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BASIC MECHANICS
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Chapter One

Particle Kinematics

KINEMATICS is a branch of dynamics that studies aspects of motion apart
from considerations of masses and forces. Essentially, Kinematics is a col-

lection of vector/matrix methods to describe positions, velocities and accelera-
tions of particles and rigid bodies, as viewed from various reference frames. The
sub-field of Particle Kinematics considers only the motion of particles. This
in itself can be quite challenging at times. As an example, consider a person
driving a car on the highway. The road itself is fixed to a constantly rotating
Earth which in turn is orbiting the sun. What is your velocity and acceleration
relative to a Sun-fixed coordinate system? This chapter will help answer these
and many related questions.

1.1 Particle Position Description

1.1.1 Basic Geometry

When studying the kinematics of particle motion, one is not concerned about
the physical dimensions or mass of a particle. Let P be a point in a three-
dimensional space as illustrated in Figure 1.1. To define the position of the
point P , a coordinate system along with its origin must be chosen. Without
this coordinate system, it is difficult to describe the position of point P . To
visualize this problem, imagine one person A telling another person B that
their location is “10 miles.” Without knowing from what reference point person
A measured 10 miles and in what direction it was measured, it is impossible for
person B to know the meaning of “10 miles.”

A coordinate system is defined by two things. First, a coordinate system
origin O must be established to specify its position in space. Second, the orien-
tation of the coordinate system must be chosen. By choosing the orientation of
the coordinate system a person will know what is considered “up” or “east” as
measured within this coordinate system. Three perpendicular (or orthogonal)
right-handed unit vectors are traditionally used to denote unit displacement

3



4 PARTICLE KINEMATICS CHAPTER 1

directions along the orthogonal axes. In Figure 1.1 a standard cartesian coor-
dinate system labeled as E is shown. The three unit vectors ê1, ê2 and ê3 are
used to define the orientation of E and the coordinate system origin is denoted
by OE . We will label all unit vectors with a (̂ ) symbol. When assigning the unit
vectors to the coordinate system, the first two unit vectors typically span the
local “horizontal plane,” while the third unit vector points in the “upwards” di-
rection normal to the plane of the first two unit vectors. However, this sequence
and interpretation is not required.

ê

r

x

y

z

P

Oε

ê1
ê2

3

Figure 1.1: The Cartesian Coordinate System

A coordinate system, defined through the origin and the three unit direction
vectors, is often referred to as a reference frame. Vectors with components
taken in different coordinate systems are said to be written in different reference
frames. More generally, think of a reference frame as a rigid body. While the
Earth is a rigid body, there is an infinite set of coordinate systems that could be
embedded in the Earth-fixed reference frame. For the present, we will usually
associate only one coordinate system with a reference frame (rigid body).

Let r = OEP be the vector pointing from the coordinate origin OE to the
point P . Note that there are an infinite number of ways to parameterize that
vector in terms of orthogonal coordinate axis components. To write the posi-
tion vector r in the cartesian coordinate system E shown in Figure 1.1, it is
broken down (i.e. projected orthogonally) into the three components along the
coordinate system unit axes. Let the ê1 component of r be called x, the ê2

component be called y and the ê3 component be called z. Then the vector r is
written in the E cartesian coordinate system components as

r = Er = xê1 + yê2 + zê3 (1.1)

The short hand notation Er is used when we wish to specify that the vector
components of r are taken along the unit directions vectors of the E coordinate
system. The superscript coordinate system label is often omitted when it is
clear in which system the components are taken or, more likely, one wishes to
preserve the freedom to choose a particular coordinate system at a later point.
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When it is clear in context, we can also use Er to denote the E frame base vector
components of r as the 3x1 column vector (matrix)

Er =

E



x
y
z



 (1.2)

For cartesian coordinate systems, the i-th entry of the column vector is the
component of the r vector along the i-th unit vector êi.

Care must be taken when performing vector operations if multiple coordinate
systems are used. Writing a vector addition as

q = r + p

is correct since no coordinate systems have been assigned yet; this equation
has an infinity of possible component descriptions. We mention that one of
the subtle and powerful facts of vector algebra is the ability to derive vector
equations that hold for all possible component parameterizations of the vectors.
However, if the vectors have specific coordinate systems components as shown
in Eq. (1.2), then the following matrix vector addition would not be correct.

E



q1
q2
q3



 =

E



r1
r2
r3



+

B



p1

p2

p3





The vector p is here written in B frame components while all other vectors are
expressed in the E frame. To add the B frame components of the p vector to E
frame vectors, these components would first have to be transformed (projected)
from the B frame to the E frame. Later on in Chapter 3 it will be shown how
the direction cosine matrix can be used to perform this transformation.

c

c
e1 c

e

c

ce

ˆ
ˆ2

ˆ3

r

z

P

Oε

d

ˆd

ˆd ˆθ

ˆθ

ˆ3

θ

Figure 1.2: The Cylindrical Coordinate System
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1.1.2 Cylindrical and Spherical Coordinate Systems

While the cartesian coordinate system is the most common and the easiest one
to visualize, many times it is not the easiest to use. This is particularly true
if the motion of Point P is of a rotational type or if the dominant forces are
radial. In these cases it is usually easier to use either a cylindrical or spherical
coordinate system. When we address dynamics in Chapter 2, we will provide
some insight on coordinate system selection in the context of solving example
problems.

A cylindrical coordinate system C is illustrated in Figure 1.2. Its orientation
is defined through the triad of unit vectors {ĉd, ĉθ, ĉ3}. This system is partic-
ularly useful in describing particles rotating about an axis ê3 which are free to
move parallel to the axis ê3. For a large number of problems having rotational
symmetry of force fields or constraint surfaces, cylindrical coordinates would be
an attractive choice. For example, consider a particle constrained to move on
the surface of a cylinder. Contrary to the inertially fixed cartesian coordinate
system N , two unit orientation vectors of the cylindrical coordinate system are
varying with θ as seen from N . These are the unit vector ĉd and ĉθ. They
rotate in the horizontal plane perpendicular to the ĉ3 unit vector. The vector
ĉd tracks the heading of the projection of the r position vector in this horizontal
plane. The position vector r of point P is expressed in cylindrical coordinates
as

r = Cr = dĉd + zĉ3 =

C



d
0
z



 (1.3)

where the scalar d is the radial distance of point P from the ĉ3 axis. The
second entry of the cylindrical coordinate system column vector in Eq. (1.3)
will always be zero. Any particle position vector expressed in a cylindrical
coordinate system will never have a component along the ĉθ direction. Note
that in Eq. (1.3) the unit vector ĉd has a variable direction as observed from
N . The angle θ describes how far ĉd has rotated from the ê1 axis. Therefore,
instead of using (x, y, z) cartesian coordinates to describe a position, cylindrical
coordinates use d and z, and the angle θ provides the azimuth angle of the unit
vector ĉd relative to ê1. Assuming ĉ3 is aligned with ê3, the unit vectors ĉd and
ĉθ can be related to ê1 and ê2 through

ĉd = cos θê1 + sin θê2 (1.4a)

ĉθ = − sin θê1 + cos θê2 (1.4b)

A spherical coordinate system S is illustrated in Figure 1.3 with its orienta-
tion defined through the triad of unit vectors {ŝr, ŝθ, ŝφ}. Note that all three
unit orientation vectors are time varying for the spherical coordinate system as
seen from N . The unit vector ŝr now points from Oε towards point P . Let
the scalar r be the radial distance from the coordinate system center OE to
the point P . Then the position vector r is expressed as components along the
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s
s
e

e

s
e

ˆ1
ˆ2

ˆ3

r

z

P

Oε

dθ

φr̂

ˆθ
φ̂

r

Figure 1.3: The Spherical Coordinate System

spherical coordinate triad {ŝr, ŝθ, ŝφ} as

r = Sr = rŝr =

S



r
0
0



 (1.5)

A particle position vector written as a column vector with components taken
in the S frame will have a non-zero entry only in the first position. As shown
in Figure 1.3, the two angles θ and φ completely describe the orientation of the
unit vectors ŝr, ŝθ and ŝφ relative to the three êi (i = 1,2,3). Therefore, the
{ŝr, ŝθ, ŝφ} projection onto {ê1, ê2, ê3} with components a function of (r, θ, φ)
are

ŝr = cosφ cos θê1 + cosφ sin θê2 + sinφê3 (1.6a)

ŝθ = − sin θê1 + cos θê2 (1.6b)

ŝφ = − sinφ cos θê1 − sinφ sin θê2 + cosφê3 (1.6c)

Spherical coordinates and the associated triad of unit vectors {ŝr, ŝθ, ŝφ} are
very useful when describing a particle motion on the surface of a sphere or a
particle orbiting a body.

Example 1.1: Given a vector r written in the cartesian coordinate system
E as

r = E
r = 2ê1 − 3ê2 + 5ê3

Express r in terms of the cylindrical coordinate system C where ĉ3 = ê3.

From Eqs. (1.4), we can express ê1 and ê2 in terms of ĉd and ĉθ as

ê1 = cos θĉd − sin θĉθ

ê2 = sin θĉd + cos θĉθ
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Using this relationship the vector r is expressed in the C frame as

r = C
r = (2 cos θ − 3 sin θ) ĉd − (2 sin θ + 3 cos θ) ĉθ + 5ĉ3

The angle θ is resolved noting that in the C frame the ĉθ component must
be zero. Therefore θ must be

θ = − tan−1

(
3

2

)

= −56.31o

which brings Cr to the desired result

r = C
r = 3.61ĉd + 5ĉ3

1.2 Vector Differentiation

1.2.1 Angular Velocity Vector

In planar motion it is easy to define and visualize the concept of angular velocity
as is shown in Figure 1.4(i). For this single axis ê3 rotation case, the rotation
angles and rotation rates (angular velocities) are only scalar quantities. The
instantaneous angular rate ω of a particle is given by

ω = θ̇ (1.7)

where a positive rotation or rotation rate is defined to be in the increasing θ
(counterclockwise) direction shown. Angular velocity of a particle in a plane
simply describes at what rate the radius vector locating the particle is orbiting
the origin.

e

e

ω θ

P

ˆ

ˆ

1

2

(i) Planar Case

e

O

∆θ

ω
ˆ

P'

P"

(ii) Three-
Dimensional Case

Figure 1.4: The Angular Velocity Vector

For the general three dimensional case, we will prove in Chapter 3 that a
general large angular displacement is not a vector quantity; however, paradox-
ically, angular velocity is a vector quantity. For the present, we limit ourselves
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to an argument based upon small angular displacements to introduce the an-
gular velocity vector. As the rigid body shown in Figure 1.4(ii) rotates about
the body- and space-fixed ê axis by the small angle ∆θ, the body-fixed point
at position P ′ rotates to position P ′′. This rotation is described through the
rotation vector ∆θ defined as

∆θ = ∆θê (1.8)

The angular velocity vector is the instantaneous angular rate at which this
rotation occurs. Let the angular velocity vector magnitude be ω, then the
vector ω can be written as

ω = ωê (1.9)

The unit direction vector ê defines an axis about which the rigid body or
coordinate system is instantaneously rotating. For the case of planar rotations
in Figure 1.4(i) the rotation axis is simply ê3. Note that any orientation of
a rigid body can be defined by the orientation of any body-fixed coordinate
system. Therefore position descriptions for rotating rigid bodies and rotating
coordinate systems are actually the same problem geometrically and there is no
need to formally distinguish between the two. For the case of constant ê it is
natural to define

ω = lim
∆t→0

∆θ

∆t
(1.10)

The angular velocity vector ω of a rigid body or coordinate system B relative
to another coordinate system N is typically expressed in B frame components.

Bω = ω1b̂1 + ω2b̂2 + ω3b̂3 (1.11)

Each component ωi expresses the instantaneous angular rate of the body B
about the i-th coordinate axis b̂i as shown in Figure 1.5. The ωi components
are obviously the orthogonal components of ω. As will be evident in Chapter
3, it is often convenient to describe ω with non-orthogonal components as well.

ω2

ω

ω1

ω3

b̂2

b̂1

b̂3
B

Figure 1.5: Illustration of Angular Velocity Body Frame Components
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1.2.2 Rotation about a Fixed Axis

It is instructive to study in detail the rotation of a rigid body about a fixed
axis. In particular, the velocity vector ṙ of a body-fixed point P is examined.
Let a body B have a rod attached to it which is fixed in space at points A and
B as shown in Figure 1.6 so the rod is the axis of rotation. The rigid body
B is rotating about this rod with an angular velocity ω. The origin O of the
coordinate system for B is located on the axis of rotation. Let P be a body-
fixed point located relative to O by the vector r. The angle between the angular
velocity vector ω and the position vector r is θ.

P

A

B

O
θ

r

ω

rsinθ

Figure 1.6: Rigid Body Rotation about a Fixed Axis

Studying Figure 1.6 it is quite clear that the body-fixed point P will have
no velocity component parallel to the angular velocity vector ω; i.e., P moves
in a plane perpendicular to the ω axis. If one would look down the angular
velocity vector one would see P moving on a circle with radius r sin θ while
being “transported” with the rotating rigid body. Thus the speed of P is given
by

|ṙ| = (r sin θ)ω (1.12)

Studying Figure 1.6 further it is apparent that the inertial velocity vector of P
will always be normal to the plane of r and ω. This provides the direction of ṙ

which can then be written as

ṙ = (r sin θ)ω

(
ω × r

|ω × r|

)

(1.13)

However, note that |ω × r| = ωr sin θ, so the transport velocity is

ṙ = ω × r (1.14)
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The only restriction for Eq. (1.14) is that r must be a body-�xed vector within B.
As was mentioned earlier, the concepts of rigid bodies and reference frames can
be used interchangeably. The above result would also hold if we are finding the
velocity vector fixed to any reference frame which is rotating relative to another;
as is evident below, this easily generalizes for three-dimensional motion.

1.2.3 Transport Theorem

As was mentioned earlier, it is simpler to define a particle position in terms
of cylindrical or spherical coordinate systems. However, when computing the
velocity of the particle and taking the time derivative of the position vector, one
must take into account that the base vector directions of the chosen coordinate
system may be time varying also. The following transport theorem allows one
to take the derivative of a vector in one coordinate system, even though the
vector itself has its components taken in another, possibly rotating, coordinate
system.

Let N be an inertially fixed reference frame with a corresponding triad of
N -fixed orthogonal base vectors {n̂1, n̂2, n̂3}. Let B be another reference frame

with the B-fixed base vectors {b̂1, b̂2, b̂3}. For simplicity, let the origin of the
two associated reference frames be coincident. Let Br be a vector written in the
B coordinate system.

r = Br = r1b̂1 + r2b̂2 + r3b̂3 (1.15)

We introduce the following notation: the angular velocity vector ωB/N defines
the angular velocity of the B frame relative to the N frame. An angular velocity
vector is typically written in the B frame. Therefore we write ωB/N as

BωB/N = ω1b̂1 + ω2b̂2 + ω3b̂3 (1.16)

At this point we introduce the notion of taking the vector time derivative
while accounting for the reference frame from which the vector’s time variations
are being observed. Imagine this: you are standing still on Earth’s surface. Let
B be an Earth fixed coordinate system with the origin in the center of the Earth.
Your position vector would point from the Earth’s center to your feet on the
surface. By calculating the derivative of your position vector within B, you are
determining how quickly this vector changes direction and/or magnitude as seen
from the B system. You would find the time variation of your position to be zero
when viewed from the Earth-fixed frame. This should be no big surprise; after
all, you are standing still and not walking around on Earth. Now, let’s introduce
another coordinate system N with the same origin, but this one is non-rotating
and therefore fixed in space. Calculating the derivative of your position vector
in the N frame, you wish to know how fast this vector is changing with respect
to the �xed coordinate system N . Since Earth itself is rotating, in this case your
position derivative would be non-zero. This is because relative to N , you are
moving at constant speed along a circle about the Earth’s spin axis.



12 PARTICLE KINEMATICS CHAPTER 1

To indicate that a derivative is taken of a generic vector x as seen in the B
frame, we write

Bd
dt

(x)

The derivative of Br given in Eq. (1.15) with components taken in the B coor-
dinate system is denoted by

Bd

dt
(r) =

Bd

dt

(Br
)

= ṙ1b̂1 + ṙ2b̂2 + ṙ3b̂3 (1.17)

since the unit vectors b̂i are fixed (i.e. time invariant) within the B frame and

therefore the terms Bd/dt
(

b̂i

)

are zero. When taking the inertial derivative of
Br however, these unit vectors must now be considered time varying as seen in
N . Therefore, using the chain rule of differentiation, we get1

Nd
dt

(Br
)

= ṙ1b̂1 + ṙ2b̂2 + ṙ3b̂3 + r1
Nd
dt

(

b̂1

)

+ r2
Nd
dt

(

b̂2

)

+ r3
Nd
dt

(

b̂3

)

(1.18)

However, since b̂i are body-fixed vectors within B, Eq. (1.14) can be used to
find their derivative in N .

Nd
dt

(

b̂i

)

= ωB/N × b̂i (1.19)

Using Eqs. (1.17) and (1.19), Eq. (1.18) is rewritten as

Nd
dt

(r) =
Nd
dt

(Br
)

=
Bd
dt

(Br
)

+ ωB/N × Br (1.20)

However, note that it is not necessary for the vector r to be written in the B
coordinate frame for Eq. (1.20) to hold, because Br is simply one of the infinity
of possible components of the unique vector r. Rather, components can be
written in any arbitrary coordinate frame. This result leads to the general form
of the transport theorem.

Theorem 1.1 (Transport Theorem) Let N and B be two frames with a rel-
ative angular velocity vector of ωB/N , and let r be a generic vector, then the
derivative of r in the N frame can be related to the derivative of r in the B
frame as

Nd

dt
(r) =

Bd

dt
(r) + ωB/N × r (1.21)

This formula allows one to relate a vector derivative taken relative to frame B
to the corresponding vector derivative taken in frame N , where B and N are
arbitrarily moving reference frames. This permits one to relate the derivative of
r as it would be seen from the N frame to the analogous rate of change of r as
seen in the B frame. It is a very fundamental and important result that is used
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almost every time kinematic equations are derived. In particular, we will find
that vectors are typically differentiated with respect to an inertial frame called
N . However, the notation N d/dt (x) becomes cumbersome at times. When we
want to compact the equation, we will use the following shorthand notation:

Nd
dt

(x) ≡ ẋ (1.22)

Example 1.2: The inertial velocity and acceleration vectors are sought
for a general planar motion described in terms of polar coordinates with
components taken along {êr, êθ, ê3}. The origin and base vectors of the
polar coordinate system E are denoted

E = {O, êr, êθ, ê3}
as shown in Figure 1.7. The inertial coordinate system having the same origin
O is denoted

N = {O, n̂1, n̂2, n̂3}
where n̂3 = ê3. The position vector Er written in the E coordinate system is

r = E
r = rêr

Let ωE/N be the angular velocity vector of E with respect to N . As is evident
in Figure 1.7 this is simply

ωE/N = θ̇ê3 = θ̇n̂3

n

e

n
e

Arbitrary Path of P

θ
θ

P

r

O

ˆ2

ˆ1

ˆr
ˆθ

Figure 1.7: Polar Coordinates Illustration

Using the transport theorem in Eq. (1.21), the inertial velocity vector of r is
found to be

ṙ =
Ed

dt

(
E
r
)

+ωE/N × E
r

Using the definition of Er = rêr it is clear that

Ed

dt
(r) =

Ed

dt
(rêr) = ṙêr
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After carrying out the cross product term, the inertial velocity vector ṙ is
reduced to

ṙ = E
ṙ = ṙêr + rθ̇êθ (1.23)

where ṙ and rθ̇ are is the radial and the transverse velocity components,
respectively.

The inertial acceleration r̈ is found by taking the inertial derivative of ṙ using
the transport theorem.

r̈ =
Ed

dt
(ṙ) + ωE/N × ṙ

Using the result for ṙ that was just found, we obtain

Ed

dt
(ṙ) = r̈êr +

(

ṙθ̇ + rθ̈
)

êθ

Again after carrying out the cross product and collecting terms, the inertial
acceleration vector r̈ is found to be

r̈ = Ë
r =

(

r̈ − rθ̇2
)

êr +
(

rθ̈ + 2ṙθ̇
)

êθ (1.24)

where r̈ is the radial component, rθ̇2 is the centrifugal component, rθ̈ is the
tangential component and 2ṙθ̇ is the coriolis acceleration component.

It is instructive to obtain Eq. (1.24) by “brute force.” Notice we can write
the N frame rectangular components of position, velocity and acceleration
as

r = xn̂1 + yn̂2

ṙ = ẋn̂1 + ẏn̂2

r̈ = ẍn̂1 + ÿn̂2

Since n̂i are fixed in N , the transport theorem is not required. Upon substi-
tuting the polar coordinate transformations

x = r cos θ

y = r sin θ

and taking two time derivatives, you can obtain the lengthy trigonometric
functions ax(r, θ) and ay(r, θ) in

r̈ = ax(r, θ)n̂1 + ay(r, θ)n̂2

Finally, substituting

n̂1 = cos θêr − sin θêθ

n̂2 = sin θêr + cos θêθ

and performing considerable algebra, you will find all trigonometric functions
of θ cancel, leaving you with the same result as in Eq. (1.24).
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1.2.4 Particle Kinematics with Moving Frames

So far all coordinate systems or reference frames discussed were considered non-
translating. Their origins were fixed inertially in space. Now a more general
problem will be discussed where the coordinate frame origins are free to trans-
late, while the frame orientations (defined through the three respective unit
direction vectors) might be rotating.
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The velocity vector of the origin O′ in the A frame is defined to be

(

vO
′

)

A
=

Ad
dt

(R) (1.28)

Using the transport theorem and the definition in Eq. (1.28), the velocity vector
(
vP
)

A of Eq. (1.27) can be written as

(
vP
)

A =
(

vO
′

)

A
+
(
vP
)

B + ωB/A × ρ (1.29)

To find the acceleration
(
aP
)

A of particle P in the A frame, the derivative
of Eq. (1.29) is taking in the A frame.

(
aP
)

A =
Ad
dt

((
vP
)

A
)

=
Ad
dt

((

vO
′

)

A
+
(
vP
)

B + ωB/A × ρ
)

(1.30)

Allowing the differentiation operator to apply term-by-term in the last term,
and using the transport theorem,

(
aP
)

A becomes

(
aP
)

A =
Ad
dt

((

vO
′

)

A

)

+
Bd
dt

((
vP
)

B
)

+ ωB/A ×
(
vP
)

B +

Ad
dt

(
ωB/A

)
× ρ + ωB/A ×

(Bd
dt

(ρ) + ωB/A × ρ

)

(1.31)

Looking at the first term, the acceleration of the origin O′ in the A frame is
defined to be

(

aO
′

)

A
=

Ad
dt

((

vO
′

)

A

)

(1.32)

While looking at the second term, the acceleration of particle P in the B frame
is

(
aP
)

B =
Bd
dt

((
vP
)

B
)

(1.33)

The angular acceleration vector of the B frame relative to the A frame is defined
to be

αB/A =
Ad
dt

(
ωB/A

)
(1.34)

Using the definitions in Eqs. (1.26) and (1.32) – (1.34), the particle P accelera-
tion vector

(
aP
)

A can be written as the useful result2

(
aP
)

A =
(

aO
′

)

A
+
(
aP
)

B + αB/A × ρ + 2ωB/A ×
(
vP
)

B +

ωB/A ×
(
ωB/A × ρ

)
(1.35)
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The term 2ωB/A ×
(
vP
)

B defines the coriolis acceleration and the term ωB/A ×
(
ωB/A × ρ

)
is the centrifugal acceleration. The latter term can also be expressed

as

ωB/A ×
(
ωB/A × ρ

)
= (ωB/A · ρ)ωB/A − |ωB/A|2ρ (1.36)

which immediately reveals the centripical acceleration vector components along
ωB/A and ρ. Note that Eq. (1.35) holds between any two reference frames. It
is not necessary that A or B be inertially fixed. The vector components used in
the various terms on the right hand side of Eq. (1.35) can be taken along any
choice of unit vectors. It is important that we recognize the complete freedom
we have to use any basis vectors we wish to express components of any vector
in Eq. (1.35).

Example 1.3: A disk of radius ρ, attached to a rod of length L, is rolling
on the inside of a circular tube of radius R as shown in Figure 1.9. The
rod is rotating at constant rate ω = θ̇. Three different reference frames are
defined. The inertially fixed frame is N = {O, n̂1, n̂2, n̂3} with the origin
at the center of the tube. The second coordinate frame E = {O, êL, êθ, ê3}
has the same origin, but the direction axes track the center of disk O′. The
third frame B = {O′, b̂r, b̂φ, b̂3} has the origin in the center of the disk and
the direction unit vectors track a point P on the disk edge. Note that n̂3

and ê3 point out of the paper and b̂3 = −n̂3 points into the paper. What
is the inertial acceleration r̈ of point P expressed in E frame components?
Note that since three frames are present, we cannot directly use Eq. (1.35).
Instead the result will be derived by differentiation of the position vector by
applying the transport theorem.

êθ

êL

b̂r

b̂φ

n̂1

n̂2
O

O '

r

L

R

P

ρ
φ

θ

Figure 1.9: Disk Rolling inside Circular Tube

First, let’s determine an expression for relating the angular rates φ̇ and θ̇ = ω.
Since there is no slippage between the disk and the tube, then notice that
the “contact arcs” must be equal on the tube and the cylinder, giving the
constraint

θR = φρ
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Taking the derivative of the above expression and using θ̇ = ω, the term φ̇ is
given as

φ̇ =
R

ρ
ω

The angular velocity vectors of frame E relative to N and frame B relative
to E are

ωE/N = ωn̂3

ωB/E = φ̇b̂3 = −R
ρ
ωn̂3

The angular velocity vector of frame B relative to frame N is

ωB/N = ωB/E + ωE/N = −R− ρ

ρ
ωn̂3

The position vector r of point P relative to the origin O is

r = LêL + ρb̂r

Using the transport theorem in Eq. (1.21), the inertial velocity vector ṙ of P
is

ṙ =
Ed

dt
(LêL) + ωE/N × LêL +

Bd

dt

(

ρb̂r

)

+ ωB/N × ρb̂r

Note that since L and ρ are constants for this system, the derivatives within
the E and B frames are zero since êL is fixed in E and b̂r is fixed in B, so

ṙ = ωLêθ + (R− ρ)ωb̂φ

The inertial acceleration vector r̈ of P is found by taking the derivative of ṙ
in the N frame.

r̈ =
Ed

dt
(ωLêθ)+ωE/N×(ωLêθ) +

Bd

dt

(

(R−ρ)ωb̂φ

)

+ωB/N×
(

(R−ρ)ωb̂φ

)

Since ω is constant, the inertial acceleration is then written as the simple
expression

r̈ = −ω2LêL − (R− ρ)2

ρ
ω2
b̂r

To express the inertial acceleration only in unit direction vectors of, for ex-
ample, the E frame, we eliminate b̂r by making use of the identity

b̂r = − cosφêL + sinφêθ

to obtain the final result

E
r̈ = −

(

ω2L− (R − ρ)2

ρ
ω2 cos φ

)

êL − (R− ρ)2

ρ
ω2 sinφêθ

Although the result in Eq. (1.35) can be quite useful at times, when more
than two frames are present it is typically easier to derive the acceleration
terms by differentiating the position vector twice as in this example.
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Problems

1.1 The particle P moves along a space curve described by the cartesian coordinates

x(t) = cos(t)

y(t) = sin(t)

z(t) = sin(t)

Describe the given motion in terms of cylindrical and spherical coordinates by
finding explicit equations for the coordinates.

1.2 The planar point acceleration vector is given in the cartesian coordinates as

r̈ = ẍê1 + ÿê2

Directly transform this vector into polar coordinates r, θ, êr and êθ by substi-
tuting x = r cos θ, y = r sin θ. Verify the result in Eq. (1.24) obtained through
the transport theorem.

1.3 Let a particle P be free to slide radially in a rotating tube as shown in Figure 1.10.
Assume the tube is rotating at a constant angular velocity ω. What is the inertial
velocity and acceleration of the particle P ? Express your answer as functions of
r, θ, êr and êθ.

r
ω

êr

êθ

Figure 1.10: Particle in Rotating Tube

1.4 ♣ Let N = {O, n̂1, n̂2, n̂3} be an inertial, non-rotating reference frame with its
center in the center of Earth. The Earth-fixed, equatorial coordinate frame E =
{O, ê1, ê2, n̂3} has the same origin, but the unit direction vectors are fixed in
the Earth. The Earth-fixed, topocentric coordinate frame T = {O′, û, ê, n̂}
tracks a point on Earth as shown in Figure 1.11. Notice the local “geometric”
interpretation: û = “up”, ê = “east” and n̂ = “north”. Assuming that a
stationary person is at a latitude of φ = 40ffi and a longitude of λ = 35ffi, what
is the inertial velocity and acceleration of the point O′? Express your answer in
both {n̂} and {ê} components as functions of r, θ, λ, φ and derivatives thereof.

1.5 When launching a vehicle into orbit, one typically tries to make use of Earth’s
rotation when choosing a launch site. From what place on Earth would it be the
simplest (i.e. require least additional energy to be added) to launch vehicles into
space and how much initial eastward velocity (as seen in an Earth-fixed frame)
would a vehicle have there thanks to Earth’s rotation?
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n̂2

n̂1

n̂3

ê1

ê2

ê3

θ

O

O'r

λ

φ

n̂

ê
û

Equ
ato

r

Figure 1.11: Coordinate Frames of a Person on Earth

1.6 ♣ The person in Problem 1.4 has boarded a high-speed train and is traveling due
south at a constant 450 km/h as seen in an Earth-fixed reference frame. What
is the inertial velocity and acceleration now?

1.7
A constantly rotating disk is mounted on a moving train as shown in Figure 1.12.
The train itself is moving with a time varying linear velocity of v(t). Assume
the particle P is fixed on the disk, what are its inertial velocity and acceleration?
Express your answer with {d̂} components as functions of r, ω and v(t).

r

ω

v(t)
d̂1

d̂2

d̂3

Figure 1.12: Rotating Disk on Train

1.8 Repeat Problem 1.7, but this time assume that the particle P is free to move
radially on the disk. Again find the corresponding inertial velocity and accelera-
tion.
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1.9 Two rotating disks are are arranged as shown in Figure 1.13. Relative to an
inertial reference frame N , Disk A has a relative angular velocity ωA/N and
disk B has a relative angular velocity ωB/N . Each disk has a particle A or
B respectively fixed to its rim. The orientation of the A frame is given by
{âr, ât, â3} and the orientation of the B frame is given by {b̂r, b̂t, b̂3}.

a) What is the relative inertial velocity ρ̇ and acceleration ρ̈ of particle B
versus A?

b) As seen from particle A, what is the relative velocity and acceleration of
particle B?

It is recommended that this problem be solved in two ways: (1) By using
Eq. (1.35) and (2) by differentiation of the position and velocity vector using
the transport theorem.

Disk A

Disk 

âr

ât

b̂t

b̂r

ρ

ω NA

ω NB

Point A

Point B

rA

rB

Figure 1.13: Two Rotating Disks

1.10 Consider the overly simplified planetary system shown in Figure 1.14. The Earth
is assumed to have a circular orbit of radius R about the sun and is orbiting at a
constant rate φ̇. The moon is orbiting Earth also in a circular orbit at a constant
radius r at a constant rate θ̇. Assume the sun is inertially fixed in space by the
frame {n̂1, n̂2, n̂3}. Further, a UFO is orbiting the sun at a radius R2 at fixed
rate γ̇. Let the Earth frame E be given by the direction vectors {êr, êφ, ê3}, the
moon frame M by {m̂r, m̂θ, m̂3} and the UFO frame U by {ûr, ûγ , û3}.

a) Find the inertial velocity and acceleration of the moon relative to the sun.

b) Find the position vector of the moon relative to the UFO.

c) Find the angular velocity vectors ωE/U and ωM/U .

d) What are the velocity and acceleration vectors of the moon as seen by the
UFO frame?
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Sun
φ

γ

θ
r

R

R2

Earth

Moon

UFO

n̂1

n̂2

Figure 1.14: Planar Planetary System

1.11 A disk of constant radius r is attached to a telescoping rod which is extending at
a constant rate as shown in Figure 1.15. Both the disk and the rod are rotating
at a constant rate. Find the inertial velocity and acceleration of point P at the
rim of the disk.

