operate within
the non-singular range of the chosen attitude parameters.

The following list contains four truths about rigid body attitude coordinates
that are listed without proof.!

1. A minimum of three coordinates is required to describe the relative angular
displacement between two reference frames F; and Fo.

63
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2. Any minimal set of three attitude coordinates will contain at least one
geometrical orientation where the coordinates are singular, namely at least
two coordinates are undefined or not unique.

3. At or near such a geometric singularity, the corresponding kinematic dif-
ferential equations are also singular.

4. The geometric singularities and associated numerical difficulties can be
avoided altogether through a regularization.? Redundant sets of four or
more coordinates exist which are universally determined and contain no
geometric singularities.

3.1 Direction Cosine Matrix

Rigid body orientations are described using displacements of body-fixed refer-
enced frames. The reference frame itself is usually defined using a set of three
orthogonal, right-handed unit vectors. For notational purposes, a reference
frame (or rigid body) is labeled through a script capital letter such as F and
its associated unit base vectors are labeled with lower case letters such as fl
There is always an infinity of ways to attach a reference frame to a rigid body.
However, typically the reference frame base vectors are chosen such that they
are aligned with the principal body axes.

Let the two reference frames A and B each be defined through sets of or-
thonormal right-handed sets of vectors {2} and {b} where we use the shorthand
vectrix notation

’I’All . {71
{Ay=qmat (b} =1b (3.1)
n2 bs

The sets of unit vectors are shown in Figure 3.1. The reference frame B can
be thought of being a generic rigid body and the reference frame N could be
associated with some particular inertial coordinate system. Let the three angles
aq; be the angles formed between the first body vector l;l and the three inertial
axes. The cosines of these angles are called the direction cosines of b, relative
to the A frame. The unit vector by can be projected onto {n} as

by = cosa1M1 + cos oty + cos a3ig (3.2)

Clearly the direction cosines cos a1 are the three orthogonal components of 5j.
Analogously, the direction angles a; and ag; between the unit vectors by and

bs and the reference frame N base vectors can be found. These vectors are then
expressed as
by = cos a1y + COS ooy + COS (a3 T3 (3.3)

bs = cos az1m1 + COS aizaMy + COS 33T
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Figure 3.1: Direction Cosines

The set of orthonormal base vectors {5} can be compactly expressed in terms
of the base vectors {fi} as

. COS (11 COS(x12 COS((13
{b} = [cosas1 cosag cosass| {R}=[C|{n} (3.5)
COS(x31 COS(x3z2 COS Q33

where the matrix [C] is called the direction cosine matrix. Note that each entry
of [C] can be computed through

Ol'j = COS(Z bz,’flj) = i)l ’fL7 (36)

Analogously to Eq. (3.5), the set of {f} vectors can be projected onto {b}
vectors as

COS(x11 COS(v21 COS (31 R R
{n} = |cosaiz cosagy cosass| {b} = [C]T{b} (3.7)
COS(x13 COS (g3 COS Q33
Substituting Eq. (3.7) into (3.5) yields
{b} = [C][C]" {b} (3.8)
which requires that
[ClCT" = [I3x3)] (3.9)
Similarly substituting Eq. (3.5) into (3.7) yields

[CIT[C]