L

θ

α

n̂1

n̂2

êθ

ŝα

ŝr

êL

P

O

O′

Figure 1.15: Rotating Disk Attached to Telescoping Rod

1.12 A disk is rolling at a constant rate θ̇ on a moving conveyor belt as shown in
Figure 1.16. The conveyor belt speed v is constant. Find the inertial velocity
and acceleration of Point P .

n̂1

n̂2 d̂2

êr

êθ

d̂1

θ

v

P

r

Figure 1.16: Disk Rolling on a Conveyor Belt
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1.13 A vertical disk of radius r is attached to a horizontal shaft of length R as shown
in Figure 1.17. The shaft is rotating at a time varying rate φ̇. A fixed point P is
on the rim of the disk, while a missile is flying overhead at a fixed height h with
the trajectory rm = hn̂3 − tn̂2.

a) Find the inertial velocity and acceleration of point P .

b) What is the velocity and acceleration of point P as seen by the missile.
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Chapter Two

Newtonian Mechanics

The previous chapter on Particle Kinematics dealt with vector methods for
describing a motion. Now we would like to be able to establish complete motion
models which permit us to solve for the motion once the system forces and
torques are given. Mass distribution and point of application of forces of a
dynamical system clearly affect the resulting motion and must be taken into
account. The motions are found by solving the system equations of motion
which form the cause/effect model between the forces acting on the system and
the resulting translational, rotational and deformational accelerations.

In this chapter, we will first consider the dynamics of a single particle and
then that of a system of particles. An example of a system of particles would be
the solar system with the various planets within it idealized as particles. The
particle mechanics results will then be generalized to derive formulations for
the dynamics of continuous systems such as vibrating beams or some generally
deformable collection of matter (such as a bowl of Jello) where the system shape
may be time varying.

2.1 Newton’s Laws

The following laws of nature were discovered by Sir Isaac Newton over 200 years
ago in England. Later in the early 20th century Albert Einstein theorized that
these basic laws are only a low-speed approximation in his papers about special
relativity. However, relativistic e�ects only become significant when the velocity
of a particle or body approaches that of the speed of light. In this discussion we
will assume that all systems studied are moving much slower than the speed of
light and we will therefore neglect relativistic effects. The following three laws
are commonly known as Newton’ s laws of motion.1–3

Newton’s First Law: Unless acted upon by a force, a particle will maintain
a straight line motion with constant inertial velocity.

Newton’s First Law is the most easily overlooked Law because it is a special

25
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case of the second law. It simply states that unless something pushes against
the particle, it will keep on moving in the same direction with constant velocity.

Newton’s Second Law: Let the vector F be the sum of all forces acting on a
particle having a mass m with the inertial position vector r. Assume that N is
an inertial reference frame, then

F =
Nd
dt

(mṙ) (2.1)

Or in words, the force acting on m is equal to the inertial time rate of change
of the particle linear momentum p = mṙ. If the mass m is constant then this
results simpli�es to the well known result

F = mr̈ (2.2)

We observe that if units are not chosen consistent with Eqs. (2.1) and (2.2),
Newton’s second law requires an additional proportionality factor. Note that
all derivatives taken in Newton’s Second Law must be inertial derivatives. Since
it is typically necessary to also describe a position vector in a non-inertial co-
ordinate frame, the importance of proper kinematics skills becomes apparent.
Without correctly formulated kinematics, the dynamical system description will
be incorrect from the start. We mention that a large fraction of errors made in
practice have their origin in kinematics errors formulating r̈ and similar vector
derivatives.

Newton’s Third Law: If mass m1 is exerting a force F21 on mass m2, then
the force F12 experienced by m1 due to interaction with m2 will be

F12 = −F21 (2.3)

This conforms to our intuitive experience. Anytime one pushes against an
object, the reaction force from the object to our hand is an equal force. Be sure
to keep that in mind when contemplating punching a solid wall, or jumping
from a canoe.

In order to write down Newton’s laws, it is important to make use of force
and moment sketches known as Free Body Diagrams (FBDs). In essence, FBDs
are used to specify and determine the force vector F in Eq. (2.2). Figure 2.1 is
an example of a FBD. There are several conventions for free body diagrams, we
adopt the following rule. The FBD should show all forces and moments acting
on the system. We exclude from our FBDs acceleration vectors and so-called
“inertia forces” which are subsets of the mr̈ terms in Eq. (2.2) that may arise
in rotating coordinate systems.

Sir Isaac Newton is probably best known for the development of calculus
and the laws of gravity which by popular account were initiated when an apple
fell on his head while he was sitting under a tree. However, his laws of motion
form the foundation of all modern sciences and engineering.
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Newton’s Law of Universal Gravitation: Let the vector r12 = r2 − r1

describe the position of mass m2 relative to mass m1 as shown in Figure 2.1.
Then the mutually attractive gravitational force between the objects will be

F12 = −F21 =
Gm1m2

|r12|2
r12

|r12|
(2.4)

where G ∼= 6.6732 · 10−11 m3

s2kg is the universal gravity constant.

N

m1

m2

r1

r 21
r2

F 21

F 12

Figure 2.1: Newton’s Law of Universal Gravitation

For example, this law of universal gravitation allows one to model accurately
the attractive forces between spacecraft and planets. Note however, that since
the universal gravity constant G is relatively small, the gravitational attraction
between two everyday objects such as a house and a car is very small and
typically ignored. Even Mount Everest makes a barely measurable perturbation
in the Earth’s total gravitational attraction on objects in the immediate vicinity
of Mount Everest.

One important aspect of the law of universal gravitation is that the gravity
force is conservative and can be calculated from a gravity field potential energy
function. A general potential energy function V (r) is a scalar function which
depends on the system position vector r. The potential function measures how
much work has to be done to the system to move an object from rest a reference
position r0 to rest at position r. A conservative force is defined as a force
derivable by taking the gradient of a corresponding potential energy function
V (r) as

F (r) = −∇V (r) (2.5)

Given V , we can derive F from the gradient operator as in Eq. (2.5). Given F ,
we can derive V by integration. Note that conservative forces only depend on
the position vector r and not the velocity vector ṙ or time t. For example, the
classical viscous drag force F = −cṙ would not be a conservative force.

The gravity potential energy function VG experienced by the masses m1 and
m2 is1, 3

VG(r12) = −Gm1m2

|r12|
= −Gm1m2

r12
(2.6)
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VG(r12) is energy required to separate the two masses from the current distance
of |r12| to an infinite separation. We will subsequentially consider (in section
2.2.3) the relationship of potential energy and work in more detail. Let’s describe
the r12 vector through cartesian coordinates as

r12 =





x1

x2

x3



 (2.7)

The magnitude of r12 is defined as

|r12| =
√

x2
1 + x2

2 + x2
3 (2.8)

and the partial derivatives of |r12| with respect to the cartesian coordinates xi
are given by

∂|r12|
∂xi

=
xi

|r12|
(2.9)

The gradient of the potential field VG is given by

∂VG
∂xi

=
Gm1m2

|r12|2
∂|r12|
∂xi

=
Gm1m2

|r12|2
xi

|r12|
(2.10)

The gravitational force F21 the mass m2 experiences due to the mass m1 at the
relative position r12 is given by

F21 = −∇VG = −Gm1m2

|r12|2
1

|r12|





x1

x2

x3



 = −Gm1m2

|r12|3
r12 (2.11)

Another example of a conservative force is the force exerted by a spring. Let
the spring have a spring constant k and a linear deflection x. Then its potential
function VS is given by

VS(x) =
1

2
kx2 (2.12)

The current potential energy indicates how much work was performed to stretch
the spring from a zero reference deflection state to the deflection x. The force
exerted by the spring on a mass m is given by the famous Hook’s Law.

F = −∇VG = −kx (2.13)

Example 2.1: Let us find a first order approximation of the gravity potential
function in Eq. (2.6) that a body with m would experience near the Earth’s
surface. Assume a spherical Earth with radius Re and mass me. The radial
distance r of the body to the center of Earth is written as

r = Re + h
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where h is the height above the Earth’s surface. The gravity potential expe-
rienced by the body m due to Earth is

V (r) = −Gmem

r

The function V (r) can be approximated about the distance Re through the
Taylor series expansion

V (r) = V (Re) +
1

1!

∂V

∂r

∣
∣
∣
∣
Re

h+
1

2!

∂2V

∂r2

∣
∣
∣
∣
Re

h2 + · · ·

The local gravity potential Vlocal uses Re as its reference potential and can
approximated by

Vlocal(h) = V (r) − V (Re) ' ∂V

∂r

∣
∣
∣
∣
Re

h + O(h2)

After carrying out the partial derivative the local gravity potential function
for the special case of a constant gravity field is found to be

Vlocal(h) =
Gme

R2
e

mh = mgh

where g = Gme/R
2
e is the local gravitational acceleration.

2.2 Single Particle Dynamics

The equation of motion for a single particle is given by Newton’s second law in
Eq. (2.2) where it is assumed that the particle mass m is constant and r̈ is the
second inertial derivative of the position vector r. The following two sections
treat two cases of this simple dynamical system. In the first case the force
being applied to the mass is assumed to be constant and in the second case it
is assumed to be time varying.

2.2.1 Constant Force

If the force F being applied to the mass m is a constant vector, then the equa-
tions of motion

mr̈ = F = constant (2.14)

can be solved for the time varying position vector r(t). Eq. (2.14) can be solved
for the inertial acceleration vector r̈ as

r̈(t) =
F

m
(2.15)
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After integrating this equation once from an initial time t0 to an arbitrary time
t we obtain the following velocity formulation for mass m.

ṙ(t) = ṙ(t0) +
F

m
(t− t0) (2.16)

After integrating the velocity formulation an expression for the time varying
position vector r(t) of mass m is found.

r(t) = r(t0) + ṙ(t0) (t− t0) +
F

2m
(t− t0)

2 (2.17)

Note that Eqs. (2.15) through (2.17) are actually each three sets of equations
since r = (x1, x2, x3)

T and F = (F1, F2, F3)
T are each three-dimensional vec-

tors. Given an initial velocity vector ṙ(t0), the time required to reach a final
velocity under constant driving force F can be solved from Eq. (2.16).

(t− t0) = (ẋi(t) − ẋi(t0))
m

Fi
(2.18)

Given an initial position vector r(t0), the time required to reach a final position
vector under constant driving force is found by solving the quadratic equation
in Eq. (2.17) for the time t.

t− t0 =
m

Fi

(

±
√

ẋ2
i (t0) +

2Fi
m

(xi(t) − xi(t0)) − ẋi(t0)

)

(2.19)

Given an initial position and velocity vector and a final position vector, the
corresponding final velocity vector is found by substituting Eq. (2.18) into
Eq. (2.17) and solving for ṙ(t).

ẋ2
i (t) = ẋ2

i (t0) + 2
Fi
m

(xi(t) − xi(t0)) (2.20)

Example 2.2: The trajectory of a mass m is studied as it travels in a vertical
plane under the influence of a constant gravitational force F . Determine an
equation that relates an arbitrary target location (x1, x2) to the corresponding
launch velocity v0 and flight path angle γ0. As shown in Figure 2.2, the mass
is at the coordinate center at time zero with a speed of v0 and a elevation
angle of γ0. The cartesian components of the initial position and velocity
vectors are therefore given by

r(t0) =

(
0
0

)

ṙ(t0) = v0

(
cos γ0

sin γ0

)

Since the gravitational force F only acts along the vertical direction, the
equations of motion are given as

r̈(t) =
1

m

(
0

−F

)

=

(
0
−g

)
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Figure 2.2: Ballistic Trajectories under Constant Gravity Force

where g = F/m is the local constant gravitational acceleration. Using
Eq. (2.16) the velocity vector ṙ(t) is

ṙ(t) = v0

(
cos γ0

sin γ0

)

−
(

0
gt

)

The position vector r(t) is found through Eq. (2.17).

r(t) =

(
x1(t)
x2(t)

)

= v0t

(
cos γ0

sin γ0

)

−
(

0
gt22

)

By solving the x1(t) equation for the time t and substituting it into the x2(t)
equation, one obtains the parabola expression relating x2 to x1 (the equation
of the path or trajectory):

x2 = x1 tan γ0 − g sec2 γ0

2v2
0

x2
1

An interesting question now arises. Given an initial speed v0, what would
the initial elevation angle γ0 have to be to make the mass m hit a target at
coordinates (x̃1, x̃2)? To answer this we rewrite the above expression relating
x1 and x2 making use of the trig identity sec2 γ0 = 1 + tan2 γ0.

tan2 γ0 − 2v2
0

gx̃1
tan γ0 +

2v2
0 x̃2

gx̃2
1

+ 1 = 0

This quadratic equation can be solved explicitly for tan γ0.

(tan γ0)1/2 =
v2
0

gx̃1
± v0
gx̃1

√

v2
0 − 2gx̃2 − g2x̃2

1

v2
0

If the point (x̃1, x̃2) is within the range limit, then this formula will return two
real answers. One corresponds to a lower trajectory and the other to a higher
trajectory as illustrated in Figure 2.2. If the point (x̃1, x̃2) is on the range
limit, then the formula will return a double root. If the real point (x̃1, x̃2) is
outside the range limit, then two complex variables will be returned, indicating
the reasonable truth that no real solutions exist.
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Figure 2.3: Ballistic Trajectories under Constant Gravity Force

To find the envelope of all possible trajectories the case where only double
roots exist is examined. Setting the square root term to zero, the following
parabola is found.

x2 =
v2
0

2g
− g

2v2
0

x2
1

Any targets that are accessible with the given v0 must lie within this parabola.
The trajectory envelope parabola is shown as a dashed line in Figure 2.2. As
can be verified, the special case where x̃1 = 0 gives x̃2 = v2

0/2g. You can
readily show that this is the apogee of a vertically launched projectile with
launch velocity v0. Another special case where is where x̃2 = 0, which provides
the maximum impact range x1 = v2

0/g if the surface is flat. Figure 2.3
compares the various launch angles required to hit a target a distance x1

away with a given initial velocity v2
0 . For this constant gravity field case, the

maximum range launch angle is always 45 degrees. Later on this problem is
revisited in celestial mechanics where the inverse square gravity field case is
considered.

2.2.2 Time-Varying Force

When the force F acting on the mass m is time varying, then there are typically
no closed form solutions for the velocity and position vectors. The equations of
motion are given as

r̈ =
1

m
F (t) (2.21)
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Upon integrating Eq. (2.21) from t0 to t the velocity vector ṙ(t) at time t is
given as

ṙ(t) = ṙ(t0) +
1

m

∫ t

t0

F (τ)dτ (2.22)

The position vector r(t) is obtain by integrating the velocity vector.

r(t) = r(t0) + ṙ(t0) (t− t0) +
1

m

∫ t

t0

∫ τ2

t0

F (τ1)dτ1dτ2 (2.23)

Finding the time required to accelerate from one velocity to another or to travel
from one position to another under the influence of F (t) cannot be found gener-
ically as for the case of constant F . These results would have to be found
explicitly for a given problem statement or through a numerical method if no
closed form solution exists.

Example 2.3: Let the mass m be restricted to travel only in one dimension.
It is attached to the coordinate frame origin through a linear spring with
spring constant k. The force acting on mass m is then given through Hook’s
Law as

F = −kx
and the equations of motion are then given through Newton’s second law in
Eq. (2.21) as

ẍ =
1

m
(−kx)

This can be rewritten in the form of the standard unforced oscillator differ-
ential equation.

mẍ+ kx = 0

The oscillator problem is known to have a solution of the type

x(t) = A cosωt+B sinωt

Where the constants A, B and ω are yet to be determined. The velocity and
acceleration expressions are then given as

ẋ(t) = −Aω sinωt+Bω cosωt

ẍ(t) = −Aω2 cosωt−Bω2 sinωt = −ω2x(t)

Substituting the expression for ẍ(t) into the equation of motion the following
expression is obtained

(
−mω2 + k

)
x = 0

which must hold for any position x. Therefore the natural frequency ω is
given by4

ω =

√

k

m
The constants A and B would be found through enforcing the solution to
satisfy the initial conditions x(t0) = A and ẋ(t0) = ωB.
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2.2.3 Kinetic Energy

The kinetic energy T of a particle of mass m is given by

T =
1

2
mṙ · ṙ (2.24)

To find the work done on the particle we investigate the time derivative of the
kinetic energy T .

dT

dt
= mr̈ · ṙ (2.25)

After using Eq. (2.14) the kinetic energy rate or power is given as

dT

dt
= F · ṙ (2.26)

If the force F is conservative it can be expressed as the negative gradient of a
potential function V .

dT

dt
= −∂V

∂r
· ṙ (2.27)

Noting that ∂V
∂r ṙ = dV

dt Eq. (2.27) can be written as

dT

dt
+
dV

dt
= 0 (2.28)

Therefore the total system energy E = T+V is conserved. For conservative sys-
tems it is often convenient to obtain an expression relating coordinates and their
time derivatives using the system energy. This avoids having to perform difficult
integrations of the acceleration expressions to obtain the same relationship.

Let W be the work performed between times t1 and t2. Upon integrating
Eq. (2.26) from time t1 to t2 the following work/energy equation is obtained.

T (t2) − T (t1) =

∫ t2

t1

F · ṙdt =

∫ r(t2)

r(t1)

F · dr ≡W (2.29)

Example 2.4: A mass m of 10 kg has an initial kinetic energy of 40 Joules
(1 Joule = 1 J = 1 kg m2/s2 = 1 Nm). A constant force F = 4 N is acting
on this mass from the initial position r(t0) = 0 m to the final position at r(tf
= 10 m. What is the work done on the mass and what is the final velocity
at tf?

Using Eq. (2.29), the work W done to the mass m is

W =

∫ r(tf )

r(t1)

F · dr =

∫ 10m

0m

4N · dr = 40Nm = 40J

The energy at tf is given by

T (tf ) = T (t0) +W = 40J + 40J = 80J
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Using Eq. (2.24) the final velocity ṙ(tf ) is found to be

ṙ(tf ) =

√

2T (tf )

m
= 4m/s

2.2.4 Linear Momentum

The linear momentum vector p of a particle is defined as

p = mṙ (2.30)

The momentum measure provides a sense of how difficult it will be to change
a motion of a particle. Assume a locomotive has a large mass m and a very
small inertial velocity ṙ. Despite the slow motion, it makes intuitive sense
that it would be very difficult to stop the motion of this large object. The
linear momentum p of the locomotive is large due to the large mass. Similarly,
consider a bullet with a small mass and a very high inertial velocity. Again,
it makes intuitive sense that it would be difficult to deflect the motion of the
bullet once it has been fired. In this case the linear momentum of the bullet is
large not because of its mass, but because of its very large inertial velocity.

Using the linear momentum definition, we are able to rewrite Newton’s Sec-
ond Law in Eq. (2.1) in terms of p as

F =
Nd
dt

(mṙ) =
Nd
dt

(p) (2.31)

Thus, the force acting on a particle can be defined as the inertial time rate of
change of the linear momentum of the particle. If no force is acting on the
particle, then ṗ is zero and the linear momentum is constant. For the single
particle system, this is a rather trivial result. However, using the analogous
arguments on a multi-particle system will yield some very powerful conclusions.

2.2.5 Angular Momentum

Let P be an arbitrary point in space with the inertial position vector rP and
the mass m have an inertial position vector r. The relative position of m to
point P is given through

σ = r − rP (2.32)

The angular momentum vector HP of the particle m about point P is defined
as

HP = σ ×mσ̇ (2.33)
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Taking the time derivative of HP we find

ḢP = σ̇ ×mσ̇ + σ ×mσ̈ (2.34)

After noting that σ̈ = r̈− r̈P and that a vector cross product with itself is zero,
the vector ḢP is

ḢP = σ ×mr̈ − σ ×mr̈P (2.35)

Using Eq. (2.14) this is rewritten as

ḢP = σ × F +mr̈P × σ (2.36)

Note that the term σ ×F is the moment (or torque) vector LP due to force F

about point P . The angular momentum time derivative can then be written in
its most general form

ḢP = LP +mr̈P × σ (2.37)

Note that if the reference point P is inertially non-accelerating or r = rP , then
Eq. (2.37) is reduced to the famous Euler’s equation.1, 2

ḢP = LP (2.38)

Example 2.5: A weightless cylinder of radius R with a mass m embedded
in it is rolling down a slope of angle α without slip under the influence of a
constant gravity field as shown in Figure 2.4. The mass is offset from the
cylinder center by a distance l. Let N : {O, n̂1, n̂2, n̂3} be an inertial frame
and E : {O′, êr, êθ, ê3} be a rotating frame tracking the point mass within
the cylinder. Note that ê3 = −n̂3.

êr

êθ

n̂1

n̂2

O

O'

R θ

d

α

l

r

Figure 2.4: Cylinder with Offset Mass Rolling Down a Slope

The angular velocity vector between the E and the N frame is

ωE/N = θ̇ê3 = −θn̂3
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Because of the no slip condition, the distance d that the center of the cylinder
travels downhill is related to rotation angle θ through

d = Rθ

The position vector r of the point mass relative to O is written as

r = dn̂1 + lêr = Rθn̂1 + lêr

Using the transport theorem, the inertial velocity and acceleration vectors are
found to be

ṙ = Rθ̇n̂1 + lθ̇êθ

r̈ = Rθ̈n̂1 + lθ̈êθ − lθ̇2êr

The E frame unit vectors are expressed in terms of N frame components as

êr = sin θn̂1 + cos θn̂2

êθ = cos θn̂1 − sin θn̂2

The acceleration vector of the point mass m is then expressed in the N frame
as

N
r̈ =

(

Rθ̈ + lθ̈ cos θ − lθ̇2 sin θ
)

n̂1 −
(

lθ̈ sin θ + lθ̇2 cos θ
)

n̂2

The forces acting on the rolling cylinder are the gravitational force Fg,

Fg = mg (sinαn̂1 − cosαn̂2)

the normal force N pushing perpendicular from the surface,

N = Nn̂2

and the frictional force Ff which is keeping the cylinder from slipping.

Ff = −Ff n̂1

Newton’s second law states that

mr̈ = Fg +N + Ff

After substituting Nr̈ and the expressions for the forces into the above equa-
tion and equating the N frame components, the following two relationships
are found.

m
(

Rθ̈ + l cos θθ̈ − lθ̇2 sin θ
)

= mg sinα − Ff

−m
(

l sin θθ̈ + lθ̇2 cos θ
)

= −mg cosα+N

Once an expression for θ̈ is found, the second equation could be used to solve
for the time varying normal force component N . To solve the first equation
for the angular acceleration, an expression for the frictional force component
Ff must be found. To do so we examine the angular momentum vector of
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the point mass about the E frame origin O′. The relative position vector σ
of the point mass to O′ and its inertial derivative are given by

σ = lêr σ̇ = lθ̇êθ

The angular momentum vector HO′ can then be written as

HO′ = σ ×mσ̇ = −ml2θ̇n̂3

and its inertial derivative is given by

ḢO′ = −ml2θ̈n̂3

The torque LO′ about point O′ is written as

LO′ = σ × Fg −Rn̂2 × (Ff +N )

= −mgl sin (θ + α) n̂3 −RFf n̂3

The inertial position vector rO′ of point O′ and its second inertial derivative
are given by

rO′ = dn̂1 = Rθn̂1 r̈O′ = Rθ̈n̂1

Euler’s equation with moments about a general point in Eq. (2.37) is for this
case

ḢO′ = LO′ +mr̈O′ × σ

which leads to the desired expression for Ff in terms of θ̈.

RFf = ml2θ̈ −mgl sin (θ + α) +mRlθ̈ cos θ

Substituting this expression back into the previous equation relating θ̈ and
Ff results in the equations of motion in terms of the rotation angle θ.

(
R2 + l2 + 2Rl cos θ

)
θ̈ −Rlθ̇2 sin θ − gR sinα− gl sin (θ + α) = 0

This equation could be solved for the angular acceleration θ̈ which could then
be used to find the normal force component N purely in terms of θ and θ̇.

2.3 Dynamics of a System of Particles

2.3.1 Equations of Motion

Until now we have only considered dynamical systems with a single particle. In
this section we will discuss systems of N particles each with a constant mass
mi. An example to visualize such dynamical systems would be our solar system.
To study the translational (orbital) motion of the planets and moons, due to
the large distances involved, they can usually be considered to be point masses
with each having different masses mi.
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Figure 2.5: System of N Particles

Since we are now dealing with a finite number of masses, we write Newton’s
second law in index form as

Fi = miR̈i (2.39)

where R̈i is the inertial acceleration vector of mi as shown in Figure 2.5. The
force acting on mi can be broken down into two subsets of forces as

Fi = FiE +

N∑

j=1

Fij (2.40)

where FiE is the vector sum of all external forces acting on mass mi and Fij is
an internal force vector due to the influence of the j-th masses on the i-th mass.
The total force vector F acting on the system of N particles is defined to be

F =

N∑

i=1

Fi =

N∑

i=1

FiE (2.41)

The internal forces Fij don’t appear in F because of Newton’s third law which
states that Fij = −Fji, i.e., internal forces cancel in pairs. The total mass M
of the N particles is defined as

M =

N∑

i=1

mi (2.42)

The system center of mass position vector Rc is defined such that

N∑

i=1

miri = 0 (2.43)
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where ri = (Ri − Rc) is the position vector ofmi relative to Rc. Thus Eq. (2.43)
can be rewritten as

N∑

i=1

miRc =

N∑

i=1

miRi (2.44)

which is further simplified using the system mass definition in Eq. (2.42) to

MRc =

N∑

i=1

miRi (2.45)

The center of mass position vector Rc is expressed in terms of the individual
inertial mass position vectors Ri as

Rc =
1

M

N∑

i=1

miRi (2.46)

After taking two inertial derivatives of Eq. (2.45) we obtain

MR̈c =

N∑

i=1

miR̈i =

N∑

i=1

Fi (2.47)

After substituting Eq. (2.41) we obtain the final result

MR̈c = F (2.48)

also known as the Super Particle Theorem. The dynamics of the mass center
of the system of N particles under the influence of the total external force
vector F is the same as the dynamics of the “superparticle” M . Note that the
superparticle theorem only tracks the center of mass motion of the system. No
information is obtained about the size, shape or orientation of the cloud of N
particles.

Example 2.6: Let three masses be connected through springs with a spring
stiffness constant k as shown in Figure 2.6. The second and third mass each
are subjected to a constant force where F2 = f and F3 = 2f .

The total system mass M is given through

M = 2m+m+m = 4m

and the total external force F being applied to the system is

F = f + 2f = 3f

The center of mass of the three-mass system is given found through Eq. (2.45)
to

rc =
2mr1 +mr2 +mr3

M
=

2r1 + r2 + r3
4
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Figure 2.6: Three-Mass System

Using the super particle theorem in Eq. (2.48), the equations of motion for
the center of mass of the three-mass system is

4mr̈c = 3f

Assuming that the rc is originally at rest at the origin, the system center of
mass location is then integrated to obtain

rc(t) =
3f

8m
t2

To find the equations of motion of the individual masses, we need to write
Eq. (2.39) for each mass.

2mr̈1 = k(r2 − r1)

mr̈2 = −k(r2 − r1) + k(r3 − r2) + f

mr̈3 = −k(r3 − r2) + 2f

This can be written in a standard ODE matrix form for a vibrating system




2m 0 0
0 m 0
0 0 m









r̈1
r̈2
r̈3



+





k −k 0
−k 2k −k
0 −k k









r1
r2
r3



 =





0
f
2f





which can be solved given a set of initial conditions for ri(t0) and ṙi(t0).

2.3.2 Kinetic Energy

The total kinetic energy T of the cloud of N particles can be written as the sum
of the kinetic energies of each particle.

T =
1

2

N∑

i=1

miṘi · Ṙi (2.49)

After making use of the expression Ṙi = Ṙc + ṙi, the total kinetic energy is
rewritten as

T =
1

2

(
N∑

i=1

mi

)

Ṙc · Ṙc + Ṙc ·
(

N∑

i=1

miṙi

)

+
1

2

N∑

i=1

miṙi · ṙi (2.50)
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where the middle term
∑N

i=1 miṙi is zero due to the definition of the center of
mass in Eq. (2.43). The total kinetic energy of a system of N constant mass
particles mi can therefore be written as

T =
1

2
MṘc · Ṙc +

1

2

N∑

i=1

miṙi · ṙi (2.51)

where the first term contains the system translational kinetic energy and the
second contains the system rotation and deformation kinetic energy.

To find the work done on the system we examine the energy rate dT/dt.

dT

dt
= MR̈c · Ṙc +

N∑

i=1

mir̈i · ṙi (2.52)

After making use of the facts that MR̈c = F and that r̈i = R̈i−R̈c, the energy
rate is written as

dT

dt
= F · Ṙc +

N∑

i=1

miR̈i · ṙi − R̈c ·
(

N∑

i=1

miṙi

)

(2.53)

After using Eqs. (2.39) and (2.43), the energy rate is written in the final form
as

dT

dt
= F · Ṙc +

N∑

i=1

Fi · ṙi (2.54)

If only conservative forces are acting on mi, then the forces Fi can be written
as the gradient of a potential function Vi(ri).

Fi = −∂Vi
∂ri

(2.55)

Noting that ∂Vi∂ri

ṙi
= V̇i and defining the total conservative potential function

to be

d

dt
V =

N∑

i=1

V̇i (2.56)

Eq. (2.54) can be written as

dT

dt
+
dV

dt
= F · Ṙc (2.57)

Studying Eq. (2.57) it is clear that for systems where the total applied force
vector F is zero, the total system energy E = T + V is conserved. If the total
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resultant force F is itself a conservative force due to a potential function Vc(Rc),
then Eq. (2.57) can be written as

dT

dt
+
dV

dt
+
dVc
dt

= 0 (2.58)

and the total system energy E = T + V + Vc is also conserved.

After integrating the kinetic energy rate equation in Eq. (2.54) with re-
spect to time, the change in kinetic energy between two times is given by the
work/energy equation

T (t2) − T (t1) =

∫ t2

t1

F · Ṙcdt+

N∑

i=1

∫ t2

t1

Fi · ṙidt (2.59)

which can also be written as the spatial integral

T (t2) − T (t1) =

∫ Rc(t2)

Rc(t1)

F · dRc +

N∑

i=1

∫ r(t2)

r(t1)

Fi · dri (2.60)

The first term on the right hand side of Eq. (2.60) is the translational work done
and the second term is the rotation and deformation work done on the system.

2.3.3 Linear Momentum

In Eq. (2.30) the linear momentum pi of a single particle is defined. For a
system of particles, the total linear momentum of the system is defined as the
sum

p =
N∑

i=1

pi =
N∑

i=1

(

miṘi

)

(2.61)

Let ri be the i-th particle position vector relative to the system center of mass
as defined in Eq. (2.43). Taking the derivative of Eq. (2.45), we are able to write
the total linear momentum expression in Eq. (2.61) in terms of the total system
mass M and the center of mass inertial velocity vector Ṙc.

p = MṘc (2.62)

Note that the super particle theorem introduced in Eq. (2.48) also holds for the
linear momentum of a system of particles. The linear momentum of the mass
center of the system of N particles is the same as the linear momentum of the
“superparticle” M.

Let Fi be the force acting on the i-th particle. Note that Fi is composed
both of a net external force component FiE and the inertial force component
Fij due to interaction with other particles (see Eq. (2.40)). Using the particle
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equations of motion in Eq. (2.39), the inertial time rate of change of the total
linear momentum of the particle system is expressed as

ṗ =

N∑

i=1

(

miR̈i

)

=

N∑

i=1

(Fi) (2.63)

Since the inertial forces Fij will cancel each other in this summation due to
Newton’s third law, the time rate of change of the linear momentum of a particle
system is equal to the total external force acting on the system.

F =
Nd
dt

(p) (2.64)

If no external force F is present, then the total system linear momentum vector
p will be constant. This leads to the important law of conservation of angular
momentum. Unless an external force is acting on a system of N particles,
the total linear momentum of the system is conserved. This property is used
extensively in collision problems or in the rocket propulsion problem. If two
bodies collide, then energy is used to deform the bodies. The total system
energy is not conserved during the collision. However, momentum is conserved
and can be used to compute the velocities of the bodies after the collision.

Example 2.7: Assume the dynamical system of interest consists of only
two particles m1 and m2 moving along a one-dimensional, frictionless track
at different rates. Before a collision at time t0 they each have a constant
speed of v1(t

−
0 ) and v2(t

−
0 ) respectively. The total energy before the impact

is given by

T (t−0 ) =
1

2

(
m1v1(t

−
0 )2 +m2v2(t

−
0 )2
)

The total linear momentum is

p(t−0 ) = m1v1(t
−
0 ) +m2v2(t

−
0 )

First, Let assume that the collision is perfectly elastic. In this case any
energy used to deform the bodies during the collision is regained when the
body shapes are restored (i.e. think of two rubber balls colliding). Both total
energy T (t+0 )

T (t+0 ) =
1

2

(
m1v1(t

+
0 )2 +m2v2(t

+
0 )2
)

and momentum p(t+0 )

p(t+0 ) = m1v1(t
+
0 ) +m2v2(t

+
0 )

are conserved during the collision. Setting T (t−0 ) = T (t+0 ) and p(t−0 ) =
p(t+0 ), we are able to express the particles speeds after the collision as

v1(t
+
0 ) =

1

M

(
v1(t

−
0 )(m1 −m2) + 2v2(t

−
0 )m2

)

v2(t
+
0 ) =

1

M

(
v2(t

−
0 )(m2 −m1) + 2v1(t

−
0 )m1

)
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with M = m1 +m2 being the total system mass.

Second, we assume that the collision is such that the two particles join and
become one (i.e. think of two chunks of clay colliding). In this case the total
energy T (t+0 ) after the collision is given by

T (t+0 ) =
1

2
Mv2

where v is the speed of the joined particles after the collision. The linear
momentum of the joined particles is

p(t+0 ) = Mv

Note that this collision in not perfectly elastic and that energy is not con-
served. However, linear momentum is conserved and we can set p(t−0 ) =
p(t+0 ) to solve for the velocity v of the joined particle after the collision.

v =
1

M

(
m1v1(t

−
0 ) +m2v2(t

+
0 )
)

The total energy after the collision is given by

T (t+0 ) =
1

2
Mv2 =

1

2M

(
m1v1(t

−
0 ) +m2v2(t

+
0 )
)2

=
p2

2M

The change in energy ∆T = T (t+0 ) − T (t−0 ) is given by

∆T = −m1m2

2M

(
v1(t

−
0 ) − v2(t

−
0 )
)2

The energy lost during this plastic collision is used to permanently deform
the two bodies, as well as to radiate heat and produce sound waves.

These two examples are idealized situations. In reality the collisions are never
perfectly elastic or plastic. In this case more knowledge is required about the
how the bodies will deform to predict the motion after the collision.

2.3.4 Angular Momentum

As was done for the case of a single particle, let’s find the angular momentum of
the N particle system about an arbitrary point P given by the inertial position
vector RP . The relative position of each mass mi is given though the vector

σi = Ri − RP (2.65)

The total system angular momentum vector HP about the point P is given as
the sum of all the single particle angular momentum vectors about this point.

HP =

N∑

i=1

σi ×miσ̇i (2.66)
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Taking the time derivative of HP we get

ḢP =

N∑

i=1

σ̇i ×miσ̇i +

N∑

i=1

σi ×miσ̈i (2.67)

After performing similar arguments as in the single particle case this expression
is rewritten as

ḢP =

N∑

i=1

σi ×miR̈i −
(

N∑

i=1

σimi

)

× R̈P (2.68)

Using Eqs. (2.45), (2.65), the following mass center identity is found.

N∑

i=1

σimi =

N∑

i=1

Rimi −
(

N∑

i=1

mi

)

RP = M (Rc − RP ) (2.69)

The total external moment LP applied to the system is defined to be

LP =
N∑

i=1

σi ×miR̈i =
N∑

i=1

σi × Fi (2.70)

Using Eqs. (2.69) and (2.70), the system angular momentum derivative ḢP

about a point P is3

ḢP = LP +MR̈P × (Rc − RP ) (2.71)

Note that if either Rc = RP or RP is non-accelerating inertially, then Eq. (2.71)
reduces to the most familiar Euler equation

ḢP = LP (2.72)

Analogously to the linear momentum development, if no external torque LP is
acting on the system of particles, then the total angular momentum rate vector
HP is constant.

Example 2.8: Two particles are attached on strings and are moving in
a planar, circular manner as shown in Figure 2.7. The plane on which the
particles are moving is level compared to the gravity field. Thus, given an
initial velocity and ignoring frictional effects, the particles will continue to
move at a constant rate. Assume that the two circular paths meet tangentially
at one point. We would like to investigate how the velocities will change if
the particles meet at this point at time t0. This condition is shown in grey in
the figure. The total kinetic energy before the collision is

T (t−0 ) =
m1

2
m1v1(t

−
0 )2 +

m2

2
m2v2(t

−
0 )2
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R1

R2
m2

m1

Figure 2.7: Illustration of two Particles Moving in a Circular Manner on
a Level Plane

while the angular momentum H along the plane normal direction is

H(t−0 ) = R1m1v1(t
−
0 ) +R2m2v2(t

−
0 )

Assuming the collision is perfectly elastic, then both the total energy and
angular momentum are conserved. After the collision, we express them as

T (t+0 ) =
m1

2
m1v1(t

+
0 )2 +

m2

2
m2v2(t

+
0 )2

H(t+0 ) = R1m1v1(t
+
0 ) +R2m2v2(t

+
0 )

Setting T (t−0 ) = T (t+0 ) and H(t−0 ) = H(t+0 ), we are able to solve for the
particle velocities after the collision:

v1(t
+
0 ) =

(m1R
2
1 −m2R

2
2)v1(t

−
0 ) + 2m2R1R2v2(t

−
0 )

m1R2
1 +m2R2

2

v2(t
+
0 ) =

2m1R1R2v1(t
−
0 ) + (m2R

2
1 −m1R

2
1)v2(t

−
0 )

m1R2
1 +m2R2

2

2.4 Dynamics of a Continuous System

2.4.1 Equations of Motion

The development of the dynamical equations of motion of a continuous system
parallels that of the system of N particles. Any finite sums over all particles
are generally replaced with volume integrals over the body B. This allows us
to describe any constant mass body, even if it is flexible or does not have a
constant shape as in a chunk of jello. However, care must be taken to define a
control volume that contains the instantaneous mass of the system when actually
carrying out volume integrations.
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Figure 2.8: Mass Element of Continuous System

Let dm be an infinitesimal body element with the corresponding inertial
position vector R as shown in Figure 2.8. Then as such it can be considered to
be a particle and abides by Newton’s second law. The equations of motion for
this infinitesimal element are

dF = R̈dm (2.73)

where dF is the total force acting on dm. The force vector dF is broken up into
external and internal components as

dF = dFE + dFI (2.74)

To express the volume integral over the body B let us use the shorthand notation
∫

B =
∫∫∫

B. The total force F acting on this continuous body is given by

F =

∫

B

dF =

∫

B

dFE (2.75)

where the internal forces again cancel because of Newton’s third law. The total
body mass is given by

M =

∫

B

dm (2.76)

The system center of mass is defined such that
∫

B

rdm = 0 (2.77)

where r = R − Rc is again the internal position vector of dm relative to Rc.
Therefore Eq. (2.77) can be rewritten as

MRc =

∫

B

Rdm (2.78)
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The center of mass vector Rc is then expressed as

Rc =
1

M

∫

B

Rdm (2.79)

After twice differentiating Eq. (2.78) we obtain

MR̈c =

∫

B

R̈dm =

∫

B

dF (2.80)

After substituting Eq. (2.75) we obtain the equivalent super particle theorem for
a continuous body.

MR̈c = F (2.81)

2.4.2 Kinetic Energy

Let the inertial vector R define the position of the infinitesimal mass element
dm. The kinetic energy of the entire continuous body B is then given as

T =
1

2

∫

B

Ṙ · Ṙdm (2.82)

After substituting Ṙ = Ṙc + ṙ the kinetic energy is expressed as

T =
1

2

(∫

B

dm

)

Ṙc · Ṙc + Ṙc ·
∫

B

ṙdm+
1

2

∫

B

ṙ · ṙdm (2.83)

Making use of Eqs. (2.76) and (2.77), the kinetic energy for a continuous body
B is written as

T =
1

2
MṘc · Ṙc +

1

2

∫

B

ṙ · ṙdm (2.84)

The first term in Eq. (2.84) represents the translational kinetic energy and the
second the rotational and deformational energy.

To find the work done on the continuous body B the kinetic energy rate is
found.

dT

dt
= MR̈c · Ṙc +

∫

B

ṙ · r̈dm (2.85)

After using Eq. (2.81) and the fact that r̈ = R̈ − R̈c the kinetic energy rate is
given as

dT

dt
= F · Ṙc +

∫

B

(

R̈dm
)

· ṙ − R̈c ·
∫

B

ṙdm (2.86)

Using Eqs. (2.73) and (2.77) the kinetic energy rate for a continuous, constant
mass body B is given by

dT

dt
= F · Ṙc +

∫

B

dF · ṙ (2.87)
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The change in kinetic energy between two times is found by integrating the
kinetic energy rate expression with respect to time.

T (t2) − T (t1) =

∫ t2

t1

F · Ṙcdt+

∫ t2

t1

∫

B

dF · ṙdt (2.88)

This can be also written alternatively as a spatial integration:

T (t2) − T (t1) =

∫ R(t2)

R(t1)

F · dRc +

∫ r(t2)

r(t1)

∫

B

dF · dr (2.89)

where the first term expresses the translational work and the second term is the
rotational and deformational work done on the system.

2.4.3 Linear Momentum

To determine the total linear momentum of a continuous body B, we express
the linear momentum of an infinitesimal body element dm as

dp = Ṙdm (2.90)

Integrating the infinitesimal linear momentum contributions over the entire
body, the total linear momentum is given by

p =

∫

B
dp =

∫

B
Ṙdm (2.91)

Using the center of mass property in Eq. (2.78), the total linear momentum of
the body is written directly in terms of the body mass M and the center of mass
motion Ṙc.

p = MṘc (2.92)

Again the super particle theorem applies to the continuous body. The sum
of the individual infinitesimal linear momenta of the body is the same as the
linear momenta of a particle of mass M with the same velocity vector as the
body center of mass motion. Note that the body B is not restricted to be a rigid
body in this section. If the body center of mass is inertially stationary (i.e. the
body has zero linear momentum), it is still possible for various body components
to be moving inertially. For example, consider a heap of jello floating in space.
It is possible for the jello to be deforming without moving. While the individual
components of jello might have some linear momentum, the total sum of these
components cancel each other out to result in a zero net motion of the body
center of mass.

Taking the inertial derivative of Eq. (2.92) and making use of the inter-
nal/external force properties in Eqs. (2.74) and (2.75), we express the total
linear momentum rate as

ṗ =

∫

B
R̈dm =

∫

B
dF = F (2.93)
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Thus, the time rate of change of the total linear momentum of a continuous
body B is equal to the total external force vector being applied to this body.
If no external is applied, then the total linear momentum is conserved and its
rate is zero.

2.4.4 Angular Momentum

To find the angular momentum vector of the continuous body B about an arbi-
trary point P , we write the relative position vector σ of dm to P as

σ = R − RP (2.94)

The total system angular momentum vector HP about P is then given by

HP =

∫

B

σ × σ̇dm (2.95)

Taking the derivative of HP we get

ḢP =

∫

B

σ̇ × σ̇dm+

∫

B

σ × σ̈dm (2.96)

which can be rewritten as

ḢP =

∫

B

σ × R̈dm−
(∫

B

σdm

)

× R̈P (2.97)

The term in the brackets can be expanded to

∫

B

σdm =

∫

B

Rdm −
(∫

B

dm

)

RP = M(Rc − RP ) (2.98)

The total external moment LP applied to the system is defined to be

LP =

∫

B

σ × R̈dm =

∫

B

σ × dF (2.99)

Using these two identities in Eqs. (2.98) and (2.99) the system angular momen-
tum derivative vector ḢP about P is

ḢP = LP +MR̈P × (Rc − RP ) (2.100)

As was the case with the system of N particles, if either Rc = RP or the
vector RP is non-accelerating inertially, then Eq. (2.100) reduces to the Euler
equation2

ḢP = LP (2.101)

As was the case with the dynamical system of finite particles, the angular mo-
mentum of a continuous body is constant if no external torque vector LP is
applied.
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2.5 The Rocket Problem

In this section we investigate the thrust that a rocket motor produces by ex-
pelling propellant at a high velocity from the spacecraft. Consider the one-stage
rocket shown in Figure 2.9. Let m be the mass of the rocket including any pro-
pellant that is currently on board. The propellant fuel is being burnt and ejected
at a mass flow rate of ṁ. The current velocity vector of the rocket is v, while the
exhaust velocity of the ejected propellant particles dm relative to the rocket is
ve. Note that the orientation of the exhaust velocity vector ve does not have to
point aftward. If the nozzle would be pointing forward, then the engine would
be used to perform a breaking maneuver. The rocket is assumed to be flying
through an atmosphere with an ambient pressure Pa. At the point where the
exhaust gases escape the engine nozzle the exhaust pressure is given by Pe.

Ambient Pressure

Infinitesimal Fuel
Particle ∆m

Thruster Cross
Sectional Area A

v

Rocket Center of
Mass Motion

ve

Pa

Pe

Exhaust
pressure

Figure 2.9: A One-Stage Rocket Expelling a Propellant Particle ∆m
with an Ambient Atmosphere pa.

We would like to develop the thrust vector that the rocket engine is exerting
onto the spacecraft. To do so, we utilize Eq. (2.72) or (2.101) which state that
the external force F exerted onto a system of particles or a continuous body is
equal time rate of change in linear momentum. Let us treat the rocket mass
m and the expelled propellant particle ∆m as a two particle system and track
their linear momentum change over a small time interval ∆t. Using Eq. (2.72)
we can write the momentum equation as

F∆t = p(t+ ∆t) − p(t) (2.102)

The quantity F∆t is the impulse being applied to the system over the time
interval dt. At time t is the rocket and propellant mass is still m. At time
t+∆t, the rocket mass has been reduced to m−dm and the propellant particle
∆m is about to leave the engine nozzle. Assume that the only external force
acting on this two-particle system is due to pressure differential at the engine
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nozzle. Let A be the nozzle cross sectional area, then the external force F is
expressed as

F = −ve

ve
A (Pe − Pa) (2.103)

More generally, however, we write the external force vector F as

F = −ve

ve
A (Pe − Pa) + Fe (2.104)

where Fe is the net sum of non-pressure related external forces such as gravi-
tational forces acting on the system. The pressure induced force is assumed to
be collinear with the exhaust velocity vector ve. Note that if Pa = Pe (exhaust
expands to ambient pressure) or Pa = Pe = 0 (operating in a vacuum and ex-
haust expanding to zero pressure), then the net external force on the system is
zero. Further, if the direction of the exhaust velocity vector ve is in the oppo-
site direction to the rocket velocity vector v, then a positive pressure differential
Pe − Pa > 0 results in an acceleration in the rocket velocity direction.

The linear momentum p of the system at time t is

p(t) = mv (2.105)

since the propellant particle dm is still joined with the rocket. At time t+ ∆t
the small propellant mass ∆m is being ejected from the rocket with a relative
velocity vector ve. Since the rocket is loosing mass, the mass difference ∆m
over time dt is a negative quantity. The linear momentum at time t+ ∆t is

p(t+ ∆t) = (m+ ∆m)(v + ∆v) − ∆m(v + ve) (2.106)

where (m+∆m) is the rocket mass without the escaping fuel particle and ∆v is
the change in rocket velocity vector over the time interval ∆t. Dropping higher
order differential terms in Eq. (2.106) and substituting the F , p(t) and p(t+∆t)
expressions into Eq. (2.102) leads to

−ve

ve
A (Pe − Pa) ∆t+ Fe∆t = m∆v − ∆mve (2.107)

Dividing both sides by ∆t and solving for the acceleration term we find

m
∆v

∆t
= −ve

ve
A (Pe − Pa) +

∆m

∆t
ve + Fe (2.108)

Allowing the time step ∆t to become infinitesimally small, we arrive at the
rocket equations of motion:

m
dv

dt
= −ve

(
A

ve
(Pe − Pa) −

dm

dt

)

︸ ︷︷ ︸

Fs

+Fe = Fs + Fe (2.109)
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The Fs force component is called the static thrust
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to accelerate the rocket will have a drastic effect on the rocket velocity at burn
out time.

A common measure of rocket thruster efficiency is the speci�c impulse Isp
defined as3, 5

Isp =
Fs

(−ṁ)g
(2.115)

and has units of seconds. The gravitational acceleration g used here is that
experienced on the Earth’s surface. The higher this Isp value is, the more force
the rocket thruster is able to produce for a given mass flow rate. If the exhaust
pressure Pe is close to the ambient pressure Pa, the pressure contribution to the
static thrust Fs in Eq. (2.110) is negligible. In this case Fs ≈ −ṁve and the
specific impulse simplifies to

Isp ≈ ve
g

(2.116)

From this simplification it is evident that to achieve higher thruster efficiencies,
the exhaust velocity ve should be as high as possible. The faster a given fuel
particle is ejected from the rocket, the larger a momentum change (i.e. rocket
speed up) it will cause. Using the specific impulse definition, the rocket velocity
change ∆v for a given fuel ratio ε burned is given by

∆v = Ispg ln

(
1

1 + ε

)

(2.117)

The specific impulse ranges for different rocket thruster systems are shown in
Table 2.1.5 Note that the higher specific impulse propulsion methods, such as the
ion or arcjet thrusters, typically produce only a very small thrust. Such modes
of propulsion are able to achieve a desired ∆v with a much smaller amount of
fuel mass ∆m than a propulsion method with a lower Isp. However, due to the
small amount of thrust produced, these efficient propulsion methods will take a
much longer time to produce this desired velocity change.

Example 2.9: Assume we are trying to launch an initially at rest sounding
rocket vertically from the Earth’s surface and it is to only fly several miles high.
For these small altitudes, we are still able to assume that the gravitational
attraction g is constant during the flight. The solid rocket motor produces a
constant Isp for the duration of it burn. Since the only external force acting
on the rocket is the constant gravitational acceleration, the rocket equations
of motion in the vertical direction are given by Eq. (2.109):

mv̇ = Fs −mg = g (m− Ispṁ) (2.118)

This equation illustrates the challenge that a highly efficient ion propulsion
system would have in attempting to launch this sounding rocket. The change
in velocity expression given in Eq. (2.114) assumes that no external forces
are acting on the rocket except for the ambient and exhaust pressure. With
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Table 2.1: Specific Impulse and Thrust Ranges for Different Rocket
Thruster Designs

Vacuum
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less time to decelerate the craft.

Problems

2.1 Plot the magnitude of the gravity force as it varies from Earth’s surface to a
height of 300 km.

2.2 Given a spring with a spring stiffness constant of k = 5 kg/s2 and a stored
potential energy of 100 Nm, find the spring deflection x and the force F required
to keep the spring at this deflection.

2.3 A mass m is sliding down a constant slope of 10 degrees with an initial velocity
of v(t0) = 1 m/s. How long will it take this mass to accelerate to a velocity of
v(tf ) = 10 m/s and what distance will it have traveled?

2.4 ♣ A skydiver exits an aircraft at an altitude of 3000 m. The aircraft is flying
horizontally at 36 m/s. The skydiver has a mass m of 80 kg, a forward projected
surface area A of 0.75 m2 and a coefficient of drag cd of 0.555. Assume a uniform
gravitation field with a gravitational acceleration of 9.81 m/s2. The air density
ρ is 1.293 kg/m3. Recall the relationship Drag = 1

2
ρv2cdA, and this force is

opposite to the velocity vector.6

a) What is the theoretical terminal velocity of this skydiver?

b) Find the skydiver equations of motion and solve them numerically for a 45
second freefall. Plot the altitude versus horizontal position, the skydiver
speed versus time and the horizontal / vertical velocity versus time.

c) Taking into account that the more air speed a skydiver has, the better and
faster the parachute will open, what is the “worst” time for a skydiver to
try to open the parachute?

d) How long does it take for the skydiver to reach 95% of the terminal ve-
locity?

e) What acceleration does the skydiver experience at terminal velocity?

f) How far forward does the skydiver get thrown on exit before he or she
essentially descends vertically?
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2.5 A ball of mass m is sliding in a frictionless tube as shown in Figure 2.10. The
tube is rotating at a constant angular velocity ω. Initially the ball is at rest
relative to the tube at Point A at r = Lêr.

a) What is the velocity vector when the ball exits the tube?

b) Up to the point where the ball exists the tube, how much work has been
performed onto the ball?

c) Find an expression for the angular momentum vector HA of the mass m
about point A.

2.6 A cannon tries to hit a target which is a distance R away with a projectile of mass
m as shown in Figure 2.11(i). However, at a distance R/4 there is an obstacle
of height H present. What is the smallest elevation angle γ0 and corresponding
initial speed v0 the projectile m must possess initially to hit the target and miss
the obstacle. Assume a constant gravity field is present.

0

0
γ

v

R

H

R 4

(i) Clearing an Obstacle

gR(i)rotatin.rge=A.
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d

m

v0

x

y

γk
tegrath

Figure 2.12: Spring Propelled Mass

2.10 A massless cylinder is rolling down a slope with an inclination angle α under the
influence of a constant gravity field. A mass m is attached to the cylinder and
is offset from the cylinder center by R/2 as shown in Figure 2.13.

a) Find the equations of motion of the the mass m in terms of the angle θ.

b) What is the normal force N = N n̂2 that the ground is exerting against
the cylinder.

êr

êθ

n̂1

n̂2

R θ

α

r

R / 2

Figure 2.13: Rolling Cylinder with Offset mass

2.11 ♣ A ball m is freely rolling in the lower half of a sphere under the influence of a
constant gravity field as shown in Figure 2.14. The sphere has a constant radius
r. Assume that φ̇(t0) is zero and that θ(t0), θ̇(t0) and φ(t0) are given.

a) Find the equation of motion of the ball rolling without slip inside the sphere
in terms of the spherical angle φ. Hint: The angular momentum about
the n̂3 axis is conserved.

b) What is the normal force that the wall of the sphere exerts onto the ball
at any point in time?

c) Since φ̇(t0) = 0, the ball is starting out on an extrema. Find an expression
in terms of θ0, θ̇0 and φ̇0 that determines the other motion extrema where
φ̇ = 0. Hint: Use conservation of energy.
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φθ

n̂1

n̂2

n̂3

ŝr

ŝθ

ŝφ

r

Figure 2.14: Ball rolling inside a Sphere

2.12 A cloud contains four particles with masses m1 = m2 = 1 and m3 = m4 = 2.
The position vector of each particle is

R1 =





1
−1
2



 R2 =





−1
−3
2



 R3 =





2
−1
−1



 R4 =





3
−1
−2





and their respective velocity vectors are

Ṙ1 =





2
1
1



 Ṙ2 =





0
−1
1



 Ṙ3 =





3
2
−1



 Ṙ4 =





0
0
1





a) How much of the total cloud kinetic energy is translational kinetic energy
and how much is rotation and deformation energy?

b) What is the cloud angular momentum vector about the origin and about
the center of mass?

2.13 Two particles with mass m/2 are attached by a linear spring with a spring con-
stant k as shown in Figure 2.15. Consider arbitrary initial position and velocity
of each mass on the plane. For simplicity however, assume that the initial sepa-
ration 2r0 is the unstretched length of the spring, and that the mass center has
zero inertial velocity initially.

a) Determine the differential equations of motion whose solution would give
r(t) and θ(t) as functions of time and initial conditions; it is not necessary
to solve these differential equations.

b) Determine an expression that relates the radial velocity ṙ and the angular
velocity θ̇ as functions of r, θ and initial conditions.

2.14 A particle of mass m is free to sling along a vertical ring as shown in Figure 2.16.
The ring itself is rotating at a constant rate φ̇.

a) Determine the equations of motion of the particle in terms of θ.

b) What are the normal forces produced by the ring onto the particle?
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2 r

k

m / 2

m / 2 θ

êθ

êr

Figure 2.15: Two Masses Moving in a Plane

θ

ê3

êr

êφ

ŝr

ŝ3

ŝθ

r

φ̇

Figure 2.16: Particle Sliding Along a Rotating Ring

2.15 Newton’s second Law for a particle of mass m states that F = d/dt(mv). If m
is time varying, then one might expect F = ṁv +mv̇ to be true. Explain why
this logic is incorrect and does not lead to the correct rocket thrust equation.

2.16 The static thrust Fs of a rocket is given in Eq. (2.109). Draw a freebody diagram
of a rocket engine test stand and verify that this is indeed that static force required
to keep the rocket in place.
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Chapter Three

Rigid Body Kinematics

ATTITUDE coordinates (sometimes also referred to as attitude parameters)
are sets of coordinates {x1, x2, . . . , xn} that completely describe the orien-

tation of a rigid body relative to some reference coordinate frame. There is an
infinite number of attitude coordinates to choose from. Each set has strengths
and weaknesses compared to other sets. This is analogous to choosing among
the infinite sets of translational coordinates such as cartesian, polar or spherical
coordinates to describe a spatial position of a point. However, describing the at-
titude of an object relative to some reference frame does differ in a fundamental
way from describing the corresponding relative spatial position of a point. In
cartesian space, the linear displacement between two spatial positions can grow
arbitrarily large. On the other hand two rigid body (or coordinate frame) ori-
entations can differ at most by a 180o rotation, a finite rotational displacement.
If an object rotates past 180o, then its orientation actually starts to approach
the starting angular position again. This concept of two orientations only being
able to differ by finite rotations is important when designing control laws. A
smart choice in attitude coordinates will be able to exploit this fact and produce
a control law that is able to intelligently handle very large orientation errors.

The quest for “the best rigid body orientation description” is a very fun-
damental and important one. It has been studied by such great scholars as
Euler, Jacobi, Hamilton, Cayley, Klein, Rodrigues and Gibbs and has led to a
rich collection of elegant results. A good choice for attitude coordinates can
greatly simplify the mathematics and avoid such pitfalls as mathematical and
geometrical singularities or highly nonlinear kinematic differential equations.
Among other things, a bad choice of attitude coordinates can artificially limit
the operational range of a controlled system by requiring it to operate within
the non-singular range of the chosen attitude parameters.

The following list contains four truths about rigid body attitude coordinates
that are listed without proof.1

1. A minimum of three coordinates is required to describe the relative angular
displacement between two reference frames F1 and F2.

63
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2. Any minimal set of three attitude coordinates will contain at least one
geometrical orientation where the coordinates are singular, namely at least
two coordinates are undefined or not unique.

3. At or near such a geometric singularity, the corresponding kinematic dif-
ferential equations are also singular.

4. The geometric singularities and associated numerical difficulties can be
avoided altogether through a regularization.2 Redundant sets of four or
more coordinates exist which are universally determined and contain no
geometric singularities.

3.1 Direction Cosine Matrix

Rigid body orientations are described using displacements of body-fixed refer-
enced frames. The reference frame itself is usually defined using a set of three
orthogonal, right-handed unit vectors. For notational purposes, a reference
frame (or rigid body) is labeled through a script capital letter such as F and

its associated unit base vectors are labeled with lower case letters such as f̂i.
There is always an infinity of ways to attach a reference frame to a rigid body.
However, typically the reference frame base vectors are chosen such that they
are aligned with the principal body axes.

Let the two reference frames N and B each be defined through sets of or-
thonormal right-handed sets of vectors {n̂} and {b̂} where we use the shorthand
vectrix notation

{n̂} ≡







n̂1

n̂2

n̂2






{b̂} ≡







b̂1

b̂2

b̂2






(3.1)

The sets of unit vectors are shown in Figure 3.1. The reference frame B can
be thought of being a generic rigid body and the reference frame N could be
associated with some particular inertial coordinate system. Let the three angles
α1i be the angles formed between the first body vector b̂1 and the three inertial
axes. The cosines of these angles are called the direction cosines of b̂1 relative
to the N frame. The unit vector b̂1 can be projected onto {n̂} as

b̂1 = cosα11n̂1 + cosα12n̂2 + cosα13n̂3 (3.2)

Clearly the direction cosines cosα1j are the three orthogonal components of b̂j .

Analogously, the direction angles α2i and α3i between the unit vectors b̂2 and
b̂3 and the reference frame N base vectors can be found. These vectors are then
expressed as

b̂2 = cosα21n̂1 + cosα22n̂2 + cosα23n̂3 (3.3)

b̂3 = cosα31n̂1 + cosα32n̂2 + cosα33n̂3 (3.4)
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n̂1

Figure 3.1: Direction Cosines

The set of orthonormal base vectors {b̂} can be compactly expressed in terms
of the base vectors {n̂} as

{b̂} =





cosα11 cosα12 cosα13

cosα21 cosα22 cosα23

cosα31 cosα32 cosα33



 {n̂} = [C]{n̂} (3.5)

where the matrix [C] is called the direction cosine matrix. Note that each entry
of [C] can be computed through

Cij = cos( 6 b̂i, n̂j) = b̂i · n̂j (3.6)

Analogously to Eq. (3.5), the set of {n̂} vectors can be projected onto {b̂}
vectors as

{n̂} =





cosα11 cosα21 cosα31

cosα12 cosα22 cosα32

cosα13 cosα23 cosα33



 {b̂} = [C]T {b̂} (3.7)

Substituting Eq. (3.7) into (3.5) yields

{b̂} = [C][C]T {b̂} (3.8)

which requires that

[C][C]T = [I3×3] (3.9)

Similarly substituting Eq. (3.5) into (3.7) yields

[C]T [C] = [I3×3] (3.10)
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Eqs. (3.9) and (3.10) show that the direction cosine matrix [C] is orthogo-
nal.1, 3–5 Therefore the inverse of [C] is the transpose of [C].

[C]−1 = [C]T (3.11)

Thanks to the orthogonality of the direction cosine matrix [C], we will see below
that the forward and inverse transformation (projection) of vectors between
rotationally displaced reference frames can be accomplished without arithmetic.

Another important property of the direction cosine matrix is that its de-
terminant is ±1. This can be shown as follows.5 From Eq. (3.9) it is evident
that

det (CCT ) = det ([I3×3]) = 1 (3.12)

Since [C] is a square matrix this can be written as6

det(C) det(CT ) = 1 (3.13)

Since det(C) is the same as det(CT ), this is further reduced to7

(det(C))
2

= 1 ⇐⇒ det(C) = ±1 (3.14)

As is shown by Goldstein in Ref. 8, if the reference frame base vectors {b̂} and
{n̂} are right-handed, then det(C) = +1. Goldstein also shows that the 3x3
direction cosine matrix [C] will only have one real eigenvalue of ±1. Again it
will be +1 if the reference frame base vectors are right-handed.

In a standard coordinate transformation setting, the [C] matrix is typically
not restricted to projecting one set of base vectors from one reference frame onto
another. Rather, the direction cosine’s most powerful feature is the ability to
directly project (or transform) an arbitrary vector, with components written in
one reference frame, into a vector with components written in another reference
frame. To show this let v be an arbitrary vector and let the reference frames B
and N be defined as earlier. Let the scalars vbi

be the vector components of v

in the B reference frame.

v = vb1 b̂1 + vb2 b̂2 + vb3 b̂3 = {vb}T {b̂} (3.15)

Similarly v can be written in terms of N frame components vni
as

v = vn1
n̂1 + vn2

n̂2 + vn3
n̂3 = {vn}T {n̂} (3.16)

Substituting Eq. (3.7) into Eq. (3.16) the v vector components in the N frame
can be directly projected into the B frame.

vb = [C]vn (3.17)

Since the inverse of [C] is simply [C]T , the inverse transformation is

vn = [C]Tvb (3.18)
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into F frame vectors and so on. To find the entries of the various relative
rotation matrices, note the following useful identity.

[FB]ij = cosαij = f̂i · b̂j

Given the base vectors of each frame, it is not necessary to find the angles
between each set of vectors to find the appropriate direction cosine matrix.
Since all base vectors have unit length, the inner product of the correspond-
ing vectors will provide the needed direction cosines. The rotation matrices
[BN ]ij = b̂i · n̂j , [FN ]ij = f̂i · n̂j and [FB]ij = f̂i · b̂j are

[BN ] =





0 1 0
1 0 0
0 0 −1



 [FN ] =






1
2

√
3

2
0

0 0 1√
3

2
− 1

2
0






[FB] =






√
3

2
1
2

0
0 0 −1

− 1
2

√
3

2
0






Instead of calculating the rotation matrix [FB] from dot products of the
respective base vectors, it could also be calculated using Eq. (3.20).

[FB] = [FN ][BN ]T =






√
3

2
1
2

0
0 0 −1

− 1
2

√
3

2
0






√

To find the kinematic differential equation in terms of the direction cosine
matrix [C], let us write the instantaneous angular velocity vector ω of the B
frame relative to the N frame in B frame orthogonal components as

ω = ω1b̂1 + ω2b̂2 + ω3b̂3 (3.21)

Let Nd/dt{b̂} be the derivative of the B frame base vectors taken in the N
frame. Using the transport theorem we find9

Nd
dt

{b̂i} =
Bd
dt

{b̂i} + ω × {b̂i} (3.22)

Since the B frame base vectors are fixed within their frame the expression
Bd/dt{b̂} is zero. After introducing the skew-symmetric tilde matrix operator

[x̃] =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 (3.23)

Eq. (3.22) leads to the vectrix equation

Nd
dt

{b̂} = −[ω̃]{b̂} (3.24)
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Taking the time derivative of the right hand side of Eq. (3.5) we find

Nd
dt

([C]{n̂}) =
d

dt
([C]) {n̂} + [C]

Nd
dt

({n̂}) = [Ċ]{n̂} (3.25)

where the short hand notation d/dt([C]) = [Ċ] is used. Using Eq. (3.5),
Eqs. (3.24) and (3.25) are combined to

(

[Ċ] + [ω̃][C]
)

{n̂} = 0 (3.26)

Since Eq. (3.26) must hold for any set of {n̂}, the kinematic differential equation
satisfied by the direction cosine matrix [C] is found to be1, 10

[Ċ ] = −[ω̃][C] (3.27)

It can easily be verified that Eq. (3.9) is indeed an exact solution of above
differential equation. Take the derivative of [C][C]T

d

dt

(
[C][C]T

)
= [Ċ ][C]T + [C][Ċ ]T (3.28)

and then substitute Eq. (3.27) to obtain

d

dt

(
[C][C]T

)
= −[ω̃][C][C]T − [C][C]T [ω̃]T (3.29)

Making use of the orthogonality of [C] and since [ω̃] = −[ω̃]T is skew-symmetric
this simplifies to

d

dt

(
[C][C]T

)
= −[ω̃] + [ω̃] = 0 (3.30)

Since [C][C]T is a constant solution of the differential equation in Eq. (3.27),
and Eq. (3.9) is satisfied initially, the solution of Eq. (3.27) will theoretically
satisfy the orthogonality condition for all time. In practice, numerical solutions
of Eq. (3.27) will slowly accumulate arithmetic errors so that the orthogonality
condition [C][C]T − [I3×3] = 0 is slightly in error. There are several ways to
resolve this minor difficulty.

Given an arbitrary time history of ω(t), Eq. (3.27) represents a rigorously
linear differential equation which can be integrated to yield the instantaneous
direction cosine matrix [C]. A major advantage of the kinematic differential
equation for [C] is that it is linear and universally applicable. There are no
geometric singularities present in the attitude description or its kinematic dif-
ferential equations. However, this advantage comes at the cost of having a
highly redundant formulation. Several other attitude parameters will be pre-
sented in the following sections which include a minimal number (3) of attitude
parameters. However, all minimal sets of attitude coordinates have kinematic
differential equations which contain some degree of nonlinearity and also em-
body geometric and/or mathematical singularities. Only the once redundant
Euler parameters (quaternions) will be found to retain a singularity free de-
scription and possess linear kinematic differential equations analogous to the
direction cosine matrix.
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3.2 Euler Angles

The most commonly used sets of attitude parameters are the Euler angles. They
describe the attitude of a reference frame B relative to the frame N through
three successive rotation angles (θ1, θ2, θ3) about the sequentially displaced body

fixed axes {b̂}. Note that the order of the axes about which the
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Figure 3.3: Successive Yaw, Pitch and Roll Rotations

a symmetric set since two rotations about the third body axis are performed.
Instead of being called yaw, pitch and roll angles, the (3-1-3) Euler angles are
called longitude of the ascending node Ω, inclination i and argument of the
perihelion ω and are illustrated in Figure 3.4 below.1, 12

The direction cosine matrix introduced in section 3.1 can be parameterized
in terms of the Euler angles. Since each Euler angle defines a successive rotation
about the i-th body axis, let the three single-axis rotation matrices [Mi(θ)] be
defined as

[M1(θ)] =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 (3.31a)

[M2(θ)] =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ



 (3.31b)

[M3(θ)] =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 (3.31c)

Let the (α, β, γ) Euler angle sequence be (θ1, θ2, θ3). Using Eq. (3.20) to
combine successive rotations, the direction cosine matrix in terms of the (α, β, γ)
Euler angles can be written as1

[C(θ1, θ2, θ3)] = [Mγ(θ3)][Mβ(θ2)][Mα(θ1)] (3.32)

In particular, the direction cosine matrix in terms of the (3-2-1) Euler angles
(θ1, θ2, θ3) = (ψ, θ, φ) is11
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Figure 3.4: (3-1-3) Euler Angle Illustration

n particular, the direction cosine matrix in terms of the (3-2-1) Euler n par-
ticular, the direction cosine matrix in terms of the (3-2-1) Euler n particular, the
direction cosine matrix in terms of the (3-2-1) Euler n particular, the direction
cosine matrix in terms of the (3-2-1) Euler n particular, the direction cosine
matrix in terms of the (3-2-1) Euler n particular, the direction cosine matrix in
terms of the (3-2-1) Euler n particular, the direction cosine matrix in terms of
the (3-2-1) Euler n particular, the direction cosine matrix in terms of the (3-2-1)
Euler

[C] =





cθ2cθ1 cθ2sθ1 −sθ2
sθ3sθ2cθ1 − cθ3sθ1 sθ3sθ2sθ1 + cθ3cθ1 sθ3cθ2
cθ3sθ2cθ1 + sθ3sθ1 cθ3sθ2sθ1 − sθ3cθ1 cθ3cθ2



 (3.33)

where the short hand notation cξ = cos ξ and sξ = sin ξ is used. The inverse
transformations from the direction cosine matrix [C] to the (ψ, θ, φ) angles are

ψ = θ1 = tan−1

(
C12

C11

)

(3.34a)

θ = θ2 = − sin−1 (C13) (3.34b)

φ = θ3 = tan−1

(
C23

C33

)

(3.34c)

In terms of the (3-1-3) Euler angles (θ1, θ2, θ3) = (Ω, i, ω) the direction cosine
matrix [C] is written as1

[C] =





cθ3cθ1 − sθ3cθ2sθ1 cθ3sθ1 + sθ3cθ2cθ1 sθ3sθ2
−sθ3cθ1 − cθ3cθ2sθ1 −sθ3sθ1 + cθ3cθ2cθ1 cθ3sθ2

sθ2sθ1 −sθ2cθ1 cθ2



 (3.35)
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The inverse transformations from the direction cosine matrix [C] to the (3-1-3)
Euler angles (Ω, i, ω) are

Ω = θ1 = tan−1

(
C31

−C32

)

(3.36a)

i = θ2 = cos−1 (C33) (3.36b)

ω = θ3 = tan−1

(
C13

C23

)

(3.36c)

The complete set of 12 transformations between the various Euler angle sets
and the direction cosine matrix can be found in the Appendix C. We empha-
size that while Eqs. (3.32)-(3.36) are easily established by sequential angular
displacements, we consider the inverse situation; given a generally varying [C]
matrix, we can consider equations such as Eqs. (3.32)-(3.36) to hold at any
instant in the motion, and thus {ψ(t), θ(t), φ(t)} or {Ω(t), i(t), ω(t)} can be
considered as candidate coordinates for general rotational motion.

Note that each of the 12 possible sets of Euler angles has a geometric singu-
larity where two angles are not uniquely defined. For the (3-2-1) Euler angles
pitching up or down 90 degrees results in a geometric singularity. If the pitch
angle is ±90 degrees, then it does not matter if ψ=0 and φ=10 degrees or ψ =
10 and φ = 0 degrees. Only the sum ψ+φ is unique in this case. For the (3-1-3)
Euler angles the geometric singularity occurs for an inclination angle of zero or
180 degrees. This geometric singularity also manifests itself in a mathematical
singularity of the corresponding Euler angle kinematic differential equation.

Let θ = {θ1, θ2, θ3} and φ = {φ1, φ2, φ3} be two Euler angle vectors with
identical rotation sequences. Often it is necessary to find the attitude that cor-
responds to performing two successive rotations, i.e. “adding” the two rotations.
If a rigid body first performs the rotation θ and then the rotation φ, then the
final attitude is expressed relative to the original attitude through the vector
ϕ = {ϕ1, ϕ2, ϕ3} defined through

[FN(ϕ)] = [FB(φ)][BN(θ)] (3.37)

Eq. (3.37) could be used to solve for ϕ in terms of the vector components
of φ and θ. This process is very tedious and typically does not provide any
simple, compact final expressions. However, for the case where θ and φ are
vectors of symmetric Euler angles, then it is possible to obtain relatively compact
transformations from the first two vectors into the overall vector using spherical
geometry relationships.5, 13

A sample spherical triangle is shown in Figure 3.5. The following two spher-
ical triangle laws are the only two required in deriving the symmetrical Euler
angle successive rotation property. The spherical law of sines states that

sinA

sin a
=

sinB

sin b
=

sinC

sin c
(3.38)
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Figure 3.6: Illustration of Successive (3-1-3) Euler Angle Rotations

and the spherical law of cosines states that

cosA = − cosB cosC + sinB sinC cosa (3.39a)

cosB = − cosA cosC + sinA sinC cos b (3.39b)

cosC = − cosA cosB + sinA sinB cos c (3.39c)

Figure 3.6(i) illustrates the orientation of the first body axis as it is first
rotated from N to B with the (3-1-3) Euler angle vector θ and then from B
to F with the (3-1-3) vector φ. The (3-1-3) Euler angle description of the
direct rotation from N to F is clearly given by the angles ϕ1, ϕ2 and ϕ3. To
obtain direct transformations from θ and φ to ϕ, the bold spherical triangle in
Figure 3.6(i) is used. The spherical arc lengths and angles of this triangle are
labeled in Figure 3.6(ii). Using the spherical law of cosines we find that

cos(π − ϕ2) = − cos θ2 cosφ2 + sin θ2 sinφ2 cos(θ3 + φ1) (3.40)
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This is trivially solved for the angle ϕ2 as

ϕ2 = cos−1 (cos θ2 cosφ2 − sin θ2 sinφ2 cos(θ3 + φ1)) (3.41)

Using the spherical laws of sines, we are able to find the following expressions
for ϕ1 and ϕ3:

sin(ϕ1 − θ1) =
sinφ2

sinϕ2
sin(θ3 + φ1) (3.42)

sin(ϕ3 − φ3) =
sin θ2
sinϕ2

sin(θ3 + φ1) (3.43)

To avoid quadrant problems, we prefer to find expressions of ϕ1 and ϕ3 that
involve the tan function instead of the sin function. To accomplish this, using
the spherical law of cosines we find the following two relationships:

cos(ϕ1 − θ1) =
cosφ2 − cos θ2 cosϕ2

sin θ2 sinϕ2
(3.44)

cos(ϕ3 − φ3) =
cos θ2 − cosφ2 cosϕ2

sinφ2 sinϕ2
(3.45)

Combining Eqs. (3.42) through (3.45), we are able to solve for ϕ1 and ϕ3 using
the inverse tan function.

ϕ1 = θ1 + tan−1

(
sin θ2 sinφ2 sin(θ3 + φ1)

cosφ2 − cos θ2 cosϕ2

)

(3.46)

ϕ3 = φ3 + tan−1

(
sin θ2 sinφ2 sin(θ3 + φ1)

cos θ2 − cosφ2 cosϕ2

)

(3.47)

Using Eqs. (3.41), (3.46) and (3.47) to solve for φ instead of back-solving ϕ out
of the direction cosine matrix in Eq. (3.37) is numerically more efficient. While
the Euler angle successive or composite rotation was developed for the (3-1-3)
special case, the transformations in Eqs. (3.41), (3.46) and (3.47) actually hold
for any symmetric rotation sequence.5, 13 Asymmetric sets, however, will have
to be composited using the corresponding direction cosine matrices.

On occasion it is required to find the relative attitude vector between two
reference frame. For example, given the symmetric Euler angle vectors θ and ϕ,
find the corresponding vector φ which relates B to F . Using the same spherical
triangle in Figure 3.6(ii), we find the following closed form expressions for φ.

φ1 = −θ3 + tan−1

(
sin θ2 sinϕ2 sin(ϕ1 − θ1)

cos θ2 cosφ2 − cosϕ2

)

(3.48)

φ2 = cos−1 (cos θ2 cosϕ2 + sin θ2 sinϕ2 cos(ϕ1 − θ1)) (3.49)

φ3 = ϕ3 − tan−1

(
sin θ2 sinϕ2 sin(ϕ1 − θ1)

cos θ2 − cosφ2 cosϕ2

)

(3.50)

Similar expressions can be found to express θ in terms of φ and ϕ.
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Example 3.2: Let the orientations of two spacecraft B and F relative to
an inertial frame N be given through the asymmetric (3-2-1) Euler angles
θB = (30,−45, 60)T and θF = (10, 25,−15)T degrees. What is the relative
orientation of spacecraft B relative to F in terms of (3-2-1) Euler angles.

The orientation matrices [BN ] and [FN ] are found using Eq. (3.33).

[BN ] =





0.612372 0.353553 0.707107
−0.78033 0.126826 0.612372
0.126826 −0.926777 0.353553





[FN ] =





0.892539 0.157379 −0.422618
−0.275451 0.932257 −0.234570

0.357073 0.325773 0.875426





The direction cosine matrix [BF ] which describes the attitude of B relative
to F is computed by using Eq. (3.20).

[BF ] = [BN ][FN ]T =





0.303372 −0.0049418 0.952859
−0.935315 0.1895340 0.298769
−0.182075 −0.9818620 0.052877





Using the transformations in Eq. (3.34) the relative (3-2-1) Euler angles are

ψ = tan−1

(−0.0049418

0.303372

)

= 0.933242 deg

θ = − sin−1 (0.952859) = −1.26252 deg

φ = tan−1

(
0.298769

0.052877

)

= −57.6097 deg

Since φ is much larger than ψ and θ, the attitude of B could be described
qualitatively to differ from F by a −57.6 degree roll. This result was not
immediately obvious studying the original Euleris

ofTis
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The unit vector b̂′2 is the direction of the body fixed axis b̂2 before performing

a roll φ about b̂1 as is shown in Figure 3.3. It can be written in terms of {b̂} as

b̂′2 = cosφb̂2 − sinφb̂3 (3.53)

The direction cosine matrix in terms of the (3-2-1) Euler angles in Eq. (3.33) is

used to express n̂3 in terms of {b̂}.

n̂3 = − sin θb̂1 + sinφ cos θb̂2 + cosφ cos θb̂3 (3.54)

After substituting Eqs. (3.53) and (3.54) into Eq. (3.52) and then comparing
terms with Eq. (3.51), the following kinematic equation is found.





ω1

ω2

ω3



 =





− sin θ 0 1
sinφ cos θ cosφ 0
cosφ cos θ − sinφ 0









ψ̇

θ̇

φ̇



 (3.55)

The kinematic differential equation of the (3-2-1) Euler angles is the inverse of
Eq. (3.55).





ψ̇

θ̇

φ̇



 =
1

cos θ





0 sinφ cosφ
0 cosφ cos θ − sinφ cos θ

cos θ sinφ sin θ cosφ sin θ









ω1

ω2

ω3



 = [B(ψ, θ, φ)]ω (3.56)

Similarly, the kinematic differential equations for the (3-1-3) Euler angles are
found be

ω =





sin θ3 sin θ2 cos θ3 0
cos θ3 sin θ2 − sin θ3 0

cos θ2 0 1









θ̇1
θ̇2
θ̇3



 (3.57)

with the inverse relationship





θ̇1
θ̇2
θ̇3



 =
1

sin θ2





sin θ3 cos θ3 0
cos θ3 sin θ2 − sin θ3 sin θ2 0
− sin θ3 cos θ2 − cos θ3 cos θ2 sin θ2



ω = [B(θ)]ω (3.58)

The complete set of 12 transformations between the various Euler angle rates
and the body angular velocity vector can be found in Appendix C. Note that
the Euler angle kinematic differential equations encounter a singularity either
at θ2 = ±90 degrees for the (3-2-1) set or at θ2 = 0 or 180 degrees for the (3-1-3)
set. It turns out that all Euler angles sets encounter a singularity at specific
second rotation angle θ2 only. The first and third rotation angles θ1 and θ3
never lead to a singularity. In all cases, it can be verified that the singularity
occurs for those θ2 values that result in θ1 and θ3 being measured in the same
plane. If the Euler angle set is symmetric, then the singular orientation is at
θ2 = 0 or 180 degrees. If the Euler angle set is asymmetric, then the singular
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orientation is θ2 = ±90 degrees. Therefore asymmetric sets such as the (3-2-1)
Euler reference frame. Symmetric sets as the (3-1-3) Euler angles would not be

convenient to describe small departure rotations of {b̂} from the {n̂} axes since
for small angles one would always operate very close to the singular attitude at
θ2 = 0.

The Euler angles provide a compact, three parameter attitude description
whose coordinates are easy to visualize. One main drawback of these angles
is that a rigid body or reference frame is never further than a 90 degree rota-
tion away from a singular orientation. Therefore their use in describing large,
arbitrary and especially arbitrary rotations is limited. Also, their kinematic
differential equations are fairly nonlinear, containing computationally intensive
trigonometric functions. The linearized Euler angle kinematic differential equa-
tions are only valid for a relatively small domain of rotations.

3.3 Principal Rotation Vector

The following theorem has been very fundamental in the development of several
types of attitude coordinates and is generally referenced to Euler.14–16

Theorem 3.1 (Euler’s Principal Rotation) A rigid body or coordinate ref-
erence frame can be brought from an arbitrary initial orientation to an arbitrary
�nal orientation by a single rigid rotation through a principal angle Φ about the
principal axis ê; the principal axis being a judicious axis �xed in both the initial
and �nal orientation.

b̂1

n̂1

n̂2

n̂3
b̂3

b̂2

Φ

Φ

Φ Φ

ê

en1

en2

en3
eb3

eb2

eb1

Figure 3.7: Illustration of Euler’s Principal Rotation Theorem
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This theorem can be visualized using Figure 3.7. Let the principal axis unit
vector ê be written in B and N frame components as

ê = eb1 b̂1 + eb2 b̂2 + eb3 b̂3 (3.59a)

ê = en1
n̂1 + en2

n̂2 + en3
n̂3 (3.59b)

Implicit in the theorem we see that ê will have the same vector components in
the B as in the N reference frame; i.e. ebi

= eni
= ei. Eq. (3.5) shows that





e1
e2
e3



 = [C]





e1
e2
e3



 (3.60)

must be true. Therefore the principal axis unit vector ê is the unit eigenvector
of [C] corresponding to the eigenvalue +1. Thus the proof of the Principal
Rotation Theorem reduces to proving the [C] has an eigenvalue of +1. This
proof is given in Goldstein in Ref. 8. The eigenvalue +1 is unique and the
corresponding eigenvector is unique to within a sign of Φ and ê, except for the
case of a zero rotation. In this case [C] = [I3×3] and Φ would be zero, but there
would be an infinity of unit axes ê such that ê = [I3×3]ê. For the general case,
the lack of sign uniqueness of Φ and ê will not cause any practical problems.
The sets (ê,Φ) and (−ê,−Φ) both describe the same orientation.

Φ

ê

n̂1

n̂2

n̂3

b̂2′Φ

Figure 3.8: Illustration of Both Principal Rotation Angles

The principal rotation angle Φ is also not unique. Figure 3.7 shows the
direction of the angle Φ labeled such that the shortest rotation about ê will be
performed to move from N to B. However, this is not necessary. If so desired,
one can also rotate in the opposite direction by the angle Φ′ and achieve the
exact same orientation as shown in Figure 3.8. The difference between Φ and Φ′

will always be 360 degrees. In most cases the magnitude of Φ is simply chosen
to be less than or equal to 180 degrees.

To find the direction cosine matrix [C] in terms of the principal rotation
components ê and Φ, the fact is used that each reference frame base vector n̂i
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û′

û

bî

nî

ê v̂

Figure 3.9: Mapping n̂i into b̂i Base Vectors

is related to b̂i through a single axis rotation about ê. Let the unit principal
axis vector be written as

ê = e1n̂1 + e2n̂2 + e3n̂3 (3.61)

and let ξi be the angle between n̂i and ê as shown in Figure 3.9. Let’s note the
following useful identity

ê · n̂i = cos ξi = ei (3.62)

Studying Figure 3.9 the base vector b̂i can be written as

b̂i = cos ξiê + sin ξiû
′ = eiê + sin ξiû

′ (3.63)

The unit vector û′ is given by

û′ = cosΦû + sin Φv̂ (3.64)

It follows from the geometry of the single axis rotation that

v̂ =
ê × n̂i

|ê × n̂i|
=

1

sin ξi
(ê × n̂i) (3.65)

û = v̂ × ê =
1

sin ξi
(ê × n̂i) × ê (3.66)

The expression for û can be further reduced by making use of the triple cross
product identity

a × (b × c) = (a · c)b − (a · b)c (3.67)

to the simpler form

û =
1

sin ξi
(n̂i − eiê) (3.68)
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After substituting Eqs. (3.64), (3.65) and (3.68) into Eq. (3.63), each base vector

b̂i is expressed in terms of reference frame N base vectors.

b̂i = cosΦn̂i + (1 − cosΦ) êêT n̂i + sin Φ (ê × n̂i) (3.69)

where êêT is the outer vector dot product of the vector ê. Making use of the
definition of [ẽ] in Eq. (3.23) the set of base vectors {b̂} can be expressed as

{b̂} =
(
cosΦ[I3×3] + (1 − cosΦ) êêT − sin Φ[ẽ]

)
{n̂} (3.70)

Using the relationship {b̂} = [C]{n̂}, the direction cosine matrix can be directly
extracted from Eq. (3.69) to be

[C] =





e21Σ + cΦ e1e2Σ + e3sΦ e1e3Σ − e2sΦ
e2e1Σ − e3sΦ e22Σ + cΦ e2e3Σ + e1sΦ
e3e1Σ + e2sΦ e3e2Σ − e1sΦ e23Σ + cΦ



 (3.71)

where Σ = 1 − cΦ. Again the short hand notation cΦ = cosΦ and sΦ = sin Φ
was used here. The direction cosine matrix [C] depends on four scalar quantities
e1, e2, e3 and Φ. However, only three degrees of freedom are present since the
vector components ei must abide by the unit constraint

∑3
i e

2
i = 1.

By inspection of Eq. (3.71), the inverse transformation from the direction
cosine matrix [C] to the principal rotation elements is found to be

cosΦ =
1

2
(C11 + C22 + C33 − 1) (3.72)

ê =





e1
e2
e3



 =
1

2 sinΦ





C23 − C32

C31 − C13

C12 − C21



 (3.73)

Note that Eq. (3.72) will yield a principal rotation angle within the range 0 ≤
Φ ≤ 180 degrees. The direction of ê in Eq. (3.73) will be such that the principal
rotation parameterizing [C] will be through a positive angle Φ about ê. To find
the second possible principal rotation angle Φ′ one subtracts 360 degrees from
Φ.

Φ′ = Φ − 2π (3.74)

The angle Φ′ is equally valid as Φ and yields the same principal rotation axis
ê. The only difference being that a longer rotation (for |Φ| ≤ π) is being per-
formed in the opposite direction. As with the sequential Euler angle rotations,
the instantaneous principal rotation parameters {e1(t), e2(t), e3(t),Φ(t)} can be
considered coordinates associated with the instantaneous direction cosine ma-
trix [C(t)], and obviously does not restrict the body to actually execute the
principal rotation.

Example 3.3: Let the B frame attitude relative the N frame be given by the
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(3-2-1) Euler angles (10,25,-15) degrees. Find the corresponding principal
rotation axis and angles.

Using Eq. (3.33) the direction cosine matrix [BN ] is

[BN ] =





0.892539 0.157379 −0.422618
−0.275451 0.932257 −0.234570

0.357073 0.325773 0.875426





The first principal rotation angle Φ is found through Eq. (3.72).

Φ = cos−1

(
1

2
(0.892539 + 0.932257 + 0.875426 − 1)

)

= 31.7762o

The corresponding principal rotation axis is given though Eq. (3.73).

ê =
1

2 sin (31.7762o)





−0.23457 − 0.325773
0.357073 − (−0.422618)
0.157379 − (−0.275451)



 =





−0.532035
0.740302
0.410964





The second principal rotation angle Φ′ calculated using Eq. (3.74).

Φ′ = 31.7762o − 360o = −328.2238o

Either principal rotation element sets (ê,Φ) or (ê,Φ′) describes the identical
attitude as the original (3-2-1) Euler angles.

Many important attitude parameters that are derived from Euler’s principal
rotation axis ê and angle Φ can be written in the general form

p = f(Φ)ê (3.75)

where f(Φ) could be any scalar function of Φ. All these attitude coordinate
vectors have the same direction and differ only by their magnitude |p | = f(Φ).

The principal rotation vector γ is simply defined as

γ = Φê (3.76)

Therefore the magnitude of γ is f(Φ) = Φ. This attitude vector has a very
interesting relationship to the direction cosine matrix that can be verified to
also hold for higher dimensional orthogonal projections as shown in Ref. 17. To
gain more insight, consider the special case of a pure single-axis rotation about
a fixed ê with the rotation angle being Φ. The angular velocity vector for this
case is

ω = Φ̇ê (3.77)

or in matrix form:

[ω̃] = Φ̇[ẽ] (3.78)
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Substituting Eq. (3.78) into Eq. (3.27) leads to the following development:

d[C]

dt
= −dΦ

dt
[ẽ][C]

d[C]

dΦ
= −[ẽ][C]

[C] = e−Φ[ẽ] (3.79)

The last step holds true for [ẽ] being a constant matrix for a rotation about a
fixed axis. Due to Euler’s principal rotation theorem, however, any arbitrary
rotation can be instantaneously described by the equivalent single-axis rotation.
Euler’s theorem means that Eq. (3.79) holds at any instant for an arbitrary time
varying direction cosine matrix [C]. Note for time-varying [C], however, that ê

and Φ must be considered time-varying. Using Eq. (3.76) the rotation matrix
[C] is related to γ through

[C] = e−[γ̃] =
∞∑

n=0

1

n!
(−[γ̃])n (3.80)

It turns out that this mapping also holds for higher dimensional proper orthogo-
nal matrices [C]. For the case of three-dimensional rotations, the infinite power
series in Eq. (3.80) can more conveniently be written as a finite, closed form
solution.5, 17

[C] = e−Φ[ẽ] = [I3×3] cosΦ − sinΦ[ẽ] + (1 − cosΦ)êêT (3.81)

To find the inverse transformation from [C] to γ, the inverse matrix logarithm
is taken.

[γ̃] = − ln[C] =
∞∑

n=0

1

n
(1 − [C])n (3.82)

This inverse mapping is defined everywhere except for Φ = 0 and Φ = ±180
degree rotations. For these rotations, the non-uniqueness of the γ vector that
leads to mathematical difficulties. Otherwise a vector γ is reliably returned
corresponding to a principal rotation of less than or equal to 180 degrees.

Example 3.4: In Example 3.3 it was shown that the direction cosine matrix

[BN ] =





0.892539 0.157379 −0.422618
−0.275451 0.932257 −0.23457

0.357073 0.325773 0.875426





represents the equivalent orientation as the principal rotation vector

γ = 0.55460rad





−0.532035
0.740302
0.410964



 =





−0.295067
0.410571
0.227921




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To verify the mapping in Eq. (3.80) let’s write [γ̃] using the definition of tilde
matrix operator in Eq. (3.23).

[γ̃] =





0 −0.227921 0.410571
0.227921 0 0.295067

−0.410571 −0.295067 0





Using software packages such as Mathematica or MATLAB, the matrix expo-
nential mapping in Eq. (3.80) can be solved numerically for the corresponding
direction cosine matrix [BN ].

[BN ] = e−[γ̃] =





0.892539 0.157379 −0.422618
−0.275451 0.932257 −0.234570

0.357073 0.325773 0.875426




√

Let (Φ1, ê1) be the principal rotation elements that relate the B frame rela-
tive to the N frame, while (Φ2, ê2) orients the F frame relative to the B frame.
The F frame is related directly to the N frame by the elements (Φ, ê) through
the relationship

[FN(Φ, ê)] = [FB(Φ2, ê2)][BN(Φ1, ê1)] (3.83)

Instead of solving for the overall principal rotation elements through the cor-
responding direction cosine matrix, it is possible to express (Φ, ê) directly in
terms of (Φ1, ê1) and (Φ2, ê2) through5

Φ = 2 cos−1

(

cos
Φ1

2
cos

Φ2

2
− sin

Φ1

2
sin

Φ2

2
ê1 · ê2

)

(3.84)

ê =
cos Φ2

2 sin Φ1

2 ê1 + cos Φ1

2 sin Φ2

2 ê2 + sin Φ1

2 sin Φ2

2 ê1 × ê2

sin Φ
2

(3.85)

This composite rotation property is easily derived from the Euler parameter
composite rotation property shown in the next section. Given the two principal
rotation element sets (Φ1, ê1) and (Φ, ê), the relative orientation set (Φ2, ê2) is
expressed similarly through

Φ2 = 2 cos−1

(

cos
Φ

2
cos

Φ1

2
+ sin

Φ

2
sin

Φ1

2
ê · ê1

)

(3.86)

ê2 =
cos Φ1

2 sin Φ
2 ê − cos Φ

2 sin Φ1

2 ê1 + sin Φ
2 sin Φ1

2 ê × ê1

sin Φ2

2

(3.87)

The kinematic differential equation of the principal rotation vector γ is given
by5, 18–20

γ̇ =

[

[I3×3] +
1

2
[γ̃] +

1

Φ2

(

1 − Φ

2
cot

(
Φ

2

))

[γ̃]2
]

ω (3.88)
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where Φ =‖ γ ‖. The inverse transformation of Eq. (3.88) is

ω =

[

[I3×3] −
(

1 − cosΦ

Φ2

)

[γ̃] +

(
Φ − sin Φ

Φ3

)

[γ̃]2
]

γ̇ (3.89)

As expected, the kinematic differential equation in Eq. (3.88) contains a 0/0 type
mathematical singularity for zero rotations where Φ = 0 degrees. Therefore, the
principal rotation vector is not well suited for use in small motion feedback con-
trol type applications where the reference state is the zero rotation. Further,
the mathematical expression in Eq. (3.88) is rather complex, containing poly-
nomial fractions of degrees up to three in addition to trigonometric functions.
This makes γ less attractive to describe large arbitrary rotations as compared
to some other, closely related, attitude parameters that will be presented in the
next few sections.

Example 3.5: Given the prescribed body angular velocity vector ω = ω(t)ê
for a single axis rotation, Eq. (3.88) yields the following kinematic differential
equation for the principal rotation vector γ = Φê.

γ̇ =

[

[I3×3] − Φ

2
[γ̃] +

1

Φ2

(

1 − Φ

2
cot

(
Φ

2

))

Φ2[γ̃]2
]

ω(t)ê

Noting that [γ̃]ê = Φ[ẽ]ê = 0, this is simplified to

γ̇ = ω(t)ê

Therefore the general expression in Eq. (3.88) simplifies to the single axis
result in Eq. (3.77).

The principal rotation elements ê and Φ have had a fundamental influence on
the derivation of many sets of attitude coordinates. All of the following attitude
parameters will be directly derived from these principal rotation elements.

3.4 Euler Parameters

Another popular set of attitude coordinates are the four Euler parameters
(quaternions). They provide a redundant, nonsingular attitude description and
are well suited to describe arbitrary, large rotations. The Euler parameter vector
β is defined in terms of the principal rotation elements as

β0 = cos (Φ/2) (3.90a)

β1 = e1 sin (Φ/2) (3.90b)

β2 = e2 sin (Φ/2) (3.90c)

β3 = e3 sin (Φ/2) (3.90d)
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It is evident since e21 +e22 +e23 = 1, that the βi’s satisfy the holonomic constraint

β2
0 + β2

1 + β2
2 + β2

3 = 1 (3.91)

Note that this constraint geometrically describes a four-dimensional unit sphere.
Any rotation described through the Euler parameters has a trajectory on the
surface of this constraint sphere. Given a certain attitude, there are actually
two sets of Euler parameters that will describe the same orientation. This is due
to the non-uniqueness of the principal rotation elements themselves. Switching
between the sets (ê,Φ) and (−ê,−Φ) will yield the same Euler parameter vector
β. However, if the second principal rotation angle Φ′ is used, another Euler
parameter vector β′ is found. Using Eq. (3.74) one can show that

β′
0 = cos

(
Φ′

2

)

= cos

(
Φ

2
− π

)

= − cos

(
Φ

2

)

= −β0

β′
i = ei sin

(
Φ′

2

)

= ei sin

(
Φ′

2
− π

)

= −ei sin
(

Φ

2

)

= −βi

Therefore the vector β′ = −β describes the same orientation as the vector
β. This results in the following interesting observation. Since any point on
the unit constraint sphere surface represent a specific orientation, the anti-pole
to that point represents the exact same orientation. The difference between
the two attitude descriptions is that one specifies the orientation through the
shortest single axis rotation, the other through the longest. From Eq.(3.90a) it
is clear that in order to choose the Euler parameter vector corresponding to the
shortest rotation (i.e. |Φ| ≤ 180 degrees), the coordinate β0 must be chosen to
be non-negative.

Using the trigonometric identities

sin Φ = 2 sin (Φ/2) cos (Φ/2)

cosΦ = 2 cos2 (Φ/2) − 1

in Eq. (3.71), the direction cosine matrix can be written in terms of the Euler
parameters as

[C] =





β2
0 +β2

1−β2
2−β2

3 2 (β1β2 + β0β3) 2 (β1β3 − β0β2)
2 (β1β2 − β0β3) β2

0−β2
1+β2

2−β2
3 2 (β2β3 + β0β1)

2 (β1β3 + β0β2) 2 (β2β3−β0β1) β2
0−β2

1 − β2
2 +β2

3



 (3.92)

The fact that β and −β produces the same direction cosine matrix [C] can be
easily verified in Eq. (3.92). All Euler parameters appear in quadratic product
pairs, thus changing the signs of all βi components has no effect on the resulting
[C] matrix. It is evident that the most general angular motion of a reference
frame generates two arcs on the four dimensional unit sphere (the geodesic arcs
generated by β(t) and −β(t)). This elegant description is universally nonsin-
gular and is unique to within the sign ±β(t). The inverse transformations from



SECTION 3.4 EULER PARAMETERS 87

[C] to the Euler parameters can be found through inspection of Eq. (3.92) to
be

β0 = ±1

2

√

C11 + C22 + C33 + 1 (3.93a)

β1 =
C23 − C32

4β0
(3.93b)

β2 =
C31 − C13

4β0
(3.93c)

β3 =
C12 − C21

4β0
(3.93d)

Note that the non-uniqueness of the Euler parameters is evident again in this
inverse transformation. By keeping the + sign in Eq. (3.93a) one restricts the
corresponding principal rotation angle Φ to be less than or equal to 180 degrees.
From a practical point of few this non-uniqueness does not pose any difficulties.
Initially one simply picks an initial condition on one Euler parameter trajec-
tory and then remains with it either through solving an associated kinematic
differential developed below, or using elementary continuity logic.

Clearly Eq. (3.93) has a 0/0 type mathematical singularity whenever β0 → 0.
This corresponds to the β vector describing any 180 degree principal rotation.
A computationally superior algorithm has been developed by Stanley in Ref. 21.
First the the four β2

i terms are computed.

β2
0 =

1

4
(1 + Trace[C]) (3.94a)

β2
1 =

1

4
(1 + 2C11 − Trace[C]) (3.94b)

β2
2 =

1

4
(1 + 2C22 − Trace[C]) (3.94c)

β2
3 =

1

4
(1 + 2C33 − Trace[C]) (3.94d)

Then Stanley takes the square root of the largest β2
i found in Eq. (3.94) where

the sign of βi is arbitrarily chosen to be positive. The other βj ’s are found by
dividing the appropriate three of the following six in Eq. (3.95) by the chosen
largest βi coordinate.

β0β1 = (C23 − C32)/4 (3.95a)

β0β2 = (C31 − C13)/4 (3.95b)

β0β3 = (C12 − C21)/4 (3.95c)

β2β3 = (C23 + C32)/4 (3.95d)

β3β1 = (C31 + C13)/4 (3.95e)

β1β2 = (C12 + C21)/4 (3.95f)

To find the alternate set of Euler parameter, the sign of the chosen βi would
simply be set negative.
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Example 3.6: Let’s use Stanley’s method to find the Euler parameters of
the direction cosine matrix [C].

[C] =





0.892539 0.157379 −0.422618
−0.275451 0.932257 −0.234570

0.357073 0.325773 0.875426





Using the expressions in Eq. (3.94) the absolute values of the four Euler
parameter are found.

β2
0 = 0.925055 β2

1 = 0.021214

β2
2 = 0.041073 β2

3 = 0.012657

The β0 term is selected as the largest element and used in Eqs. (3.95a)
through (3.95c) to find the Euler parameter vector.

β = (0.961798,−0.14565, 0.202665, 0.112505)T

The alternate Euler parameter vector would be found be simply reversing the
sign of each element in β.

A very important composite rotation property of the Euler parameters is the
manner in which they allow two sequential rotations to be combined into one
overall composite rotation. Let the Euler parameter vector β′ describe the first,
β′′ the second and β the composite rotation. From Eq. (3.20) it is clear that

[FN(β)] = [FB(β′′)][BN(β′)] (3.96)

Using Eq. (3.92) in Eq. (3.96) and equating corresponding elements leads to
following elegant transformation that bi-linearly combines β′ and β′′ into β.







β0

β1

β2

β3







=







β′′
0 −β′′

1 −β′′
2 −β′′

3

β′′
1 β′′

0 β′′
3 −β′′

2

β′′
2 −β′′

3 β′′
0 β′′

1

β′′
3 β′′

2 −β′′
1 β′′

0













β′
0

β′
1

β′
2

β′
3







(3.97)

By transmutation of Eq.(3.97) an alternate expression β = [G(β′)]β′′ is found






β0

β1

β2

β3







=







β′
0 −β′

1 −β′
2 −β′

3

β′
1 β′

0 −β′
3 β′

2

β′
2 β′

3 β′
0 −β′

1

β′
3 −β′

2 β′
1 β′

0













β′′
0

β′′
1

β′′
2

β′′
3







(3.98)

where the components of the matrix [G(β′)] are given in Eq. (3.98). Note the
useful identity

[G(β)]Tβ =







1
0
0
0







(3.99)
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By inspection, it is evident that the 4x4 matrices in Eqs. (3.97) and (3.98) are
orthogonal. These transformations provide a simple, nonsingular and bilinear
method to combine two successive rotations described through Euler parame-
ters. For other attitude parameters such as the Euler angles, this same compos-
ite transformation would yield a very complicated, transcendental expression.

Example 3.7: Using Stanley’s method, the direction cosine matrices [BN ]
and [FB] defined in Example 3.1 can be parameterized through the Euler
parameter vectors β′ and β′′ respectively as

[BN ] ⇒ β
′ =

(

0, 1√
2
, 1√

2
, 0
)T

[FB] ⇒ β
′′ =

(

1
2

√√
3

2
+ 1,− 1

2

√√
3

2
+ 1, −

√
2

4
√

2+
√

3
,

√
2

4
√

2+
√

3

)T

Note that the vector β′ describes the attitude of the B frame relative to the
N frame, while the vector β′′ describes the F frame attitude relative to the B
frame. Eq. (3.97) can be used to combine the two successive attitude vectors
into one vector β which directly describes the F frame orientation relative to
the N frame.

β =
1

2
√

2

(√
3,
√

3, 1, 1
)T

To verify that β does indeed parameterize the direction cosine matrix [FN ]
given in Example 3.1, it can be back substituted into Eq. (3.92) to yield

[FN ] =






√
3

2
1
2

0
0 0 −1

− 1
2

√
3

2
0






√

The kinematic differential equation for the Euler parameters can be derived
by differentiating the βi’s in Eq. (3.93). The following development will es-
tablish the kinematic equation for β̇0 only, the remaining β̇i equations can be
developed in an analogous manner. After taking the derivative of Eq. (3.93a),
β̇0 is expressed as

β̇0 =
Ċ11 + Ċ22 + Ċ33

8β0
(3.100)

After using the expressions for Ċii given in Eq. (3.27), the term β̇0 is rewritten
as

β̇0 =
1

2

(

−C23 − C32

4β0
ω1 −

C31 − C13

4β0
ω2 −

C12 − C21

4β0
ω3

)

(3.101)

Using Eqs. (3.93b) through (3.93d), the β̇0 differential equation is simplified to

β̇0 =
1

2
(−β1ω1 − β2ω2 − β3ω3) (3.102)



90 RIGID BODY KINEMATICS CHAPTER 3

After performing a similar derivation for the β̇1, β̇2 and β̇3 terms, the four
coupled kinematic differential equations for the Euler parameters are found to
be the exceptionally elegant matrix form







β̇0

β̇1

β̇2

β̇3







=
1

2







0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0













β0

β1

β2

β3







(3.103)

or by transmutation of Eq. (3.103), the kinematic differential equation has the
elegant form







β̇0

β̇1

β̇2

β̇3







=
1

2







β0 −β1 −β2 −β3

β1 β0 −β3 β2

β2 β3 β0 −β1

β3 −β2 β1 β0













0
ω1

ω2

ω3







(3.104)

Note that the transformation matrix relating β̇ and ω is orthogonal and sin-
gularity free. The inverse transformation from ω to d(β)/dt is always defined.
Further, the Euler parameter kinematic differential equation of Eq. (3.103) is
rigorously linear if ωi(t) are known functions of time only. If ωi(t) are them-
selves coordinates, then Eqs. (3.103) and (3.104) are more generally considered
bi-linear. This makes the Euler parameters very attractive attitude coordinates
for attitude estimation problems where the kinematic differential equation is lin-
earized. All three parameter sets of attitude coordinates always have kinematic
differential equations which are nonlinear and contain 0/0 type mathematical
singularities. In attitude estimation problems their linearization is only locally
valid. Whereas the linear (or bi-linear) property of the Euler parameter kine-
matic differential equation is globally valid. The Euler parameter kinematic
differential equation in Eq. (3.104) can be written compactly as

β̇ =
1

2
[B(β)]ω (3.105)

where the 4x3 matrix [B(β)] is defined as

[B(β)] =







−β1 −β2 −β3

β0 −β3 β2

β3 β0 −β1

−β2 β1 β0







(3.106)

By carrying out the matrix algebra, the following useful identities can easily be
verified.

[B(β)]Tβ = 0 (3.107)

[B(β)]Tβ′ = −[B(β′)]Tβ (3.108)
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It is easily verified that the normalization condition βTβ = 1 is a rigorous
analytical integral of Eqs. (3.103), (3.104). However, in practice the norm of
β may slightly differ form 1 when numerically integrating Eq. (3.103). It is
therefore necessary to take care to reimpose this condition differentially after
each numerical integration step, if the solution is to remain valid over long
time intervals. However, in contrast to the re-normalization of [C(t)] to satisfy
[C]T [C] = [I3×3] when solving Eq. (3.27), only one scalar condition needs to be
considered when integrating β(t).

In control applications, often the four Euler parameters are broken up into
two groups. The parameter β0 is single out since it contains no information
regarding the corresponding principal rotation axis of the orientation being rep-
resented. In effect, if is a scalar measure of the three dimensional rigid body
attitude measure whose value is +1 or -1 if the attitude is zero. The remaining
three Euler parameters are grouped together into a three-dimensional vector as

ε ≡ (β1, β2, β3)
T (3.109)

If the attitude goes to zero, then so will this vector. From Euler parameter
differential equation in Eq. (3.104), it is evident that the differential equations
for β̇0 and ε̇ are of the form

β̇0 = −1

2
εTω = −1

2
ωT ε (3.110)

ε̇ =
1

2
[T ]ω (3.111)

The 3 × 3 matrix [T ] is defined as

[T (β0, ε)] = β0[I3×3] + [ε̃] (3.112)

3.5 Classical Rodrigues Parameters

The origin of the classical Rodrigues parameter vector q (or Gibbs vector) dates
back over a hundred years to the French mathematician O. M. Rodrigues. This
rigid body attitude coordinate set reduces the redundant Euler parameters to a
minimal three parameter set through the transformation

qi =
βi
β0

i = 1, 2, 3 (3.113)

The inverse transformation from classical Rodrigues parameters to Euler pa-
rameters is given by

β0 =
1

√

1 + qTq
(3.114a)

βi =
qi

√

1 + qTq
i = 1, 2, 3 (3.114b)
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Using the definitions in Eq. (3.90) the vector q is expressed directly in terms of
the principal rotation elements as the elegant transformation

q = tan
Φ

2
ê (3.115)

From Eqs. (3.113) and (3.115) it is evident that the classical Rodrigues param-
eters go singular whenever Φ → ±180 degrees. Very large rotations can be
described with these parameters without ever approaching a geometric singu-
larity. For rotations with |Φ| ≤ 90o, it is evident that q(t) locates points near
the origin bounded by the unit sphere. Compare this ±180o nonsingular range
to the Euler angles where any orientation is never more than 90 degrees away
from a singularity.

The small angle behavior of the classical Rodrigues parameters is also more
linear than compared to the small angle behavior of any Euler angle set. Lin-
earizing Eq. (3.115) it is evident that

q ≈ Φ

2
ê (3.116)

This means that classical Rodrigues parameters will linearize roughly to an
“angle over 2” type quantity, whereas the Euler angles linearize as an angle
type quantity well removed from singular points.

Euler Parameter
Unit Constraint
Sphere

Projection
Point

β−

β0

βi

+ 1− 1

qq = S

Classical Rodrigues
Parameter Hyperplane

Φ
2

β

Figure 3.10: Stereographic Projection of Euler Parameters to Classical
Rodrigues Parameters

As discussed in Ref. 22, the classical Rodrigues parameters can be viewed
as a special set of stereographic orientation parameters. Stereographic pro-
jections are used to map a higher-dimensioned spherical surface onto a lower-
dimensioned hyperplane. In this case, the surface of the four-dimensional Euler
parameter unit constraint sphere in Eq. (3.91) is mapped (projected) onto a
three-dimensional hyperplane though Eq. (3.113). Figure 3.10 illustrates how
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such a projection would yield the classical Rodrigues parameters. The projec-
tion point is chosen to be the origin β = 0 and the hyperplane upon which all
Euler parameter coordinates are projected is the tangent surface at β0 = 1. Note
that on the constraint sphere surface β0 = 1 corresponds to a Φ = 0 degrees,
β0 = 0 corresponds to Φ = ±180 degrees and β0 = -1 represents Φ = ±360
degrees. The transformation in Eq. (3.113) maps any Euler parameter set on
the unit constraint sphere surface onto a corresponding point located on the
classical Rodrigues parameter hyperplane.

All stereographic orientation parameters can be viewed as a projection of the
constraint sphere onto some hyperplane. Since the Euler parameters themselves
are not unique, the corresponding stereographic orientation parameters are also
generally not unique. The set corresponding to the projection of the Euler
parameter set −β is referred to as the shadow set and is differentiated from the
original set by a superscript S.22 However, it turns out that the shadow set of
the classical Rodrigues parameters are indeed identical to the original classical
Rodrigues parameters as is easily verified by reversing the βi signs in Eq. (3.113)
or by inspection of Figure 3.10.

qSi =
−βi
−β0

= qi (3.117)

The direction cosine matrix in terms of the classical Rodrigues parameters
can be found by using their definition in Eq. (3.113) in the direction cosine
matrix formulation in Eq. (3.92). The resulting parameterization is in matrix
form4, 22

[C] =
1

1 + qTq





1+q21−q22−q23 2 (q1q2 + q3) 2 (q1q3 − q2)
2 (q2q1 − q3) 1−q21+q22−q23 2 (q2q3 + q1)
2 (q3q1 + q2) 2 (q3q2 − q1) 1−q21−q22+q23



 (3.118)

and in vector form5, 22

[C] =
1

1 + qTq

((
1 − qTq

)
[I3×3] + 2qqT − 2[q̃]

)
(3.119)

The simplest way to extract the classical Rodrigues parameters from a given
direction cosine matrix is to determine the Euler parameters first and then use
Eq. (3.113) to find the corresponding Rodrigues parameters. Note the following
useful identity.

[C(q)]T = [C(−q)] (3.120)

Since q defines the relative orientation of a second frame to a first frame, the
relative orientation of the second frame relative to the first corresponds simply
to reversing the sign of q as in

{n̂} = [C(q)]T {b̂} = [C(−q)]{b̂} (3.121)

This elegant property doesn’t exist with Euler angles.
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Similar to the direction cosine matrices and Euler parameters, the classical
Rodrigues parameter vectors have a composite rotation property. Given two
attitude vectors q′ and q′′, let the overall composite attitude vector q be defined
through the quadratically nonlinear condition

[FN(q)] = [FB(q′′)][BN(q′)] (3.122)

However, solving for an overall transformation from q′ and q′′ to q using
Eq. (3.122) is very cumbersome. Using the successive rotation property of the
Euler parameters and the definition of the classical Rodrigues parameters in
Eq. (3.113), the composite attitude vector q is expressed directly in terms of q′

and q′′ through5, 23

q =
q′′ + q′ − q′′ × q′

1 − q′′ · q′ (3.123)

Assume that the attitude vectors q and q′ are given and the relative attitude
vector q′′ is to be found. With direction cosine matrices and Euler parameters
the two attitude descriptions were related through an orthogonal matrix which
made finding the relative attitude description trivial. This is no longer the case
with the classical Rodrigues parameter composite rotation property. However,
we can use Eq. (3.122) to solve for [FB(q′′)] first using the orthogonality of the
direction cosine matrices.

[FB(q′′)] = [FN(q)][BN(q′)]T (3.124)

Using the identity in Eq. (3.120), this is rewritten as

[FB(q′′)] = [FN(q)][BN(−q′)] (3.125)

which then leads to the desired direct transformation from q and q′ to the
relative orientation vector q′′.

q′′ =
q − q′ + q × q′

1 + q · q′ (3.126)

A similar transformation could be found to express q′ in terms of q and q′′.
The kinematic differential equation of the classical Rodrigues parameters is

found by taking the derivative of Eq. (3.113) and then substituting the corre-
sponding expressions for β̇i given in Eq. (3.104). The resulting matrix formula-
tion is4

q̇ =
1

2





1 + q21 q1q2 − q3 q1q3 + q2
q2q1 + q3 1 + q22 q2q3 − q1
q3q1 − q2 q3q2 + q1 1 + q23









ω1

ω2

ω3



 (3.127)

and the compact vector matrix form is

q̇ =
1

2

[
[I3×3] + [q̃] + qqT

]
ω (3.128)
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Note that the above kinematic differential equation contains no trigonometric
functions and only has a quadratic nonlinearity. It is defined for any rotation
except for Φ = ±180 degrees. As q(t) approaches Φ = ±180o, both q(t) and
q̇(t) diverge to infinity. The inverse transformation of Eq. (3.128) is given by5

ω =
2

1 + qT q
([I3×3] − [q̃]) q̇ (3.129)

As is evident, for (q, q̇) → ∞, the transformation of Eq. (3.129) exhibits an
∞/∞ type singular behavior near |Φ| → ±180 degrees.

There exists a very elegant, analytically exact transformation between the
orthogonal direction cosine matrix [C] and the classical Rodrigues parameter
vector q called the Cayley Transform.4, 5, 10, 17, 24 What is remarkable is that
this transformation holds for proper orthogonal matrices of dimensions higher
than three. A proper orthogonal matrix is an orthogonal matrix with a deter-
minant of +1. Thus it is possible to parameterize any proper orthogonal [C]
matrix by a minimal set of higher-dimensional classical Rodrigues parameters.

The Cayley Transform parameterizes a proper orthogonal matrix [C] as a
function of a skew-symmetric matrix [Q]:

[C] = ([I ] − [Q]) ([I ] + [Q])
−1

= ([I ] + [Q])
−1

([I ] − [Q]) (3.130)

The matrix product order is irrelevant in this transformation. Another surpris-
ing property of this transformation is that the inverse transformation from the
skew-symmetric matrix Q back to the [C] matrix has exactly the same form as
the forward transformation in Eq. (3.130):

[Q] = ([I ] − [C]) ([I ] + [C])
−1

= ([I ] + [C])
−1

([I ] − [C]) (3.131)

For the case where [C] is a 3x3 rotation matrix, the transformation in Eq. (3.130)
yields the standard three-dimensional Rodrigues parameters.
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Example 3.8: Given the orthogonal 4x4 matrix [C],

[C] =







0.505111 −0.503201 −0.215658 0.667191
0.563106 −0.034033 −0.538395 −0.626006
0.560111 0.748062 0.272979 0.228387

−0.337714 0.431315 −0.767532 0.332884







it is easy to verify that [C] can be parameterized in terms of higher dimensional
classical Rodrigues parameters. Using MATLAB to solve Eq. (3.131), the
skew-symmetric 4x4 matrix [Q] is found to be

[Q] =







0 0.5 0.2 −0.3
−0.5 0 0.7 0.6
−0.2 −0.7 0 −0.4

0.3 −0.6 0.4 0







where the six upper diagonal elements of [Q] are the higher dimensional
classical Rodrigues elements.

3.6 Modified Rodrigues Parameters

The Modified Rodrigues Parameters (MRPs) are an elegant recent addition to
the family of attitude parameters.5, 22, 25–27 The MRP vector σ is defined in
terms of the Euler parameters as the transformation

σi =
βi

1 + β0
i = 1, 2, 3 (3.134)

The inverse transformation is given by

β0 =
1 − σ2

1 + σ2
βi =

2σi
1 + σ2

i = 1, 2, 3 (3.135)

where the notation σ2n =
(
σTσ

)n
is introduced. Substituting Eq. (3.90) into

Eq. (3.134) the MRP can be expressed in terms of the principal rotation elements
as

σ = tan
Φ

4
ê (3.136)

Studying Eq. (3.136), it is evident that the MRP have a geometric singularity at
Φ = ±360 degrees. Any rotation can be described except a complete revolution
back to the original orientation. This gives σ twice the rotational range of the
classical Rodrigues parameters. Also note that for small rotations the MRPs
linearize as σ ≈ (Φ/4) ê.

Observing Eq. (3.134) it is evident that these equations are well-behaved
except near the singularity at β0 = −1, where Φ → ±360o. Also, the inverse
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σS

Euler Parameter
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Projection
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Figure 3.11: Stereographic Projection of Euler Parameters to Modified
Rodrigues Parameters

transformation of Eq. (3.135) is well-behaved everywhere except at |σ| → ∞;
we see from Eq. (3.136) that this again occurs at Φ → 360o.

The MRP vector σ can be transformed directly into the classical Rodrigues
parameter vector q through

q =
2σ

1 − σ2
(3.137)

with the inverse transformation being

σ =
q

1 +
√

1 + qT q
(3.138)

Naturally, these transformations are singular at Φ = ±180 degrees since the
classical Rodrigues parameters are singular at this orientation.

As are the classical Rodrigues parameters, the MRPs are also a particu-
lar set of stereographic orientation parameters. Equation (3.134) describes
a stereographic projection of the Euler parameter unit sphere onto the MRP
hyperplane normal to the β0 axis at β0 = 0, where the projection point is at
β = (−1, 0, 0, 0). This is illustrated in Figure 3.11. As a ±360 degree principal
rotation is approached (i.e. β0 → −1), the projection of the corresponding point
on the constraint sphere goes to infinity. This illustrates the singular behavior
of the MRPs as they describe a complete revolution.

However, contrary to the classical Rodrigues parameters, the projection of
the alternate Euler parameter vector −β results in a distinct set of shadow (or
“image”) MRPs as can be seen in Figure 3.11. Each MRP vector is an equally
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valid attitude description satisfying the same kinematic differential equation.
Therefore one can arbitrarily switch between the two vectors through the map-
ping22, 26

σSi =
−βi

1− β0
=

−σi
σ2

i = 1, 2, 3 (3.139)

where the choice as to which vector is the original and which the shadow vector
is arbitrary. We usually let σ denote the mapping point interior to the unit
sphere and σS the point point exterior to the unit sphere. As with the non-
uniqueness of the principal rotation vector γ and the Euler parameter vector.can ionunif
72164 Tf
10.5l.936 1q 16anoe sp52(h)Tj
8.3onds0 Td
(s9049)Tj
37.5137 0 Td9htoprimap5alrod
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38.�27998 Td
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of original and shadow MRPs with the switching surface σTσ = 1 provides for
a nonsingular, bounded, minimal attitude description. It is ideally suited to
describe large, arbitrary motions. The combined set is also useful in a feedback
control type setting. For example, it linearizes well for small angles and has
a bounded maximum norm of 1 which makes the selection of feedback gains
easier.

The direction cosine matrix in terms of the MRP is found by substituting
Eq. (3.135) into Eq. (3.92) and is given as5, 22, 26, 27

[C] = 1
(1+σ2)2





4
(
σ2

1−σ2
2−σ2

3

)
+ (1 − σ2)2 8σ1σ2 + 4σ3(1 − σ2)

8σ2σ1 − 4σ3(1 − σ2) 4
(
−σ2

1+σ2
2−σ2

3

)
+ (1 − σ2)2 · · ·

8σ3σ1 + 4σ2(1 − σ2) 8σ3σ2 − 4σ1(1 − σ2)
8σ1σ3 − 4σ2(1 − σ2)

· · · 8σ2σ3 + 4σ1(1 − σ2)
4
(
−σ2

1−σ2
2+σ2

3

)
+ (1 − σ2)2





(3.143)

In compact vector form [C] is parameterized in terms of the MRP as5, 22

[C] = [I3×3] +
8[σ̃]2 − 4

(
1 − σ2

)
[σ̃]

(1 + σ2)2
(3.144)

As is the case with the classical Rodrigues parameters, the simplest method to
extract the MRP from a given direction cosine matrix is the first extract the
Euler parameters and then use Eq. (3.134) to find the MRP vector σ. If β0 ≥ 0
is chosen when extracting the Euler parameters, then |σ| ≤ 1. If β0 is chosen to
be negative, then the alternate MRP vector corresponding to a larger principal
rotation angle is found.

The MRPs enjoy the same relative rotation identity as did the classical
Rodrigues parameters.

[C(σ)]T = [C(−σ)] (3.145)

Given two MRP vectors σ′ and σ′′, let the overall MRP vector σ be defined
through

[FN(σ)] = [FB(σ′′)][BN(σ′)] (3.146)

Starting with the Euler parameter successive rotation property and using the
MRP definitions in Eq. (3.134), the MRP successive rotation property is ex-
pressed as5

σ =
(1 − |σ′|2)σ′′ + (1 − |σ′′|2)σ′ − 2σ′′ × σ′

1 + |σ′|2|σ′′|2 − 2σ′ · σ′′ (3.147)

Using Eq. (3.145), we are able to express the relative attitude vector σ′′ in terms
of σ and σ′ as

σ′′ =
(1 − |σ′|2)σ − (1 − |σ|2)σ′ + 2σ × σ′

1 + |σ′|2|σ|2 + 2σ′ · σ (3.148)
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While these expressions are more complicated than their Euler parameter or
classical Rodrigues parameter counterparts, they do provide a numerically ef-
ficient method to compute the composition of two MRP vectors or find the
relative MRP attitude vector.

Example 3.9: Given the Euler parameter vector β

β = (0.961798,−0.14565, 0.202665, 0.112505)T

the MRP vector σ is found using Eq. (3.134)

σ1 =
−0.14565

1 + 0.961798
= −0.0742431

σ2 =
0.202665

1 + 0.961798
= 0.103306

σ3 =
0.112505

1 + 0.961798
= 0.0573479

The alternate shadow MRP vector σS can be found using −β instead of β
in Eq. (3.134).

σS
1 =

0.14565

1 − 0.961798
= 3.81263

σS
2 =

−0.202665

1 − 0.961798
= −5.30509

σS
3 =

−0.112505

1 − 0.961798
= −2.945

Note that if the direct mapping in Eq. (3.139) is used the same vector σS

is obtained. Since the vector |σ| = 0.139546 ≤ 1, it represents the shorter
principal rotation angle of Φ = 7.94 degrees. The vector |σS| = 7.16611 ≥ 1
represents the longer principal rotation angle Φ′ = Φ − 360o = −328.224o .

The kinematic differential equation of the MRPs is found in a similar man-
ner as the one for the classical Rodrigues parameters. The resulting matrix
formulation is22, 27

σ̇ =
1

4





1 − σ2 + 2σ2
1 2 (σ1σ2 − σ3) 2 (σ1σ3 + σ2)

2 (σ2σ1 + σ3) 1 − σ2 + 2σ2
2 2 (σ2σ3 − σ1)

2 (σ3σ1 − σ2) 2 (σ3σ2 + σ1) 1 − σ2 + 2σ2
3









ω1

ω2

ω3



 (3.149)

The MRP kinematic differential equation in vector form is5, 22

σ̇ =
1

4

[(
1 − σ2

)
[I3×3] + 2[σ̃] + 2σσT

]
ω =

1

4
[B(σ)]ω (3.150)

Note that the MRPs retain a kinematic differential equation very similar to the
classical Rodrigues parameters with only quadratic nonlinearity present. This
equation holds for either set of MRPs. However, the resulting vector σ̇ will
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depend on which set of MRPs is being used. Just as a mapping exists between
σ and σS , a direct mapping between σ̇ and σ̇S is given by28

σ̇S = − σ̇

σ2
+

1

2

(
1 + σ2

σ4

)

σσTω (3.151)

Let the matrix [B] transform ω in Eqs. (3.149) and (3.150) into σ̇. Turns
out that this [B] matrix is almost orthogonal except for a generally non-unit
scaling factor. The inverse of [B] can be written as

[B]−1 =
1

(1 + σ2)
2 [B]T (3.152)

To prove Eq. (3.152) let’s study the expression [B]T [B]. Using Eq. (3.150) this
is written as

[B]T [B] =
((

1 − σ2
)
[I3×3] − 2[σ̃] + 2σσT

) ((
1− σ2

)
[I3×3] + 2[σ̃] + 2σσT

)

After carrying out all the matrix multiplications the [B]T [B] expression is re-
duced to

[B]T [B] =
(
1 − σ2

)2
[I3×3] − 4[σ̃]2 + 4σσT

which can be further simplified using the identity [σ̃]2 = σσT − σ2[I3×3] to

[B]T [B] =
(
1 + σ2

)2
[I3×3]

At this point it is trivial to verify that Eq. (3.152) must hold. The inverse
transformation of Eqs. (3.149) and (3.150) then is in matrix notation

ω =
4

(1 + σ2)
2 [B]T σ̇ (3.153)

and in vector form5

ω =
4

(1 + σ2)
2

[(
1 − σ2

)
[I3×3] − 2[σ̃] + 2σσT

]
σ̇ (3.154)

Like the classical Rodrigues parameters, the MRPs can also be used to min-
imally parameterize higher-dimensional proper orthogonal matrix [C]. Let the
[S] be a skew-symmetric matrix. The extended Cayley transform of [C] in terms
of [S] is17, 29

[C] = ([I3×3] − [S])
2
(1 + [S])

−2
= (1 + [S])

−2
([I3×3] − [S])

2
(3.155)

where the order of the matrix products is again irrelevant. For the case where
[C] is a 3x3 matrix, then [S] is the same as [σ̃]. Therefore Eq. (3.155) transforms
a higher dimensional proper orthogonal [C] into higher dimensional MRPs.
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Unfortunately no direct inverse transformation exists like Eq. (3.131) for
the higher order Cayley transforms.17 The transformation is achieved indirectly
through the matrix [W ], where it is defined as the matrix square root of [C].

[C] = [W ][W ] (3.156)

Since [C] is orthogonal, it can be spectrally decomposed as

[C] = [V ][D][V ]∗ (3.157)

where [V ] is the orthogonal eigenvector matrix and [D] is the diagonal eigenvalue
matrix with entries of unit magnitude. The “∗” operator stands for the adjoint
operator which performs the complex conjugate transpose of a matrix. The
matrix [W ] can be computed as

[W ] = [V ]







. . . 0
√

[D]ii

0
. . .







[V ]T (3.158)

The eigenvalues of [C] are typically complex conjugate pairs. If the dimension
of [C] is odd, then the extra eigenvalue is real. For proper orthogonal matrices
it is +1 and its square root is also chosen to be +1. The resulting [W ] matrix
will then itself also be an proper orthogonal matrix. As Ref. 17 shows, the geo-
metric interpretation of [W ] is that it represents the same “higher-dimensional”
orientation as [C] except that the corresponding principal rotation angles are
halved.

The standard Cayley transforms in Eqs. (3.130) and (3.131) can be applied
to map [W ] into [S] and back.

[W ] = ([I ] − [S])([I ] + [S])−1 = ([I ] + [S])−1([I ] − [S]) (3.159)

[S] = ([I ] − [W ])([I ] + [W ])−1 = ([I ] + [W ])−1([I ] − [W ]) (3.160)

Therefore, to obtain a higher-dimensional MRP representation of [C], the ma-
trix [W ] must be found first and then substituted into Eq. (3.160). Note that
substituting Eq. (3.159) into Eq. (3.156) a direct forward transformation from
[S] to [C] is found.

[C] = ([I ] − [S])2([I ] + [S])−2 = ([I ] + [S])−2([I ] − [S])2 (3.161)

The kinematic differential equations for [S] are not written directly in terms
of [C] as they were for the classical Cayley transform. Instead the [W ] matrix
is used. Being an orthogonal matrix, its kinematic differential equation is of the
same form as Eq. (3.27)

[Ẇ ] = −[Ω̃][W ] (3.162)
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where [Ω̃] is the corresponding angular velocity matrix. It is related to the [ω̃]
matrix in Eq. (3.27) through

[ω̃] = [Ω̃] + [W ][Ω̃][W ]T (3.163)

Analogously to Eq. (3.133), the kinematic differential equation of the [S] matrix
is given by

[Ṡ] =
1

2
([I ] + [S]) [Ω̃] ([I ] − [S]) (3.164)

Example 3.10: Consider the same orthogonal 4x4 matrix [C] as is defined
in Example 3.8. Using MATLAB, its matrix square root [W ] is found to be

[W ] =







0.86416 −0.35312 −0.14580 0.32754
0.37209 0.69343 −0.44177 −0.43076
0.25488 0.50816 0.79065 0.22734

−0.22320 0.36911 −0.39807 0.80962







Using Eq. (3.160) the higher dimensional, skew-symmetric MRP matrix [S]
representing [C] is found.

[S] =







0 0.20952 0.10114 −0.14383
−0.20952 0 0.28309 0.24040
−0.10114 −0.28309 0 −0.17471

0.14383 −0.24040 0.17471 0







By back substitution of this [S] into Eq. (3.155) it can be verified that it does
indeed parameterize [C].

3.7 Other Attitude Parameters

There exists a multitude of other attitude parameters sets in addition to those
discussed so far. This section will briefly outline a selected few.

3.7.1 Stereographic Orientation Parameters

The Stereographic Orientation Parameters (SOPs) are introduced in Ref. 22.
They are formed by projecting the Euler parameter constraint surface, a four-
dimensional unit hypersphere, onto a three-dimensional hyperplane. The pro-
jection point can be anywhere on or within the constraint hypersphere, while
the mapping hyperplane is chosen to be a unit distance away from the projection
point.

There are two types of SOPs, the symmetric and asymmetric sets. The
symmetric sets have a mapping hyperplane that is perpendicular to the β0 axis.
Since β0 = cosΦ/2 only contains information about the principal rotation angle,
the resulting sets will all have a geometric singularity at a specific principal
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rotation angle Φ only, regardless of the corresponding principal rotation axis
ê. The classical and modified Rodrigues parameters are examples of symmetric
SOPs.

Asymmetric SOPs have a mapping hyperplane which is not perpendicular
to the β0 axis. The condition for a geometric singularity will now depend on
both the principal rotation axis ê and the angle Φ. As an example, consider the
asymmetric SOP vector η. It is formed by having a projection point at β1 = −1
and having a mapping hyperplane at β1 = 0. In terms of the Euler parameters
it is defined as

η1 =
β0

1 + β1
η2 =

β2

1 + β1
η3 =

β3

1 + β1
(3.165)

with the inverse transformation being

β0 =
2η1

1 + η2
β1 =

1 − η2

1 + η2
β2 =

2η2
1 + η2

β3 =
2η3

1 + η2
(3.166)

where η2 = ηTη. From Eq. (3.165) it is evident that η has a geometric singular-
ity whenever β1 → −1. This means that η goes singular whenever it represents
a pure single-axis rotation about the first body axis by the principal angles Φ1

= -180 degrees or Φ2 = +540 degrees. This type of asymmetric principal angle
rotation range is typical for all asymmetric SOPs. However, since the η vector
has a distinct shadow counter part, any geometric singularities can be avoided
by switching between the two sets through the mapping

ηS = − η

η2
(3.167)

The direction cosine matrix is written in terms of the η vector components
as

[C] = 1
(1+η2)2





4
(
η2
1−η2

2−η2
3

)
+ (1 − η2)2 8η1η3 + 4η2(1 − η2)

−8η1η3 + 4η2(1 − η2) 4
(
η2
1+η2

2−η2
3

)
− (1 − η2)2 · · ·

8η1η2 + 4η3(1 − η2) 8η2η3 − 4η1(1 − η2)
−8η1η2 + 4η3(1 − η2)

· · · 8η2η3 + 4η1(1 − η2)
4
(
η2
1−η2

2+η2
3

)
− (1 − η2)2





(3.168)

The kinematic differential equation of the η vector is

η̇ =
1

4





−1− 2η2
1 + η2 2 (η1η3 − η2) −2 (η1η2 + η3)

2 (η3 − η1η2) 2 (η2η3 + η1) −1− 2η2
2 + η2

−2 (η1η3 + η2) 1 + 2η2
3 − η2 2 (η1 − η2η3)



ω (3.169)

Having a projection point on the constraint surface provides for the largest
possible range of singularity free rotations. This is evident when comparing
the classical and the modified Rodrigues parameters. The classical Rodrigues
parameters have a projection point within the constraint hypersphere at β0 = 0.
Their principal rotation range is half of that of the MRPs whose projection is
on the constraint surface at β0 = −1.
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3.7.2 Higher Order Rodrigues Parameters

The Higher Order Rodrigues Parameters (HORP) are introduced in Ref. 29. The
classical Cayley transform in Eq. (3.130) is expanded such that it parameterized
nxn orthogonal matrices through a skew-symmetric, higher order Rodrigues
parameter matrix X .

[C] = ([I3×3] −X)m ([I3×3] +X)−m (3.170)

The corresponding attitude vector x is given by

x = tan

(
Φ

2m

)

ê (3.171)

For m = 1 the vector x is the classical Rodrigues vector and for m = 2 it is
the MRP vector. Note that the domain of validity of the x vector is |Φ| < mπ.
The HORP sets are generally also not unique as is the case with the MRPs.
Corresponding “shadow” sets can be used here too to avoid any geometric sin-
gularities. Note that for a givenm there are typicallym sets of possible HORPs.

A particular set of HORP is the τ vector where m = 4. In terms of the
Euler parameters, the first two HORP vectors τ are defined through

τi =
βi

1 + β0 ±
√

2 (1 + β0)
i = 1, 2, 3 (3.172)

with the inverse transformation being

β0 = 2

(
1 − τ2

1 + τ2

)2

− 1 βi =
4τi
(
1 − τ2

)

(1 + τ2)
2 i = 1, 2, 3 (3.173)

where τ2n =
(
τT τ

)n
. Each vector τ defined in Eq. (3.172) can be mapped to

the corresponding shadow vector τS through

τS = −τ

(
1 − τ2

2τ2 + (1 + τ2) τ

)

(3.174)

where τ =
√
τ2. Combined Eqs. (3.172) and (3.174) yield the four possible

HORP vectors for m = 4. In terms of the principal rotation elements, the four
sets can be expressed as

τ = tan

(
Φ − 2kπ

8

)

k = 0, 1, 2, 3 (3.175)

Therefore it will always be possible to switch from one τ vector to another in
order to avoid geometric singularities.

The kinematic differential equations of the τ vector are

τ̇ =
1

8 (1−τ2)

[
2
(
3−τ2

)
ττT + 4

(
1−τ2

)
[τ̃ ] + (1−6τ2+τ4)[I3×3]

]
ω (3.176)
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Note that the kinematic differential equations of the HORP lose the simple
second order polynomial form that is present for the classical and modified
Rodrigues parameters. Also, while the τ vector itself is defined for rotations
up to Φ = mπ, the kinematic differential equations encounter mathematical
singularities of the type 0/0 whenever τ 2 → 0. This corresponds to Φ →
±360 degrees. By using the mapping in Eq. (3.174) to transform a τ vector to
an alternate set whenever |τ | ≥ tan (Φ/8) any geometrical and mathematical
singularities are avoided all together.

3.7.3 The (w, z) Coordinates

The (w, z) attitude coordinates were introduced by Tsiotras and Longuski in
Ref. 30. They are a minimal coordinate set and lend themselves well to be used
in control problems of under actuated axially-symmetric spacecraft.31 The com-
plex coordinate w describes the heading of the one of the body axes, typically
the spin axis. The coordinate z is the relative rotation angle about this axis
defined by w. Let the heading of the chosen body axis be given by the vector
b̂i = (a, b, c)

T
. Since the vector b̂i is a unit vector, the three components a, b

and c are not independent. They must satisfy the constraint sphere equation

a2 + b2 + c2 = 1 (3.177)

By performing a stereographic projection of the constraint sphere from the
projection point (0, 0,−1 onto the complex (w1, w2) plane, the three redundant
axis heading coordinates (a, b, c) are reduced to the complex variable w.

w = w1 + iw2 =
b− ia

1 + c
(3.178)

The inverse transformation from w to (a, b, c) is given by

a =
i (w − w̄)

1 + |w|2 b =
w + w̄

1 + |w|2 c =
1 − |w|2
1 + |w|2 (3.179)

Let’s assume that the spin axis is the third body axis, then the direction cosine
matrix in terms of (w, z) is given by

[C] =
1

1 + |w|2





Re
[(

1 + w2
)
eiz
]

Im
[(

1 + w2
)
eiz
]

−2Im(w)
Im
[(

1 − w̄2
)
e−iz

]
Re
[(

1 − w̄2
)
e−iz

]
2Re(w)

2Im(weiz) −2Re(weiz) 1 − |w|2



 (3.180)

The kinematic differential equations of the (w, z) coordinates are given by

ẇ1 = ω3w2 + ω2w1w2 +
ω1

2

(
1 + w2

1 − w2
2

)
(3.181a)

ẇ2 = −ω3w1 + ω1w1w2 +
ω2

2

(
1 + w2

2 − w2
1

)
(3.181b)

ż = ω3 − ω1w2ω2w1 (3.181c)
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3.7.4 Cayley-Klein Parameters

The Cayley-Klein parameters are a set of four complex parameters which are
closely related to the Euler parameter vector β. They form a once-redundant,
non-singular set of attitude parameters. Let i =

√
−1, then they are defined in

terms of β as16

α = β0 + iβ3 β = −β2 + iβ1

γ = β2 + iβ1 δ = β0 − iβ3
(3.182)

The inverse transformation from the Euler parameters to the Cayley-Klein pa-
rameters is

β0 = (α+ δ) /2 β1 = −i (β + γ) /2
β2 = − (β − γ) /2 β3 = −i (α− δ) /2

(3.183)

The direction cosine matrix is parameterized by the Cayley-Klein parameters
as

[C] =





(
α2−β2−γ2+δ2

)
/2 i

(
−α2+β2−γ2+δ2

)
/2 (βδ − αγ)

i
(
α2+β2−γ2−δ2

)
/2

(
α2+β2+γ2+δ2

)
/2 −i (αγ + βδ)

(γδ − αβ) i (αβ + γδ) (αδ + βγ)



 (3.184)

3.8 Homogeneous Transformations

All previous sections in this chapter deal with methods to describe the relative
orientation of one coordinate frame to another. In particular, the direction
cosine matrix is a convenient tool to map a vector with components taken in
one reference frame to a vector with components taken in another. However,
one underlying assumption here is that both reference frames have the same
origin. In other words, any translational differences between the two frames in
questions is not taken into account when the vector components are mapped
from one frame to another.

Figure 3.12 shows an illustration where two coordinates frames differ both in
orientation and in their origins. Let us define the following two reference fame
N and B.

N : {ON , n̂1, n̂2, n̂3}
B : {OB, b̂1, b̂2, b̂3}

Let the position vector from the N frame origin to the B frame origin be given
by rB/N . The position vector of point P is expressed in B frame components
as Brp. These vector components are mapped into N frame components by
pre-multiplying by the direction cosine matrix [NB]. While this provides the
correct N frame components of the vector rP , it does not provide the correct
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n̂1

n̂2

n̂3

b̂3

b̂2

b̂1

rB/N

Inertial Frame

Body Frame

rp

ON

OB

P

Figure 3.12: Illustration of two Coordinate Frames with Different Ori-
gins and Orientations

position vector of point P as seen by the N frame since the two frames have
different origins. To obtain these vector components, we compute

Nrp = NrB/N + [NB]Brp (3.185)

By defining the 4 × 4 homogeneous transformation32

[NB] =

[
NB NrB/N
01×3 1

]

(3.186)

it is possible to transform the position vector taken in B frame components
directly into the corresponding position vector in N frame components. In
robotics literature, this transformation is typically referred to as N

B T . To ac-
complish this, we define the 4 × 1 position vector

Bp =

[Brp
1

]

(3.187)

Observing Eq. (3.185), it is clear that

Np = [NB]Bp (3.188)

This formula is very convenient when computing the position coordinate of a
chain of bodies such as are typically found in robotics applications. However,
care must be taken when considering the order of the translational and rotational
differences between the two frames. The homogenous transformation, as shown
in Eq. (3.186), performs the translation first and the rotation second. This order
is important. Assume a rotational joint has a telescoping member attached to it.
To compute the homogeneous transformation from the joint to the telescoping
member tip, a rotation must be performed first and a translation second.
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Note that this homogenous transformation matrix abides by the same suc-
cessive transformation property as the direction cosine matrix does. Consider
the two vectors

Ap = [AB]Bp (3.189)
Np = [NA]Ap (3.190)

Substituting Eq. (3.189) into (3.190), we find that

Np = [NA][AB]Bp = [NB]Bp (3.191)

Thus, two successive transformations are combined through

[NB] = [NA][AB] (3.192)

However, the inverse matrix formula for the homogeneous transformation is not
quite as elegant as the matrix inverse of the orthogonal direction cosine matrix.
The following partitioned matrix inverse is convenient to compute the inverse
of the [NB]. Let [M ] be defined as4

[M ] =

[
A B
C D

]

(3.193)

Then the inverse is given by

[M ]−1 =

[
A−1 +A−1B∆−1CA−1 −A−1B∆−1

−∆−1CA−1 ∆−1

]

(3.194)

with the Schur complement being defined as

∆ = D − CA−1B (3.195)

Substituting

[A] = [NB] [B] = [N rB/N ]

[C] = [01×3] [D] = [1]

the Schur complement is given by

∆ = [1] (3.196)

and the inverse of the homogeneous transformation is the remarkable simply
formula:

[NB] =

[
[NB]T −[NB]T NrB/N
01×3 1

]

(3.197)

Here the fact was used that [NB] is orthogonal and that [NB]−1 = [NB]T .
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Problems

3.1 Given three reference frames N , B and F , let the unit base vectors of the
reference frames B and F be

b̂1 =
1

3





1
2
−2



 b̂2 =
1√
2





0
1
1



 b̂3 =
1

3
√

2





4
−1
1





and

f̂1 =
1

4





3
−2√

3



 f̂2 =
1

2





−1
0√
3



 f̂3 =
−1

4





√
3

2
√

3
1





where the base vector components are written in the N frame. Find the direction
cosine matrices [BF ] that describes the orientation of the B frame relative to
the F frame, along with the direction cosine matrices [BN ] and [FN ] that map
vectors in the N frame into respective B or F frame vectors.

3.2
Let the vector v be written in B frame components as

B
v = 1b̂1 + 2b̂2 − 3b̂3

The orientation of the B frame relative to the N frame is given through the
direction cosine matrix

[BN ] =





−0.87097 0.45161 0.19355
−0.19355 −0.67742 0.70968

0.45161 0.58065 0.67742





a) Find the direction cosine matrix [NB] that maps vectors with components
in the B frame into a vector with N frame components.

b) Find the N frame components of the vector v.

3.3 Using the direction cosine matrix [BN ] in Problem 3.2, find its real eigenvalue
and corresponding eigenvector.

3.4 ♣ The angular velocity vectors of a spacecraft B and a reference frame motion R
relative to the inertial frame N are given by ωB/N and ωR/N . The vector ωR/N
is given in R frame components, while ωB/N is given in B frame components.
The error angular velocity vector of the spacecraft relative to the reference motion
is then given by δω = ωB/N −ωR/N . Find the relative error angular acceleration
vector δω̇ with components expressed in the B frame.

a) Find δω̇ by only assigning vector frames at the last step.

b) Find δω̇ by first expressing δω in B frame components as Bδω = BωB/N −
[BR]RωR/N and then performing an inertial derivative.

3.5 The reference frames N : {n̂1, n̂2, n̂3} and B : {b̂L, b̂θ, b̂r} are shown in Fig-
ure 3.13.

a) Find the direction cosine matrix [BN ] in terms of the angle φ.

b) Given the vector Bv = 1b̂r + 1b̂θ + 2b̂L, find the vector Nv.
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L r
θ

φn̂1

n̂2

n̂3

b̂r

b̂θ

b̂L

Figure 3.13: Disk Rolling on Circular Ring

3.6 Starting with Eqs. (3.21) and (3.22), verify Eq. (3.24).

3.7 Parameterize the direction cosine matrix [C] in terms of (2-3-2) Euler angles.
Also, find appropriate inverse transformations from [C] back to the (2-3-2) Euler
angles.

3.8 Find the kinematic differential equations of the (2-3-2) Euler angles. What is
the geometric condition for which these equations will encounter a mathematical
singularity.

3.9 Given the (3-2-1) Euler angles ψ = 10o, θ = −15o and φ = 20o and their rates
ψ̇ = 2o/s, θ̇ = 1o/s and φ̇ = 0o/s, find the vectors Bω and Nω.

3.10 The orientation of an object is given in terms of the (3-1-3) Euler angles
(−30o, 40o, 20o),

a) find the corresponding principal rotation axis ê

b) find the two principal rotation angles Φ and Φ′

3.11 A spacecraft performs a 45o single axis rotation about ê = 1√
3

(1, 1, 1)T . Find

the corresponding (3-2-1) yaw, pitch and roll angles that relate the final attitude
to the original attitude.

3.12 Verify that the exponential matrix mapping [C] = e−Φ[ê] does have the finite
form given in Eq. (3.81).

3.13 Verify that Eq. (3.89) is indeed the inverse mapping of the differential kinematic
equation of γ̇ given in Eq. (3.88).

3.14 ♣ Starting from the direction cosine matrix [C] in Eq. (3.71) written in terms of
the principal rotation elements, derive the parameterization of [C] in terms of
the Euler parameters.

3.15 ♣ Derive the composite rotation property of the Euler parameter vector given in
Eqs. (3.97) and (3.98).

3.16 Derive the kinematic differential equations for the second, third and fourth Euler
parameter.
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3.17 Verify the transformation in Eq. (3.114) which maps a classical Rodrigues pa-
rameter vector into an Euler parameter vector.

3.18 Show the details of transforming the classical Rodrigues parameter definition in
terms of the Euler parameters qi = βi/β0 into the expression qi = tan Φ

2
êi which

is in terms of the principal rotation elements.

3.19 ♣ Show that the classical Rodrigues parameters are indeed a stereographic pro-
jection of the Euler parameter constraint surface (a four-dimensional unit hy-
persphere) onto the three-dimensional hyperplane tangent to β0 = 1 with the
projection point being β = (0, 0, 0, 0)T .

3.20 Given the classical Rodrigues parameter vector q = (0.5,−0.2, 0.8)T . Use the
Cayley transform in Eq. (3.130) to find the corresponding direction cosine matrix
[C]. Also, verify that this [C] is the same as is obtained through the mapping in
Eq. (3.118) or (3.119).

3.21 Verify the transformation in Eq. (3.135) which maps a MRP vector into an Euler
parameter vector.

3.22 Show the details of transforming the MRP definition in terms of the Euler pa-
rameters σi = βi/(1 + β0) into the expression σi = tan Φ

4
êi which is in terms of

the principal rotation elements.

3.23 ♣ Show that the MRPs are a stereographic projection of the Euler parameter con-
straint surface (a four-dimensional unit hypersphere) onto the three-dimensional
hyperplane tangent to β0 = 0 with the projection point being β = (−1, 0, 0, 0)T .

3.24 Derive the MRP parameterization of the direction cosine matrix [C] given in
Eq. (3.143).

3.25 Let the initial attitude vector be given through the MRP vector σ(t0) =
(0, 0, 0)T . The body angular velocity vector ω(t) is given as (1, 0.5,−0.7)T

rad/second. Integrate the resulting rotation for 5 seconds and use the mapping
between “original” and “shadow” MRPs in Eq. (3.139) to enforce |σ| ≤ 1.

3.26 ♣ Derive the mapping between σ̇ and its shadow counter part σ̇S in Eq. (3.151)
starting with the kinematic differential equation of the MRP in Eq. (3.150) and
Eq. (3.139).

3.27 Given the MRP vector σ = (−0.25,−0.4, 0.3)T . Use the Cayley transform in
Eq. (3.161) to find the corresponding direction cosine matrix [C]. Also, verify
that this [C] is the same as is obtained through the mapping in Eq. (3.143) or
(3.144).
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Chapter Four

Eulerian Mechanics

The dynamics of a continuous body, as presented in the chapter Newtonian
Mechanics, is specialized in this chapter for the case of rigid body dynamics.
This means that all continuous bodies studied will have a constant shape. This
is the most common case for many applications. Systems such as satellites,
aircraft or robots are all typically modeled as sets of rigid bodies. The rotational
dynamics of a rigid body are often referred to as Eulerian Mechanics, since
Euler’s equation Ḣ = L and Euler’s rotational equation of motion generally
govern this field.

Unlike the chapter Newtonian Mechanics, this chapter will first investigate
the rigid body angular momentum vector H and its derivative, along with the
kinetic energy before developing the rotational equations of motion. Then the
rigid body dynamics in a torque free environment will be studied in more detail.
Further, the dynamics of a rigid body is studied when a set of variable speed
control moment gyroscopes are present or the body is under the influence of
gravity gradient torques.

4.1 Rigid Body Dynamics

4.1.1 Angular Momentum

The following development will parallel the development in Section 2.4 for the
case where no body deformations were allowed. Let the moment be taken either
about the center of mass or the inertial coordinate frame origin. In either case
Euler’s equation reduces to

Ḣ = L (4.1)

Let R be the inertial position vector of an infinitesimal mass element dm. Let’s
choose the moment to be defined about the coordinate frame origin O. It turns
out this case will include the case of having the moment defined about the center

115
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of mass Rc. The angular momentum vector in Eq. (2.95) is reduced to

HO =

∫

B

R × Ṙdm (4.2)

Since R = Rc + r this is rewritten as

HO =

∫

B

(Rc + r) ×
(

Ṙc + ṙ
)

dm (4.3)

which is then expanded to

HO =

∫

B

Rc × Ṙcdm+

∫

B

rdm× Ṙc + Rc ×
∫

B

ṙdm+

∫

B

r × ṙdm (4.4)

Noting that the mass of the rigid body is constant and using the definition
of the center of mass in Eq. (2.77), the angular momentum vector about the
coordinate frame origin O is reduced to the expression

HO = Rc ×MṘc +

∫

B

r × ṙdm (4.5)

Eq. (4.5) is written for the general case where the rigid body B is rotating about
its center of mass and the center of mass is moving independently at an inertial
velocity Ṙc as shown in Figure 4.1.

C

O

N
Rc

ω

Ṙc

Rigid Body B

Figure 4.1: General Rigid Body Rotation

The first term of HO is the angular momentum of the mass center about the
origin and its behavior was studied when discussing the dynamics of a single
particle. The second term is more interesting since it contains the angular
momentum vector Hc of the rigid body B about its mass center Rc. From here
on we will be discussing mainly Hc and not the more general HO.

Hc =

∫

B

r × ṙdm (4.6)
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At this point we will make use of some of the kinematics results from the previous
chapter. By definition, the vector ṙ is defined to be an inertial derivative,
therefore

ṙ =
Nd
dt

(r) =
Bd
dt

(r) + ω × r (4.7)

where the vector ω is the instantaneous angular velocity vector of the rigid body
B relative to the inertial frame N . Since B is a rigid body the term Bd/dt (r) is
zero. Thus ṙ reduces to

ṙ = ω × r (4.8)

The angular momentum vector about the center of mass is then defined as

Hc =

∫

B

r × (ω × r) dm =

(∫

B

−[r̃][r̃]dm

)

ω (4.9)

Let the vectors b̂i be the B frame unit direction vectors, then the vector r, ω

and Hc are written in B frame coordinates as

r = r1b̂1 + r2b̂2 + r3b̂3 (4.10)

ω = ω1b̂1 + ω2b̂2 + ω3b̂3 (4.11)

Hc = Hc1 b̂1 +Hc2 b̂2 +Hc3 b̂3 (4.12)

After carrying out the triple cross product and collecting all terms, the angular
momentum vector Hc is expressed as

Hc =

B



Hc1

Hc2

Hc3



 =

∫

B

B



r22 + r23 −r1r2 −r1r3
−r1r2 r21 + r23 −r2r3
−r1r3 −r2r3 r21 + r22





B



ω1

ω2

ω3



 dm (4.13)

The entries in the 3x3 matrix are the moments and products of inertia of the
rigid body B about its center of mass. Note that since the r vector components
were taken in the B frame, the corresponding matrix components are also taken
in the B frame. If a different coordinate system were assigned to the rigid body,
the corresponding inertia matrix would be different too. Let this symmetric
inertia matrix be called [Ic] where the subscript letter c indicates about which
point the moments and products of inertia were taken. If this letter is omitted,
then it is understood that this inertia matrix is defined about the center of mass.

B[Ic] =

∫

B

−[r̃][r̃]dm =

∫

B

B



r22 + r23 −r1r2 −r1r3
−r1r2 r21 + r23 −r2r3
−r1r3 −r2r3 r21 + r22



 dm (4.14)

Since ω does not vary over the volume it can be taken outside the integral.
Unless noted otherwise, from here on it will be assumed that the vectors and
inertia matrices are written in the B frame and the superscript letter B will be
dropped. The angular momentum vector of a rigid body about its center of
mass can then be written in its simplest form as1

Hc = [Ic]ω (4.15)
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4.1.2 Inertia Matrix Properties

C

O

N

Rc

ω

Rigid Body B

ω

Figure 4.2: Rigid Body Rotation about Origin

Developing Eq. (4.15) it was assumed that the rigid body B was free to
rotate in space. Now it is assumed that the rigid body is no longer rotating
independently from the center of mass motion, but instead it is orbiting a fixed
point O such that it always keeps the same side facing this point as shown in
Figure 4.2. Examples of this type of rotation would be the moon orbiting Earth
or a rigid body swinging back and forth at the end of a suspended rope. The
center of mass position vector Rc with this type of rotation is fixed in the B
frame and therefore has the following inertial derivative.

Ṙc =
Bd
dt

(Rc) + ω × Rc = ω × Rc (4.16)

Substituting Eq. (4.16) into Eq. (4.5) and making use of Eq. (4.15), the angular
momentum vector about the origin O is written as

H0 = MRc × ω × Rc + [Ic]ω (4.17)

After making use of the skew-symmetric tilde operator defined in Eq. (3.23),
the vector HO is written as

H0 =
(

[Ic] −M [R̃c][R̃c]
)

ω (4.18)

This leads to the famous parallel axis theorem. Given the moment of inertia
matrix [Ic] of a rigid body B about its center of mass and the position vector
Rc of this center of mass relative some some fixed point O, then the inertia
matrix of B about P is given through the transformation

[IO ] = [Ic] +M [R̃c][R̃c]
T (4.19)

Note that the fixed point O does not have to be the origin, but it can be
any inertially fixed location. Also, note that when expressing [Ic] and Rc in
component form, for the matrix subtraction in Eq. (4.19) to be meaningful,
both [Ic] and Rc must be expressed in the same coordinate frame. The resulting
matrix [IO ] will also have components taken in the same frame.
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Example 4.1: Consider the oblate disk of mass m and radius r rolling on
the level surface as shown in Figure 4.3. The disk is attached to a vertical
shaft through a massless rod of length L. This horizontal rod is clamped to
the center of the disk and pinned to the vertical shaft which is rotating at
a constant rate φ̇. What is the normal force N that the surface is exerting
onto the disk?

φ

θr L
b̂r

b̂L
b̂θ

êφ

êL

ê3n̂3

n̂2

n̂1 O

Figure 4.3: Oblate Disk Rolling on Level Surface

Let the coordinate frame B : {b̂L, b̂θ, b̂r} be attached to the rolling disk,
E : {êL, êφ, ê3} be attached to the rotating support rod and N : {n̂1, n̂2, n̂3}
be an inertial frame. Since the disk is rolling without slip, the angular rate θ̇
can be related to the shaft rotating rate φ̇ through

θ̇ =
L

r
φ̇

The angular velocity vectors between the respective frames are

ωE/N = φ̇n̂3 = φ̇ê3 =

E



0
0

φ̇





ωB/E = −θ̇êL = −L
r
φ̇b̂L = −L

r

B



φ̇
0
0





Let Is be the disk inertia about its spin axis b̂L and It the transverse inertias,
then the disk inertia matrix about its center of mass is given in B frame
components by the diagonal matrix

[Ic] =

B



Is 0 0
0 It 0
0 0 It





Because the disk is axi-symmetric about the b̂L = êL axis, for this example
B[Ic] = E[Ic] must hold. Since the disk is rotating at an offset distance L
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about the n̂3 axis, to find the disk inertia matrix about the point O we must
use the parallel axis theorem in Eq. (4.19). The position vector of the disk
center of mass is

Rc = LêL =

E



L
0
0





The disk inertia matrix [IO] about point O is then given in E frame compo-
nents by

[IO] = [Ic] +m[R̃c][R̃c]
T =

E



Is 0 0
0 It +mL2 0
0 0 It +mL2





The angular momentum vector HO of the disk about the point O is the sum
of the angular momentum due to the shaft rotation about the n̂3 direction
and the rolling about the b̂L direction.

HO = [Ic]ωB/E + [IO]ωE/N

= −Is
L

r
φ̇êL +

(
It +mL2) φ̇n̂3

The inertial angular momentum vector rate ḢO is found using the transport
theorem.

ḢO = −
Ed

dt

(

Is
L

r
φ̇êL

)

− ωE/N × Is
L

r
φ̇êL +

Nd

dt

((
It +mL2

)
φ̇n̂3

)

= −IsL

r
φ̇2
êφ

The normal force is defined as N = N ê3 and the gravity force is given by
Fg = −mgê3. The torque about point O due to these forces is

LO = Rc × (Fg +N ) = L (mg −N) êφ

Note that by taking all moments about point O the reaction forces of the pin
joint at point O don’t appear. Using Euler’s equation ḢO = LO the normal
force component N can be solved for.

N = mg +
Is

r
φ̇2

The polar moment of inertia of a circular disk of mass m and radius r is

Is =
m

2
r2

which allows N to be written as

N = m
(

g +
r

2
φ̇2
)
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Eq. (4.15) is valid for any choice of body fixed coordinate axes with their
origin at the body center of mass. Note that the inertia matrix [I ] is calcu-
lated for a specific coordinate system. Let the reference frames B and F both
be proper body fixed coordinate systems. All angular velocities are measured
relative to an inertial reference frame N . Let the direction cosine matrix [FB]
transform vectors written in the B frame into vectors expressed in the F frame.
Therefore, using Eq. (3.17) we can write

FHc = [FB]BHc (4.20)
Fω = [FB]Bω (4.21)

Let us use the following notation. The matrix F[I ] is the inertia matrix written
in the respective F frame and B[I ] is the inertia matrix in the B frame. Eq. (4.15)
can then be written as

BHc = B[I ] Bω (4.22)

which is expanded using Eqs. (3.18), (4.20) and (4.21) to

FHc = [FB] B[I ] [FB]T Fω = F[I ]Fω (4.23)

Thus, an inertia matrix written in the B frame is rewritten into the F frame
through the similarity transformation

F[I ] = [FB] B[I ] [FB]T (4.24)

Whereas Eq. (3.17) maps a vector written in one frame into a vector expressed
in another frame, Eq. (4.24) performs the analogous operation for matrices. It
allows matrices with components taken in one frame to be expressed with com-
ponents taken in another frame through the use of the corresponding direction
cosine matrix between the two frames.

Given this similarity transformation, the following question arises. Is there
a judicious rotation matrix [C] which will rotate the current coordinate frame
B into a new frame F such that the inertia matrix in this F frame is diagonal?
The answer to this is yes, this is always possible. Let’s define F[I ] to be diagonal.
Then Eq. (4.24) can be rewritten as

[
C11 C12 C13

C21 C22 C23

C31 C32 C33

] B[
I11 I12 I13
I12 I22 I23
I13 I23 I33

]

=

F[
I1 0 0
0 I2 0
0 0 I3

][
C11 C12 C13

C21 C22 C23

C31 C32 C33

]

(4.25)

After carrying out the algebra and equating the proper components, Eq. (4.25)
can be reduced to

B



I11 I12 I13
I12 I22 I23
I13 I23 I33









Ci1
Ci2
Ci3



 = IiiF





Ci1
Ci2
Ci3



 (4.26)
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for i=1,2,3. Studying Eq. (4.26) it is evident that each row of the desired [C]
matrix is an eigenvector of the B[I ] inertia matrix. Assuming that vi are the
eigenvectors of B[I ] we have

[C] = [V ]T =





vT1
vT2
vT3



 (4.27)

The diagonal entries of the new F[I ] are the eigenvalues of the old B[I ] matrix.
Note that the eigenvectors will always be orthogonal since [C] is an orthogonal
rotation matrix. The new set of body fixed coordinate axes whose inertia ma-
trix is diagonal are called the principal axes. Many analytical problems only
consider the simpler case of diagonal inertia matrices since they assume that
the appropriate coordinate transformation has already been done. However, in
practice it is often difficult to find the exact principal axes of a given body. Here
a set of coordinate axes are typically chosen that are close, but not perfectly
aligned with the principal axes. The resulting inertia matrix will have dominant
diagonal and small off-diagonal terms.

Example 4.2: Find the rotation matrix [C] that will transform the current
coordinate frame to a new frame F which diagonalizes the inertia matrix

[I] =





3 1 1
1 5 2
1 2 4





Using Matlab, the eigenvector matrix [V ] and eigenvalue vector Λ are found
to be

[V ] =





0.32799 0.59101 0.73698
0.73698 0.32799 −0.59101
0.59101 −0.73698 0.32799



 Λ =





7.04892
2.30798
2.64310





Note numerical software packages will not necessarily return eigenvectors of
unit length. If they are not unit length, they would have to be normalized at
this point. In our case the eigenvectors returned are already of unit length.
Secondly, we must verify that the set of eigenvectors {v1,v2,v3} form a right-
handed set. By inspection it is clear that our first eigenvector v1 crossed with
the second eigenvector v2 does not yield the third eigenvector v3, but rather
−v3. To correct this we change the sign of v3 by simply reversing the sign
of each element of the third column of [V ]. The proper, orthogonal, right-
handed [V ] matrix is then

[V ] =





0.32799 0.59101 −0.73698
0.73698 0.32799 0.59101
0.59101 −0.73698 −0.32799





Since each row of the desired [C] matrix is an eigenvector of [I], then

[C] = [V ]T =





0.32799 0.73698 0.59101
0.59101 0.32799 −0.73698

−0.73698 0.59101 −0.32799




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The new principal inertia matrix components are the eigenvalues of [I].

FI1 = 7.04892 FI2 = 2.30798 FI3 = 2.64310

4.1.3 Euler’s Rotational Equations of Motion

Given the previous results, the equations of motion of a rigid body can be
developed in a very straight forward fashion. Using the transport theorem,
Euler’s equation is expressed as

Ḣc =
Bd
dt

(Hc) + ω × Hc = Lc (4.28)

Using Eqs. (4.15) and the fact that [I ] is constant as seen from the B frame for
a rigid body, the derivative of the angular momentum vector Hc as seen in the
B frame is written as

Bd

dt
(Hc) =

Bd

dt
([I ]) ω + [I ]

Bd

dt
(ω) = [I ]ω̇ (4.29)

The last step in Eq. (4.29) is true since the derivative of the body angular
velocity vector ω is the same as seen in the B and the N frame.

ω̇ =
Nd
dt

(ω) =
Bd
dt

(ω) + ω × ω =
Bd
dt

(ω) (4.30)

Substituting Eqs. (4.15), (4.29) into Eq. (4.28) yields

Lc = [I ]ω̇ + ω × ([I ]ω) (4.31)

Using Eq. (3.23), the famous Euler rotational equations of motion are1

[I ]ω̇ = −[ω̃][I ]ω + Lc (4.32)

By choosing a body fixed coordinate system which is aligned with the principal
body axes, the inertia matrix [I ] will be diagonal and Eq. (4.32) reduces to2

I11ω̇1 = −(I33 − I22)ω2ω3 + L1 (4.33a)

I22ω̇2 = −(I11 − I33)ω3ω1 + L2 (4.33b)

I33ω̇3 = −(I22 − I11)ω1ω2 + L3 (4.33c)

For the special case where the body is axially symmetric and no external
torques are present, the the rotational equations of motion in Eq. (4.33) are
reduced to

IT ω̇1 = −(I33 − IT )ω2ω3 (4.34a)

IT ω̇2 = (I33 − IT )ω3ω1 (4.34b)

I33ω̇3 = 0 (4.34c)
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where the transverse inertia IT is given by

IT = I11 = I22 (4.35)

From Eq. (4.34c) it is clear that body angular velocity component ω3 along
the axis of symmetry will remain constant. Using this fact while differentiating
Eq. (4.34a) and substituting Eq. (4.34b), a second order differential equation
for ω1 is found:

ω̈1 + (
I33
IT

− 1)2ω2
3ω1 = 0 (4.36)

Similarly, we can find the second order differential equation of ω2 to be

ω̈2 + (
I33
IT

− 1)2ω2
3ω2 = 0 (4.37)

Note that these differential equations have the standard form of undamped
oscillators. Therefore the solution of ω1(t) and ω2(t) are given by

ω1(t) = A1 cosωpt+B1 sinωpt (4.38a)

ω2(t) = A2 cosωpt+B2 sinωpt (4.38b)

where ωp is defined as

ωp =

(
I33
IT

− 1

)

ω3 (4.39)

Let ωi0 be the initial body angular velocity components , then the constants A1

and A2 must be

A1 = ω10
A2 = ω20

(4.40)

Differentiating Eqs (4.38a) and (4.38b) and substituting them into Eqs. (4.34a)
and (4.34b), the constants B1 and B2 are found to be

B1 = −A2 B2 = A1 (4.41)

The closed form solution of the body angular velocity components are given for
this axially symmetric, torque-free case through

ω1(t) = ω10
cosωpt− ω20

sinωpt (4.42a)

ω2(t) = ω20
cosωpt+ ω10

sinωpt (4.42b)

ω3(t) = ω30
(4.42c)

4.1.4 Kinetic Energy

The kinetic energy of a continuous system is shown in Eq. (2.84) to be

T =
1

2
MṘc · Ṙc +

1

2

∫

B

ṙ · ṙdm = Ttrans + Trot (4.43)
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Since we are now only dealing with non-deformable rigid bodies, the kinetic
energy component Trot only describes the rotational energy of the rigid body B.

Trot =
1

2

∫

B

ṙ · ṙdm (4.44)

After substituting Eq. (4.8), the rotational kinetic energy of a rigid body is
expressed as

Trot =
1

2

∫

B

(ω × r) · (ω × r) dm (4.45)

After making use of the trigonometric identity

(a × b) · c ≡ a · (b × c) (4.46)

the rotational kinetic energy is rewritten as

Trot =
1

2
ω ·
∫

B

r × (ω × r) dm (4.47)

Note that the integral is exactly equal to Hc in Eq. (4.9). Therefore, after
using Eqs. (4.9) and (4.15) the rigid body rotational kinetic energy expression
is simplified to the form

Trot =
1

2
ω · Hc =

1

2
ωT [I ]ω (4.48)

The total kinetic energy of a rigid body B is the sum of translational and
rotational energy as shown in Eq. (4.43) and is given by

T =
1

2
MṘc · Ṙc +

1

2
ωT [I ]ω (4.49)

To find the work done onto a rigid body B, let us find the derivative of
Eq. (4.48).

Ṫrot =
1

2
ω̇ · Hc +

1

2
ω · Ḣc (4.50)

Using Eq. (4.1) and (4.15) this is rewritten as

Ṫrot =
1

2
ω̇T [I ]ω +

1

2
ω · Lc (4.51)

After substituting Eq. (4.32) and simplifying the resulting expression, the rota-
tional kinetic energy rate for a rigid body is found to be

Ṫrot = ω · Lc (4.52)

Using Eq. (2.87), the total kinetic energy rate is then given by

Ṫ = F · Ṙc + Lc · ω (4.53)
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If the force vector F is conservative and due to a potential function Vc(Rc) and
the torque vector Lc is also conservative and due to a potential function VT ,
then Eq. (4.53) can be written as

dT

dt
+
dVc
dt

+
dVT
dt

= 0 (4.54)

which states that the total system energy E = T + Vc + VT is conserved in this
case.

To find the work W done onto the rigid body B between two time steps,
Eq. (4.53) is integrated once to yield

W = T (t2) − T (t1) =

∫ t2

t1

F · Ṙcdt+

∫ t2

t1

Lc · ωdt (4.55)

Example 4.3: Let us investigate the dynamical system shown in Figure 4.4
where one solid disk of radius r and mass m is rolling off another disk of
radius R without slip. The coordinate frame N = {n̂1, n̂2, n̂3} is an inertial
frame with it’s origin O attached to the center of the stationary disk of radius
R. A second coordinate from E = {êr, êθ, ê3} has the same origin O. Note
that er tracks the heading of the disk center O′ relative to O. The angle θ
specifies the angular position of the disk center O′, while the angle φ defines
the orientation of the rolling disk relative to the inertial n̂2 axis.

O

O'

φ

r

R
θ

n̂1

n̂2 êr

êθ

Figure 4.4: Disk Rolling Off Another Disk

Since the disk rolls without slip, the angles θ and φ must be related through

(R + r)θ = rφ

First, let’s find an expression for the normal force that the lower disk exerts
onto the rolling disk. The center of mass position vector of the rolling disk is
given through

rc = (R+ r)êr
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The angular velocity of the disk center of mass to the N frame is

ωE/N = θ̇ê3

Upon differentiating r̂c, the inertial velocity and acceleration of the disk center
of mass are found to be

ṙc = (R+ r)θ̇êθ

r̈c = −(R+ r)θ̇2êr + (R + r)θ̈êθ

Let N be the normal force component acting along the êr direction and Ff

be the frictional force component acting along the êθ direction. Considering
the constant gravity field case, the total force vector acting on the rolling disk
is given by

F = (N −mg cos θ) êr + (mg sin θ − Ff ) êθ

The Super Particle Theorem for a continuous body states that

mr̈c = F

which leads to

−m(R+ r)θ̇2êr +m(R+ r)θ̈êθ = (N −mg cos θ) êr + (mg sin θ − Ff ) êθ

Equating êr and êθ components expressions are found for the normal force
component N and the friction component Ff .

N = mg cos θ −m(R+ r)θ̇2

Ff = mg sin θ −m(R + r)θ̈

To write Ff purely in terms of θ and not θ̈ we study the rotational motion of
the disk about its center of mass. The torque LO′ experienced by the disk is

LO′ = rFf

For this simple planar disk Euler’s rotational equations of motion simplify to

Icφ̈ = LO′ = rFf

where Ic is the polar mass moment of inertia of the disk given by

Ic =
m

2
r2

Using the relationship φ̈ = R+r
r
θ̈ the angular acceleration θ̈ is expressed as

θ̈ =
2Ff

m(R+ r)

The friction force component Ff can now be expressed as

Ff =
1

3
mg sin θ
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Note that the friction component only depends on the angle θ, and not on
the disk radius r. The only assumption made here is that the disk inertia
satisfies the formula used for Ic.

To find at what angle θ the rolling disk will leave the lower disk, the normal
force component N is set to zero. This leads to the first condition that θ
must satisfy when the disk leaves the surface.

mg cos θ = m(R+ r)θ̇2

Let the scalar function V (θ) be the potential function of the rolling disk.

V (θ) = mg(R+ r) cos θ

The kinetic energy of the disk is given by

T =
1

2
mṙc · ṙc +

1

2
Icφ̇

2 =
3

4
m (R + r)2 θ̇2

Recall that φ is measured relative to an inertial axis. Since the dynamical
system is conservative, the total energy is conserved. The initial energy E0 is

E0 = mg(R+ r)

The total energy at θ is

E = mg(R+ r) cos θ +
3

4
m (R + r)2 θ̇2

Equating the two energy states leads to the expression

θ̇2 =
4

3
g
(1 − cos θ)

(R+ r)

Substituting this θ̇2 into the first condition on θ (setting the normal force
component N equal to zero) leads to

θ = cos−1

(
4

7

)

= 55.15 degrees

Thus the normal force component becomes zero at the same angle of θ
regardless of the disk mass m and radius r. Again, the underlying assumption
is that Ic = m

2
r2 is satisfied.

4.2 Torque-Free Rigid Body Rotation

4.2.1 Energy and Momentum Integrals

If no external torques are acting on a system, then Eqs. (2.38), (2.72) and
(2.101) show that the total angular momentum vector H is constant. This
truth does not depend on whether the system is a single particle, a collection
of particles or a continuous body. If no external forces are present, then the
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rigid body rotational kinetic energy will also be a constant as seen in Eq. (4.52).
Let us write the the angular momentum vector H in terms of body frame B
components as

H = BH = H1b̂1 +H2b̂2 +H3b̂3 (4.56)

Note that Ḣ is a derivative taken relative to the inertial reference frame N .
Since Ḣ = 0, the angular momentum vector will appear constant only when
seen from the inertial N frame. Relative to the body fixed B reference frame, the
vector H will generally not appear to be constant but rotating. Therefore the
B frame Hi vector components will be time varying. However, the magnitude
of H will be constant in all frames.

The present discussion will assume that the body fixed coordinate axes are
all aligned with principal inertia axes, therefore the rigid body inertia matrix
is diagonal. For notational compactness, let us use the short-hand notation
Ii = Iii. The angular momentum vector is then written as

H = BH =

B



H1

H2

H3



 =

B



I1ω1

I2ω2

I3ω3



 (4.57)

Since the angular momentum magnitude is constant, all possible angular veloc-
ities must lie on the surface of the following momentum ellipsoid.

H2 = HTH = I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3 (4.58)

Because the kinetic energy is constant too, the angular velocities must also lie
on the surface following energy ellipsoid.

T =
1

2
I1ω

2
1 +

1

2
I2ω

2
2 +

1

2
I3ω

2
3 (4.59)

Thus, the dynamical torque-free rotation of a rigid body must be such that
the corresponding body angular velocity vector ω(t) satisfies both Eqs. (4.58)
and (4.59). The geometric interpretation of this is that ω(t) must lie on the
intersection of the momentum and energy ellipsoid surfaces.

To more easily visualize the intersection of these two ellipsoids, they are writ-
ten in terms of the B frame angular momentum vector components Hi instead
of the body angular velocity vector components ωi. Using Hi as independent
coordinates, the momentum ellipsoid becomes the momentum sphere

H2 = H2
1 +H2

2 +H2
3 (4.60)

and the energy ellipsoid is written as

1 =
H2

1

2I1T
+

H2
2

2I2T
+

H2
3

2I3T
(4.61)
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where
√

2IiT are the corresponding semi-axes. In order for the torque-free
rotation to satisfy both Eqs. (4.60) and (4.61), the energy ellipsoid and the mo-
mentum sphere must intersect. The intersection forms a trajectory of feasible
ω(t) as illustrated in Figure 4.5. This geometrical interpretations is very use-
ful to make qualitative studies on the nature and limiting properties of large
rotations.

Momentum SphereEnergy EllipsoidTrajectory of 

possible ()ωtH

1
H

2
H3 Figure435:GeneralIntersectionoftheMomentumSphereandtheEn-ergyEllipsoidClearly,foragiven|H|,onlyacertainrangeofkineticenergyispossible.Forthecurrentdiscussion,letusholdtheangularmomentumvectormagnitudeconstantandsweepthekineticenergythroughitstwoextrema.Also,assumethattheinertiamatrixentriesIiareorderedsuchthatI1≥I2≥I3(416m)Withthisorderingofinertias,thelargestkineticenergyellipsoidsemi-axis√ 2I1Toccursabouttheb̂1axisasshowninFigure435,andthesmallestsemi-axisisabouttheb̂3axis.Eq.(4161)showsthatvaryingTwillonlyuniformlyscalethecorrespondingkineticenergyellipsoid.TheoverallshapeandaspectratiooftheellipsoidwillremainthesameforeachchoiceinT.ThreespecialenergycasesareshowninFigure436.Sincethekineticenergyellipsoidandthemomentumspheremustintersect,thesmallestpossibleT wouldbescaledtheenergyellipsoidsuchthatitslargestsemi-axisisequaltoH=|H|. ThemomentumsphereperfectlyenvelopstheenergyellipsoidasshowninFigure436(i).TheonlypointsofintersectionareatBH=±H ˆ

b1(4163)
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Therefore, for this minimum kinetic energy case, the rigid body B is spinning
purely about its axis of maximum inertia b̂1 and the corresponding kinetic
energy is

Tmin =
H2

2I1
(4.64)

As the kinetic energy T is enlarged, the next special case arises when the
intermediate energy ellipsoid semi-axis is equal to H as shown in Figure 4.6(ii).
The intersection curve between the momentum sphere and the energy ellipsoid
is called the sepratrix. The kinetic energy for any motion along the sepratrix is
given by

Tint =
H2

2I2
(4.65)

Note that any small departure from the pure spin case about the intermediate
inertia axis b̂2 will result in general “tumbling” motion. This result agrees well
with the common experience that it is very difficult to throw an object into the
air and have it spin purely about the intermediate inertia axis without starting
to turn and twist about the other axes.

As the kinetic energy is enlarged to its largest possible value, the correspond-
ing kinetic energy ellipsoid perfectly envelops the momentum sphere as shown
in Figure 4.6(iii). This maximum kinetic energy case

Tmax =
H2

2I3
(4.66)

corresponds to a pure spin about the smallest axis of inertia b̂3 since the only
intersection point is at

BH = ±H b̂3 (4.67)

For a general rigid body motion as shown in Figure 4.5, once the initial
kinetic energy T and angular momentum vector H are established, the angular
velocity vector ω will theoretically trace out a particular intersection curve
forever. The assumption here is that the body B is perfectly rigid and that
no energy is lost (i.e. no internal dampening, heat loss, ...). However, this
assumption is highly idealistic. No body is perfectly rigid and devoid of internal
damping. Therefore real rigid bodies spinning in a torque free environment do
actually lose energy, though typically at a slow rate.

Figure 4.7 shows a family of energy ellipsoid and momentum sphere inter-
sections for varying levels of kinetic energy. Note that except for the sepratrix
case, all feasible ω(t) paths form closed trajectories. A typical example of a
torque-free rigid body rotation would be a rigid satellite launched into an Earth
orbit. Once the satellite is spun up about a particular axis and the thrusters are
shut down, the satellite won’t experience any external torques and the H vector
will remain constant. We are ignoring here the affects of atmospheric and solar
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(ψ, θ, φ). However, the method used here to derive the equations of motion could
be used for any set of attitude coordinates presented in Chapter 3. Assume the
rigid body has a coordinate system B attached to it which is aligned with the
principal inertia axes and let N be an inertial reference frame. For the free
motion of a rigid body the angular momentum vector H will remain constant.
Using a trick due to Jacobi, we can therefore always align our inertial space unit
axes n̂i such that n̂3 is aligned with −H .

H = NH = Hn̂3 =

N



0
0

−H



 (4.68)

The direction cosine matrix [BN ] translates any vector written in N frame
components into a vector in B frame components as shown in Eq. (3.17).

BH = [BN ] NH (4.69)

The direction cosine matrix in terms of the (3-2-1) Euler angles is given in
Eq. (3.33). After using Eq. (4.68) to carry out the matrix multiplication and
equating the resulting B frame components to Eq. (4.56) we obtain

H1 = H sin θ = I1ω1 (4.70a)

H2 = −H sinφ cos θ = I2ω2 (4.70b)

H3 = −H cosφ cos θ = I3ω3 (4.70c)

which can be solved for the body angular velocity vector ω as





H
I1

sin θ

−H
I2

sinφ cos θ

−H
I3

cosφ cos θ



 =





ω1

ω2

ω3



 (4.71)

To find an expression for the individual Euler angle rates (ψ̇, θ̇, φ̇), we substitute
Eq. (3.55) into Eq. (4.71) and obtain the following equations of motion for a
torque-free rigid body.

ψ̇ = −H
(

sin2 φ

I2
+

cos2 φ

I3

)

(4.72a)

θ̇ =
H

2

(
1

I3
− 1

I2

)

sin 2φ cos θ (4.72b)

φ̇ = H

(
1

I1
− sin2 φ

I2
− cos2 φ

I3

)

sin θ (4.72c)

Note that ψ̇ in Eq. (4.72a) cannot be positive, while θ̇ and φ̇ can have either
sign.
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4.2.3 Axisymmetric Rigid Body Motion

The equations of motion in Eqs. (4.72) are valid for a general rigid body with
the body fixed axes aligned with the principal inertia axes. Now we would
like to study a particular case of these equations where the rigid body is is
axisymmetric. Without loss of generality, assume that I2 = I3. Then the yaw,
pitch and roll angle rates in Eqs. (4.72) simplify to

ψ̇ = −H
I2

(4.73a)

θ̇ = 0 (4.73b)

φ̇ = H

(
I2 − I1
I1I2

)

sin θ (4.73c)

Having chosen the inertial angular momentum vector NH to be in the positive n̂3

direction, the precession rate ψ̇ will be a positive constant for an axisymmetric
rigid body. The relative spin rate φ̇ is also a constant like precession rate.
However, the sign of φ̇ in Eq. (4.73c) depends on the relative size of I1 and I2 and
on the pitch angle θ. On the other hand, the pitch rate θ̇ is zero for axisymmetric
rigid body rotations, therefore the pitch angle θ will remain constant throughout
the motion.

b̂1

Ω
φ̇

ψ̇

ω

θ

θ

H

n̂3

Ht

Ha

Figure 4.8: Angular Velocity and Momentum Vector Relationship for
the Case I2 > I1

Let Ω = ω1 be the body spin rate about its axis of symmetry b̂1 as shown
in Figure 4.8. Using Eq. (4.70a) it is expressed as

Ω =
H

I1
sin θ (4.74)
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For a positive pitch angle 0 ≤ θ ≤ π/2 the body spin rate Ω about the sym-
metry axis must be positive. Instead of being written in terms of the angular
momentum magnitude H , the precession rate ψ̇ and the relative spin rate φ̇ can
now be expressed in terms of Ω as

ψ̇ = −I1
I2

Ω

sin θ
(4.75)

φ̇ =
I2 − I1
I2

Ω (4.76)

The angular momentum vector along the axis of symmetry b̂1 is labeled in
Figure 4.8 as Ha. It is defined as

Ha = I1Ωb̂1 (4.77)

As is easily seen in Figure 4.8, for positive pitch angles θ and I2 > I1, the
axisymmetric rigid body B will have a positive spin rate about b̂1.

Since the pitch angle θ is shown to remain constant during this torque-free
rotation, the resulting motion can be visualized by two cones rolling on each
other. Figure 4.9 shows the two cases where either I2 > I1 or I2 < I1.

ω
b̂1

H β

α

Space Cone

Body Cone

(i)I

2

>I1
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cone will lie on the inside of the body cone and the resulting motion is called a
retrograde precession.

4.3 Momentum Exchange Devices

Instead of using thrusters to perform precise spacecraft attitude maneuvers, typ-
ically control moment gyros (CMGs) or reaction wheels (RWs) are used. Either
devices can change its internal angular momentum vector and thus, through
Euler’s equation, produce an effective torque on the spacecraft. A single-gimbal
CMG contains a wheel spinning at a constant rate. To exert a torque onto the
spacecraft this wheel is gimbaled or rotated about a fixed axis.3–5 The rotation
axis and rotation angle are referred to as the gimbal axis and gimbal angle re-
spectively. A separate feedback control loop is used to spin up the rotor to the
required spin rate and maintain it. The advantage of a CMG is that a rela-
tively small gimbal torque input is required to produce a large effective torque
output on the spacecraft. This makes CMGs a very popular devices for reori-
enting large space structures such as the space station. The drawback of the
single-gimbal CMGs is that their control laws can be fairly complex and that
such CMG systems encounter certain singular gimbal angle configurations. At
these singular configurations the CMG cluster is unable to produce the required
torque exactly, or any torque at all if the required torque is orthogonal to the
plane of allowable torques. Several papers deal with this issue and present var-
ious solutions.3–6 However, even with singularity robust steering laws or when
various singularity avoidance strategies are applied, the actual torque produced
by the CMG cluster is never equal to the required torque when maneuvering in
the proximity of a singularity. The resulting motion may be stable, but these
path deviations can be highly undesirable in some applications. Double-gimbal
CMGs have fewer problems with singularities. However, they are also much
more costly and complicated devices than the single-gimbal CMGs.

Reaction wheels, on the other hand, have a wheel spinning about a body
fixed axis whose spin speed is variable. Torques are produced on the spacecraft
by accelerating or decelerating the reaction wheels.1, 7 RW systems don’t have
singular configurations and typically have simpler control laws than CMG clus-
ters. Drawbacks to the reaction wheels include a relatively small effective torque
being produced on the spacecraft and the possible reaction wheel saturation. To
exert a given torque onto a spacecraft, reaction wheels typically requires more
energy than CMGs.

Variable Speed Control Moment Gyroscopes (VSCMGs) combine positive
features of both the single-gimbal CMGs and the RWs. The spinning disk can
be rotated or gimbaled about a single body fixed axis, while the disk spin rate is
also free to be controlled.8, 9 This adds an extra degree of control to the classical
single-gimbal CMG device. Note that adding this variable speed feature would
not require the single-gimbal CMG to be completely reengineered. These devices
already have a separate feedback loop that maintains a constant spin rate. What
would need to be changed is that the torque motor controlling the RW spin rate
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would need to be larger, and the constant speed law abandoned. With this extra
control singular configurations, in the classical CMG sense, will not be present.
This section will first develop the equations of motion of a spacecraft containing
VSCMGs using Euler’s equation. The resulting formulation contains the two
classical cases of having either pure RWs or CMGs.

WgÇg
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t

g

ˆ

s

g

ˆ g
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The angular velocity vector of the reaction wheel frame W relative to the gimbal
frame G is

ωW/G = Ωĝs (4.81)

To indicate in which reference frame vector or matrix components are taken,
a superscript letter is added before the vector or matrix name. Since the G frame
unit axes are aligned with the principal gimbal frame axes, the gimbal frame
inertia matrix [IG] expressed in the G frame is the constant diagonal matrix.

[IG] = G [IG] =

G



IGs
0 0

0 IGt
0

0 0 IGg



 (4.82)

where IGs
, IGt

and IGg
are the gimbal frame inertias about the corresponding

spin, transverse and gimbal axes. The reaction wheel inertia about the same
axes are denoted by IWs

and IWt
= IWg

.

[IW ] = W [IW ] =

W



IWs
0 0

0 IWt
0

0 0 IWt



 (4.83)

Note that since the disk is symmetric about the ĝs axis W [IW ] = G [IW ]. In
practice IWs

is typically much larger than any of the other gimbal frame or
RW inertias. In this development the RW and gimbal frame inertias are not
combined early on into one overall VSCMG inertia matrix; rather, they are
retained as separate entities until later into the development. This will allow
for a precise formulation of the actual physical motor torques that drive the
RWs or the CMGs.

The G frame orientation is related to the B frame orientation through the
direction cosine matrix [BG] which is expressed in terms of the gimbal frame
unit direction vectors as

[BG] = [ĝs ĝt ĝg ] (4.84)

In Eq. (4.84) the ĝi vector components are taken in the B frame. The rotation
matrix [BG] maps a vector with components taken in the G frame into a vector
with components in the B frame. The constant diagonal inertia matrices G [IG]
and G [IW ] are expressed with components taken in the B frame as the time
varying matrices2, 10

B[IG] = [BG] G [IG] [BG]T = IGs
ĝsĝ

T
s + IGt

ĝtĝ
T
t + IGg

ĝg ĝ
T
g (4.85)

B[IW ] = [BG] G [IW ] [BG]T = IWs
ĝsĝ

T
s + IWt

ĝtĝ
T
t + IWt

ĝg ĝ
T
g (4.86)

The total angular momentum of the spacecraft and the VSCMG about the
spacecraft center of mass is given by

H = HB + HG + HW (4.87)
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where HB is the angular momentum component of the spacecraft, HG is the
angular momentum of the gimbal frame and HW is the angular momentum of
the RW. Let N be an inertial reference frame and ωB/N be the relative angular
velocity vector, then HB is written as

HB = [Is]ωB/N (4.88)

The matrix [Is] contains the spacecraft inertia terms and the VSCMG inertia
components due to the fact that the VSCMG center of mass is not located at
the spacecraft center of mass. Note that B[Is] is a constant matrix as seen from
the B frame. The gimbal frame angular momentum HG is given by

HG = [IG]ωG/N (4.89)

where ωG/N = ωG/B + ωB/N . Using Eqs. (4.80), (4.82) and (4.85) this is
rewritten as

HG =
(
IGs

ĝsĝ
T
s + IGt

ĝtĝ
T
t + IGg

ĝg ĝ
T
g

)
ωB/N + IGg

γ̇ĝg (4.90)

To simplify the following notation, let the variables ωs, ωt and ωg be the pro-
jection of ωB/N onto the G frame unit axes.

ωs = ĝTs ωB/N (4.91a)

ωt = ĝTt ωB/N (4.91b)

ωg = ĝTg ωB/N (4.91c)

The angular momentum HG is then written as

HG = IGs
ωsĝs + IGt

ωtĝt + IGg
(ωg + γ̇) ĝg (4.92)

The RW angular momentum HW is given by

HW = [IW ]ωW/N (4.93)

where ωW/N = ωW/G + ωG/B + ωB/N . Using analogous definitions as for HG,
HW is rewritten as

HW = IWs
(ωs + Ω) ĝs + IWt

ωtĝt + IWt
(ωg + γ̇) ĝg (4.94)

To simplify the notation from here on, let us use the short hand notation
ω = ωB/N . In some calculations it will be convenient to express ω in the G
frame as

Gω = ωsĝs + ωtĝt + ωg ĝg (4.95)

The equations of motion of a system of rigid bodies follow from Euler’s equation

Ḣ = L (4.96)
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if all moments are taken about the center of mass. The vector L represents the
sum of all the external torques experienced by the spacecraft. To find the inertial
derivatives of HG and HW , the inertial derivatives of the vectors {ĝs, ĝt, ĝg}
are required. Using the transport theorem we find

˙̂gs =
Bd
dt

(ĝs) + ω × ĝs = (γ̇ + ωg) ĝt − ωtĝg (4.97a)

˙̂gt =
Bd

dt
(ĝt) + ω × ĝt = − (γ̇ + ωg) ĝs + ωsĝg (4.97b)

˙̂gg =
Bd
dt

(ĝg) + ω × ĝg = ωtĝs − ωsĝt (4.97c)

since the B frame derivatives are

Bd

dt
(ĝs) = γ̇ĝt (4.98)

Bd
dt

(ĝt) = −γ̇ĝs (4.99)

Bd
dt

(ĝg) = 0 (4.100)

as can be verified through Eqs. (4.78) and (4.79). The inertial derivatives of the
G frame body angular velocity components are

ω̇s = ˙̂g
T

s ω + ĝTs ω̇ = γ̇ωt + ĝTs ω̇ (4.101a)

ω̇t = ˙̂g
T

t ω + ĝTt ω̇ = −γ̇ωs + ĝTt ω̇ (4.101b)

ω̇g = ˙̂g
T

g ω + ĝTg ω̇ = ĝTg ω̇ (4.101c)

Using these definitions the inertial derivative of HW is expressed as

ḢW = ĝsIWs

(

Ω̇ + ĝTs ω̇ + γ̇ωt

)

+ ĝt
(
IWs

γ̇ωs + IWt
ĝTt ω̇ + (IWs

− IWt
)ωsωg + IWs

Ω (γ̇ + ωg)
)

+ ĝg
(
IWt

ĝTg (ω̇ + γ̈) + (IWt
− IWs

)ωsωt + IWs
Ωωt

)

(4.102)

Let LW be the torque the gimbal frame exerts on the RW. Isolating the
dynamics of the RW, Euler’s equation states that ḢW = LW . The torque
components in the ĝt and ĝg direction are produced by the gimbal frame itself.
However, the torque component us about the ĝs axis is produced by the RW
torque motor. Therefore, from Eq. (4.102) the spin control torque us is given
by

us = IWs

(

Ω̇ + ĝTs ω̇ + γ̇ωt

)

(4.103)

After differentiating Eq. (4.92) and using the definitions in Eqs. (4.97) and



142 EULERIAN MECHANICS CHAPTER 4

(4.101), ḢG is expressed as

ḢG = ĝs
((
IGs

− IGt
+ IGg

)
γ̇ωt + IGs

ĝTs ω̇ +
(
IGg

− IGt

)
ωtωg

)

+ ĝt
((
IGs

− IGt
− IGg

)
γ̇ωs + IGt

ĝTt ω̇ + (IGs
− IGt

)ωsωg
)

+ ĝg
(
IGg

(
ĝTg ω̇ + γ̈

)
+ (IGt

− IGs
)ωsωt

)

(4.104)

From here on it is convenient to combine the inertia matrices of the RW and
the gimbal frame into one VSCMG inertia matrix [J ] as

[J ] = [IG] + [IW ] =

G



Js 0 0
0 Jt 0
0 0 Jg



 (4.105)

Let LG be the torque vector that the combined RW and CMG system exerts
onto the spacecraft, then Euler’s equation states that ḢG+ḢW = LG. The LG

torque component about the ĝg axis is produced by the gimbal torque motor.
Adding Eqs. (4.102) and (4.104) and making use of the definition in Eq. (4.105),
the gimbal torque ug is then expressed as

ug = Jg
(
ĝTg ω̇ + γ̈

)
− (Js − Jt)ωsωt − IWs

Ωωt (4.106)

The inertial derivative of HB is simply

ḢB = [Is]ω̇ + ω × [Is]ω (4.107)

To further simplify the equations of motions, the total spacecraft inertia matrix
[I ] is defined as

[I ] = [Is] + [J ] (4.108)

Substituting Eqs. (4.102), (4.104) and (4.107) back into Eq. (4.96) and making
use of the definition in Eq. (4.108), the equations of motion for a rigid spacecraft
containing one VSCMG are

[I ]ω̇ = −ω × [I ]ω − ĝs

(

Jsγ̇ωt + IWs
Ω̇ − (Jt − Jg)ωtγ̇

)

− ĝt ((Jsωs + IWs
Ω) γ̇ − (Jt + Jg)ωsγ̇ + IWs

Ωωg)

− ĝg (Jg γ̈ − IWs
Ωωt) + L

(4.109)

where the identity

ω × [J ]ω = (Jg − Jt)ωtωgĝs + (Js − Jg)ωsωgĝt + (Jt − Js)ωsωsĝg (4.110)

is used to combine terms into ω × [I ]ω. From here on the common assumption
will be made that Js ≈ IWs

, i.e,. that the gimbal frame inertia IGs
about the

spin axis is negligible. The corresponding equations of motion are simplified to

[I ]ω̇ = −ω × [I ]ω − ĝs

(

Js

(

Ω̇ + γ̇ωt

)

− (Jt − Jg)ωtγ̇
)

− ĝt (Js (ωs + Ω) γ̇ − (Jt + Jg)ωsγ̇ + JsΩωg)

− ĝg (Jg γ̈ − JsΩωt) + L

(4.111)
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Note that the equations of motion in Eq. (4.111) incorporates both classical
cases of having either a single-gimbal CMG or a RW attached.

Example 4.4: To reduce the general equations of motion in Eq. (4.111)
to that of a spacecraft with a single CMG, the RW spin speed is forced to
remain constant by setting Ω̇ = 0. Quickly the standard single-gimbal CMG
equations of motion are retrieved to be

[I]ω̇ = −ω × [I]ω − ĝs (Jsγ̇ωt − (Jt − Jg)ωtγ̇)

− ĝt (Js (ωs + Ω) γ̇ − (Jt + Jg)ωsγ̇ + JsΩωg)

− ĝg (Jg γ̈ − JsΩωt) +L

This is also the form that is commonly used when designing control laws since
CMGs are controlled at a gimbal velocity γ̇ level. There is no need to have
the gimbal motor torque ug explicitly present in this formulation.

To retrieve the RW equations of motion from Eq. (4.111), the gimbal rates
and accelerations γ̇ and γ̈ are set to zero. The resulting equations of motion
of a spacecraft with a single RW attached are

[I]ω̇ = −ω × [I]ω − ĝsJsΩ̇ − JsΩ (ωgĝt − ωtĝg) +L

which can be simplified using the cross product operator to be

[I]ω̇ = −ω × [I]ω − ĝsJsΩ̇ − ω × JsΩĝs +L

However, many times it is convenient to have these equations of motion
written in terms of the us instead of Ω̇ to which results in control laws
that directly find the required RW motor torque. The motor torque given in
Eq. (4.103) is simplified for this case to be

us = Js

(

Ω̇ + ĝT
s ω̇
)

(4.112)

Extracting the Js component of the inertia matrix [I], the modified inertia
matrix [IRW ] is defined as

[IRW ] = [Is] + Jtĝtĝ
T
t + Jg ĝgĝ

T
g

which allows the equations of motion to be written in the standard form terms
of us.

7

[IRW ]ω̇ = −ω × [IRW ]ω − ω × Jsĝs (ωsΩ) − usĝs +L (4.113)

4.3.2 Spacecraft with Multiple VSCMGs

To obtain the equations of motion of a rigid spacecraft with several VSCMGs
attached, the effects of each ḢG and ḢW are added up. To simplify notation,
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let us define the following useful matrices. The 3xN matrices [Gs], [Gt] and [Gg ]
contain the unit direction vectors of each VSCMG gimbal frame.

[Gs] = [ĝs1 · · · ĝsN
] (4.114a)

[Gt] = [ĝt1 · · · ĝtN ] (4.114b)

[Gg ] = [ĝg1 · · · ĝgN
] (4.114c)

The total spacecraft inertia matrix is expressed as

[I ] = [Is] +

N∑

i=1

[Ji] = [Is] +

N∑

i=1

Jsi
ĝsi

ĝTsi
+ Jti ĝti ĝ

T
ti + Jgi

ĝgi
ĝTgi

(4.115)

The torque-like quantities τsi
, τti and τgi

are defined as

τs =








Js1

(

Ω̇1 + γ̇1ωt1

)

− (Jt1 − Jg1)ωt1 γ̇1

...

JsN

(

Ω̇N + γ̇NωtN

)

− (JtN − JgN
)ωtN γ̇N








(4.116a)

τs =






Js1 (Ω1 + ωs1) γ̇1 − (Jt1 + Jg1)ωs1 γ̇1 + Js1Ω1ωg1
...

JsN
(ΩN + ωsN

) γ̇N − (JtN + JgN
)ωsN

γ̇N + JsN
ΩNωgN




 (4.116b)

τg =






Jg1 γ̈1 − Js1Ω1ωt1
...

JgN
γ̈N − JsN

ΩNωtN




 (4.116c)

The rotational equations of motion for a rigid body containing N VSCMGs is
then written compactly as9

[I ]ω̇ = −ω × [I ]ω − [Gs]τs − [Gt]τt − [Gg ]τg + L (4.117)

The rotational kinetic energy T of a rigid spacecraft with N VSCMGs is
given by

T =
1

2
ωT [Is]ω +

1

2

N∑

i=1

Jsi
(Ωi + ωsi

)
2
+ Jtiω

2
ti + Jgi

(ωgi
+ γ̇i)

2
(4.118)

The kinetic energy rate, also known as the work rate, is found after differenti-
ating Eq. (4.118) and performing some lengthy algebra to be

Ṫ = ωTL +

N∑

i=1

γ̇iugi
+ Ωiusi

(4.119)

This energy rate for this system of rigid bodies was apriori known from the
Work-Energy-Rate principle11 shown in Eq. (4.53) and is thus a validation of the
presented equations of motion. Also, checking the kinetic energy time history
is a convenient way to check the accuracy of the numerical simulations.
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Example 4.5: The equations of motion of a spacecraft with several single-
gimbal CMGs or RWs attached can easily be extracted from Eq. (4.117). This
example discusses the generalization of Eq. (4.113) for the case of multiple
RWs. The inertia matrix [IRW ] is now defined as

[IRW ] = [Is] +

N∑

i=1

(

Jti ĝti
ĝ

T
ti

+ Jgi ĝgi
ĝ

T
gi

)

Let the i-th components of the vector us be the RW motor torques given in
Eq. (4.112) and let the vector hs be defined as

hs =







...
Jsi

(ωsi
+ Ωi)

...







The desired equations of motion are then written as

[IRW ]ω̇ = −ω × [IRW ]ω − ω × [Gs]hs − [Gs]us +L (4.120)

Often three RWs are built into a spacecraft such that their spin axis ĝsi
align

with the principal body axis. For this special case the matrix [Gs] is reduced
to the identity matrix. The equations of motion for this non-redundant RW
setup are

[IRW ]ω̇ = −ω × [IRW ]ω −ω × hs − us +L

While the redundant setup with a general [Gs] matrix can accommodate RW
failures, the minimal RW setup cannot have one control wheel fail and still
perform general three dimensional rotations.

4.4 Gravity Gradient Satellite

An object in Low Earth Orbit (LEO) does not experience the same gravitational
pull on all parts of its body. As is described in Newton’s Law of Universal
Gravitation in Eq. (2.4), portions closer to Earth are attracted more strongly
than portions further removed. While this force is relatively weak, it is enough
to stabilize some satellites in a vertical orientation relative to the local horizon.
The oldest and most famous gravity gradient stabilized satellite in Earth’s orbit
is the moon. This section will study the effect of the gravity gradient torque on
a rigid object in an inverse square gravity field.

4.4.1 Gravity Gradient Torque

Assume an object B is in LEO and its center of mass has the inertial position
vector Rc relative to Earth’s center. Let the vector LG be the external gravity
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torque experienced by a rigid object measured about its center of mass. For a
solid body this torque is defined through Eq. (2.99) to be

LG =

∫

B
r × dFG (4.121)

where the vector r is the position vector of an infinitesimal body element relative
to the center of mass and FG is the gravitational attraction experienced by this
element. Using Newton’s Gravitational Law in Eq. (2.4) this force is written as

dFG = −GMe

|R|3 Rdm (4.122)

where Me is Earth’s mass, dm is the body element mass and R is its inertial
position vector measured from Earth’s center.

R = Rc + r (4.123)

Substituting Eq. (4.122) into the LG expression yields

LG = −
∫

B
r × GMe

|R|3 (Rc + r) dm (4.124)

The Rc vector is constant within this integral and can be taken outside. After
cancelling the r×r term and rearranging the expression slightly, the torque LG

is written as

LG = GMeRc ×
∫

B

r

|R|3 dm (4.125)

To evaluate the integral, the integral denominator |R|3 must be simplified. Let
Rc and r be the magnitude of the vector Rc and r respectively.

|R|−3 = |Rc + r|−3 =
(
R2
c + 2Rc · r + r2

)−3/2

=
1

R3
c

(

1 +
2Rc · r
R2
c

+

(
r

Rc

)2
)−3/2

≈ 1

R3
c

(

1 − 3Rc · r
R2
c

+ · · ·
)

(4.126)

The approximation in the last step was performed using a binomial expansion
and dropping the higher order terms. Substituting Eq. (4.126) into Eq. (4.125)
yields

LG =
GMe

R3
c

Rc ×
∫

B
r

(

1 − 3Rc · r
R2
c

)

dm (4.127)

Since by definition the vector r is measured relative to the center of mass, the
term

∫

B rdm is zero and drops out. The gravity gradient torque LG can then
be written as

LG =
3GMe

R5
c

Rc ×
∫

B
−r (r · Rc) dm (4.128)
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Using the vector identity

a × (b × c) = (a · c) b − (a · b) c (4.129)

the integrant is rewritten in the form

LG =
3GMe

R5
c

Rc ×
∫

B
− (r × r × Rc + (r · r) Rc) dm (4.130)

After using the definition of the tilde matrix in Eq. (3.23), the torque LG ex-
pression is written as

LG =
3GMe

R5
c

Rc ×
(∫

B
−[r̃][r̃]dm

)

Rc −
3GMe

R5
c

(∫

B
r2dm

)

Rc × Rc (4.131)

Note that the first integrant is equal to the inertia matrix definition in Eq. (4.14),
while the second cross product term is zero. Therefore, the gravity gradient
torque vector LG acting on a rigid body in an inverse square gravity field is
written in its most general form as1, 10

LG =
3GMe

R5
c

Rc × [I ]Rc (4.132)

The only approximation made was the truncation of the binomial series. If the
inertia matrix [I ] is assumed to be of diagonal form, i.e. the chosen coordinates
axes are the principal body axes, then the gravity gradient torque expression
can be further simplified. Let the center of mass vector Rc be given in body
frame components as

Rc =

B



Rc1
Rc2
Rc3



 (4.133)

After carrying out the algebra in Eq. (4.132), the simplified gravity gradient
torque vector is given in B frame components as





LG1

LG2

LG3



 =
3GMe

R5
c





Rc2Rc3 (I33 − I22)
Rc1Rc3 (I11 − I33)
Rc1Rc2 (I22 − I11)



 (4.134)

Studying Eq. (4.134) it is clear that that several situations will lead to no gravity
gradient torque being produced on a spacecraft. Symmetric spacecraft with
I11 = I22 = I33 have a zero torque LG vector. Assume that the i-th principal
body axis is a symmetry axis, then the spacecraft will not experience any gravity
gradient torque about its i-th body axis. Lastly, if the center of mass vector Rc

is parallel with any of the principal body axes, then two of the three Rci
vector

components will be zero, which results in the LG vector itself being zero.
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ô1

ô2 ô3

Rc

Figure 4.11: Spacecraft in Circular Orbit

4.4.3 Small Departure Motion about Equilibrium Attitudes

Assume a spacecraft B is in a circular orbit O about Earth. The orbit frame
orientation is defined through the unit vectors ô1, ô2 and ô3 as shown in Fig-
ure 4.11. Let the vector Rc = Rcô3 define the spacecraft position measured from
the Earth’s center. The gravity gradient torque was found to be zero whenever
the principal body axis where aligned with the orbit frame axis. Therefore, we
choose for the spacecraft body fixed axes {b̂} to be nominally aligned with the
orbit frame {ô}. There are 24 possible orientations for a rigid spacecraft to have

its principal axes aligned with another reference frame. We choose for each b̂i
vector to be in the ôi direction.

Since only small spacecraft rotations about the {ô} frame are considered,
the (3−2−1) Euler angles (ψ, θ, φ)are chosen to describe the relative spacecraft
attitude to the orbit frame. The orbit frame angular velocity vector relative to
the inertial frame is given by

ωO/N = Ωô2 (4.139)

where the magnitude Ω is given by Kepler’s equation to be2, 12

Ω2 =
GMe

R3
c

(4.140)

The relative angular velocity vector ωB/O is written in terms of the yaw, pitch
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and roll rates using Eq. (3.55) as

BωB/O =





− sin θ 0 1
sinφ cos θ cosφ 0
cosφ cos θ − sinφ 0









ψ̇

θ̇

φ̇



 (4.141)

The spacecraft angular velocity vector relative to the inertial frame is

ωB/N = ωB/O + ωO/N (4.142)

Using Eq. (3.33), the direction cosine matrix [BO] which relates the O frame to
the B frame is written in terms of the (3 − 2 − 1) Euler angles as

[BO] =





cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ



 (4.143)

Expressing ô2 in terms of b̂i and substituting Eqs. (4.139) and (4.141) into
Eq. (4.142), the spacecraft body angular velocity vector is expressed as

BωB/N =

B



φ̇− sin θψ̇ + Ω cos θ sinψ

sinφ cos θψ̇ + cosφθ̇ + Ω (sinφ sin θ sinψ + cosφ cosψ)

cosφ cos θψ̇ − sinφθ̇ + Ω (cosφ sin θ sinψ − sinφ cosψ)



 (4.144)

From here on the angular velocity ωB/N is abbreviated as ω. Eq. (4.144) can
be rewritten to yield the Euler angle rates in terms of the body angular velocity
ω and the orbital rate Ω. Using the [B(ψ, θ, φ)] matrix definition in Eq. (3.56)
we find





ψ̇

θ̇

φ̇



 = [B(ψ, θ, φ)]ω − Ω

cos θ





sin θ sinψ
cos θ cosψ

sinψ



 (4.145)

It is rather surprising that the algebra reduces to the relatively simple form of
Eq. (4.145). Using the Euler parameter vector β or the MRP vector σ as the
relative attitude coordinates to the orbit frame, even simpler attitude coordinate
rate expressions are found. Using Eq. (3.105), the Euler parameter rates are
simply

β̇ =
1

2
[B(β)]ω − Ω

2







−β2

β3

β0

−β1







=
1

2
[B(β)]ω − Ω

2
g(β) (4.146)

Note that the vector g(β) is perpendicular to β. This makes intuitively sense
since all valid Euler parameters sets must lie on the four-dimensional unit hy-
persphere surface. Finding the MRP rates with the orbital motion included is
greatly simplified using the identity

[B(σ)][BO(σ)] = [B(σ)]T (4.147)



SECTION 4.4 GRAVITY GRADIENT SATELLITE 151

where the matrix [B(σ)] is defined in Eq. (3.150) and [BO(σ)] is the direction
cosine matrix relating the orbit frame O to the body frame B in terms of the
MRP vector σ. This relationship is developed in Appendix D. The desired
MRP rates are then given by

σ̇ =
1

4
[B(σ)]ω − Ω

4





2 (σ1σ2 + σ3)
2σ2

2 + 1 − σ2

2 (σ2σ3 − σ1)



 (4.148)

Linearizing Eq. (4.144) about zero yaw, pitch and roll angles while consid-
ering Ω to be large we find

ω ≈
B



φ̇+ Ωψ

θ̇ + Ω

ψ̇ − Ωφ



 (4.149)

The angular acceleration vector ω̇ is then given by

ω̇ ≈
B



φ̈+ Ωψ̇

θ̈

ψ̈ − Ωφ̇



 (4.150)

since Ω̇ is zero for a circular orbit. Before we can write out the linearized
equations of motion, the gravity gradient torque vector LG in Eq. (4.134) still
needs to be linearized. The center of mass position vector Rc is given in O
frame components as

ORc =

O



0
0
Rc



 (4.151)

After using Eq. (4.143) to map Rc into B frame components, the position vector
is written as

B



Rc1
Rc2
Rc3



 =

B



− sin θ
sinφ cos θ
cosφ cos θ



Rc (4.152)

Substituting these Rci
into Eq. (4.134), the gravity gradient torque LG is ex-

pressed in terms of the (3 − 2 − 1) Euler angels as

BLG =
3

2
Ω2

B



(I33 − I22) cos2 θ sin 2φ
− (I11 − I33) cosφ sin 2θ
− (I22 − I11) sinφ sin 2θ



 (4.153)

Note that the gravity torque vector LG does not explicitly depend on the yaw
angle ψ. Linearizing Eq. (4.153) yields

BLG ≈ 3Ω2

B



(I33 − I22)φ
− (I11 − I33) θ

0



 (4.154)
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It is interesting to note that the linearized LG does have any torque components
about the third body axis b̂3. Further, for the pitch and roll components of LG

to be stabilizing, we find that I22 > I33 and I22 > I11 must be true. Therefore
I22 must be the largest principal inertia of the spacecraft for these small gravity
gradient torque induced oscillations to be stable. After substituting Eqs. (4.149),
(4.150) and (4.154) into (4.33), the equations of motion about each body axis
are expressed as

I11

(

φ̈+ Ωψ̇
)

= − (I33 − I22)
(

θ̇ + Ω
)(

ψ̇ − Ωφ
)

+ 3Ω2 (I33 − I22)φ (4.155)

I22θ̈ = − (I11 − I33)
(

ψ̇ − Ωφ
)(

φ̇+ Ωψ
)

− 3Ω2 (I11 − I33) θ (4.156)

I33

(

ψ̈ − Ωφ̇
)

= − (I22 − I11)
(

φ̇+ Ωψ
)(

θ̇ + Ω
)

(4.157)

After neglecting the higher order terms, the linearized spacecraft equations of
motion can be decoupled into the pitch and roll / yaw modes. The linearized
pitch equation is

θ̈ + 3Ω2

(
I11 − I33
I22

)

θ = 0 (4.158)

which is the dynamical equivalent of a simple spring-mass system. It is imme-
diately clear from linear control theory that for the pitch mode to be stable

I11 ≥ I33 (4.159)

must be true. The coupled roll-yaw equations of motion are written as

(
φ̈

ψ̈

)

+

[
0 Ω (1 − kY )

Ω (kR − 1) 0

](
φ̇

ψ̇

)

+

[
4Ω2kY 0

0 Ω2kR

](
φ
ψ

)

= 0 (4.160)

where the inertia ratios kR and kY are defined as

kR =
I22 − I11
I33

(4.161)

kY =
I22 − I33
I11

(4.162)

To determine stability conditions of the roll-yaw motion, the roots λi of the
characteristic equation of Eq. (4.160) must be investigated. The characteristic
equation of Eq. (4.160) is given by

∣
∣
∣
∣

λ2 + 4Ω2kY λΩ (1 − kY )
λΩ (kR − 1) λ2 + Ω2kR

∣
∣
∣
∣
= 0 (4.163)

which can be expanded to

λ4 + λ2Ω2 (1 + 3kY + kY kR) + 4Ω4kY kR = 0 (4.164)
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Figure 4.12: Linearized Gravity Gradient Spacecraft Stability Regions

The roll-yaw equations of motion in Eq. (4.160) are stable if none of the roots λi
have any positive real parts. Note that the characteristic equations is quadratic
in λ2 and can be solved using the quadratic solution formula. No root λ2

i can

be positive since the corresponding set λi1 = +
√

λ2
i and λi2 = −

√

λ2
i would

contain a real, positive root. To guarantee that all λ2
i terms are negative and

real, it is necessary and sufficient that

1 + 3kR + kY kR > 4
√

kY kR (4.165)

kRkY > 0 (4.166)

These two stability conditions have to be satisfied along with the pitch motion
stability condition in Eq. (4.159). This condition is expressed in terms of the
inertia ratios kR and kY as

kY < kR (4.167)

All three stability conditions are shown in Figure 4.12. The unstable regions
are shaded while the stable regions I and II are white.

Since all four roots of the characteristic equation in Eq. (4.164) are imagi-
nary, only neutral stability of the linearized system is guaranteed. The actual
nonlinear system may or may not be stable. It turns out the triangular region
I represents the truly stable region, while the small white region II in the third
quadrant is unstable if damping effects are included.1 To prove this rigorously
the dynamics of the center manifold would have to be studied which is beyond
the scope of this book. The stability conditions in Eqs. (4.166) and (4.167) for
region I can be written directly in terms of the principal spacecraft inertias Iii
as

I22 ≥ I11 ≥ I33 (4.168)
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Therefore, for the spacecraft attitude assumed at the beginning of this section
to be stable in the presence of gravity gradient torques, the pitch axis inertia
must be largest and the yaw axis inertia the smallest. If the spacecraft is aligned
with the O frame, then its only angular velocity is ωO/N = Ωô2 = Ωb̂2. As
was shown in Eq. (4.64), having a pure spin about the largest moment of inertia
corresponds to a minimum kinetic energy condition. The neutrally stable region
II would correspond to having I22 be less than I11 and I33. This indicates that
the spacecraft is nominally rotating about the axis of least inertia which is a
maximum kinetic energy state. As is shown in Figure 4.7, in the presence of
damping this spin will degrade in the presence of damping to a pure spin about
the axis of maximum inertia (i.e. minimum kinetic energy state). Gravity
gradient satellites are therefore typically long and skinny structures flying in an
“upright” attitude relative to the local horizon.

Problems

4.1 Starting with Eq. (4.9) and using Eqs. (4.10) through (4.12), verify Eq. (4.13).

4.2 Find the moment of inertia matrix of a box with side lengths 2a, 2b and 2c. The
cube material has a unit density. The cube center is at the cartesian coordinate
system origin and all its sides are aligned perpendicular to coordinate axes.

4.3 Let the unit axis of the rigid body coordinate frame B : {b̂1, b̂2, b̂3} be given in
terms of inertial frame N components as

b̂1 =





0
1
0



 b̂2 =





0
0
1



 b̂3 =





1
0
0





The inertia matrix in terms of B frame components is given by

B[I] =





15 0 0
0 11 5
0 5 16





a) Find the rotation matrix [C] that will map the B frame into a new frame
F such that F[I] is diagonal.

b) What are the principal inertias of this rigid body.

c) What are the principal body axis expressed in N frame components.
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4.4 A rigid body at an orientation of ψ = 5ffi, θ = 10ffi and φ = −3ffi has a total
mass M = 100 kg and an inertia matrix

[I] =





34 1 6
1 15 3
6 3 10



 kgm2

The center of mass is moving at 5m/s and the (3-2-1) Euler angle yaw, pitch
and roll rates are ψ̇ = −1ffi/s, θ̇ = 1ffi/s and φ̇ = 4ffi/s. Find the total kinetic
energy of this rigid body.

4.5 A solid disk with mass m and radius r is rolling under the influence of a constant
gravity field inside a cylinder of radius L as shown in Figure 4.13.

a) Find the angular momentum vector HO relative to the cylinder center O.

b) Find the equations of motion of the disk.

c) What is the natural frequency of the motion assuming that θ is small?

d) Given an initial angular position θ(0) and rate θ̇(0), find the angular ve-
locity θ̇ when θ = 0o.

θ

O

O′

Figure 4.13: Solid Disk Rolling inside a Cylinder

4.6 A slender rod of length L and mass m is standing vertically on a smooth, level
surface. After it is slightly disturbed, the rod will fall on the ground.

a) Find the differential equations of motion of the rod where the angle θ
defines the orientation of the rod.

b) Find a relationship between the angular rate θ̇ and the orientation angle
θ.

4.7 A slender rod of length L and mass m is standing vertically on a rough, level
surface with a friction coefficient µ. After it is slightly disturbed, the rod will start
to rotate towards the ground. Find a relationship between the friction coefficient
µ and the rod orientation angle θ where the rod starts to slip.

4.8 A rigid link of mass M and length L is attached to the ceiling as shown in Fig-
ure 4.14. A mass m is attached to the lower end of the link. Find the differential
equations of motion of this pendulum system and its natural frequency.



156 EULERIAN MECHANICS CHAPTER 4

θ
m

L

Figure 4.14: Rigid Link Pendulum with Mass Attached at End

4.9 The principal inertias of a rigid satellite are given by

I1 = 210kgm2 I2 = 200kgm2 I3 = 118kgm2

At time t0 the body angular velocity vector is ω = (0.2, 0.15,−0.18)T rad/s.
Numerically solve the resulting torque-free motion for 30 seconds and plot the
resulting attitude in terms of the (3-2-1) Euler angles.

4.10 A solid cylinder of mass m, radius a, and length l is pivoted about a transverse
axis (B-B′) through its center of mass as shown in Figure 4.15. The axis (A-A′)
rotates with a constant angular velocity Ω. Assume l >

√
3a.

a) Find the frequency ωn of small oscillations about θ = π
2
.

b) What is the angular velocity θ̇∗ when θ = π
2
, if the cylinder is released

from θ = 0 with a very small positive value of θ̇0? Determine θ̇∗ as a
function of m, a, l and Ω.

A
A′

B′

B

l

a

θ

Ω

Figure 4.15: Solid Cylinder in a Two Hinge Gyroscope

4.11 ♣ Consider the free rotational motion of an axially symmetric rigid body with Ia =
2It, where Ia is the axially moment of inertia and It is the transverse moment
of inertia.

a) What is the largest possible value of the angle between ω and H? Hint:
Consider the angular momentum vector H �xed and vary the kinetic
energy T .

b) Find the critical value of kinetic energy which results in the largest angle
between ω and H.
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4.12 ♣ A vertical shaft is driving two grinding wheels by rotating at a constant angular
rate Ω as shown in Figure 4.16. Each grinding wheel and its support shaft have a
mass m with the center of mass point located a distance L away from the hinge
point. Their inertia about their axis of symmetry is Is and the transverse inertia
is It. Due to the level of the floor, the support shafts are raised by an able α.
Assume the grinding wheels are rolling without slip.

a) Find the total angular momentum vector of the system about the hinge
point O.

b) For a given fixed Ω, how strongly does each grinding wheel push against
the wall?

α

L

Ω

Figure 4.16: Two Grinder Wheels Rolling Rolling about a Driving Shaft

4.13 ♣ An axially symmetric space vehicle with It/Ia = 10 is undergoing a general
torque-free motion. The angle between the angular momentum vector H and
the axis of symmetry is 45ffi. At some instant during the motion, symmetrically
placed masses are moved slowly toward the axis of symmetry by internal forces.
At the end of this process, the rotational kinetic energy is found to be three times
its former value, whereas Ia is halved and It is 80 percent of its original size.
Determine the final angle between H and the symmetry axis.

4.14 A vertical shaft is rotating at a constant angular rate Ω. At its lower end it
has a shaft attached to it through a pin connection. A disk is connected to this
shaft and is free to spin about the shaft axis. The moment of inertia of the
disk/shaft system is Is and the transverse inertia is It. The center of mass of the
disk/shaft system is located a distance L away from the hinge point as shown in
Figure 4.17. What is the necessary angular velocity vector of the disk relative to
the shaft that will maintain a constant angle α?

4.15 Verify the gravity gradient stability conditions in Eqs. (4.165) through (4.167).
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Chapter Five

Generalized Methods of
Analytical Dynamics

During the mid-19th century, a family of fundamental developments were in-
troduced, led by Lagrange, Hamilton, and Jacobi. These results provided a
unifying perspective on analytical mechanics and also stimulated fundamental
advances in allied mathematical sub-fields such as variational calculus, differen-
tial equations, and topology. The most central developments are embodied in
elegant and powerful methods for deriving differential equations of motion by
taking gradients of scalar functions they introduced (e.g. the Lagrangian and the
Hamiltonian, closely related to the mechanical kinetic and potential energies of
the system), relationships of mechanical system motion to variational principles
(e.g. D’Alembert’s Principle and Hamilton’s Principle), and efficient methods
for accommodating constraints and constraint forces. Collectively, these insights
amounted to a revolution in analysis of dynamical systems, even given that their
starting point was the summation of the monumental works of Newton, Gauss
and Euler. This chapter and the following one provides the most fundamen-
tal aspects of these classical developments; we start with Newtonian/Eulerian
principles and utilize a system of particles as a conceptual representation for a
large class of systems. We introduce virtual and related variational arguments
leading to D’Alembert’s Principle, Lagrange’s Equations, and Hamilton’s Prin-
ciple. Finally, we generalize these particle mechanics results to establish the
corresponding developments applicable to systems idealized as collections of
particles, rigid bodies, and distributed parameter systems. Examples are uti-
lized throughout this discussion to illustrate the ideas and provide some insights
into their utility.

5.1 Generalized Coordinates

Consider the familiar problem of a particle moving relative to an inertially
fixed Cartesian coordinate frame. With reference to Fig. 5.1, we introduce

159
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x
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êφ

êθ
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Figure 5.1: Generalized Coordinates of Point P

three classical coordinate choices to locate point P relative to Point O, viz.:
Cartesian Coordinates (x, y, z), Spherical Coordinates (r, φ, θ), and Cylindrical
Coordinates(d, φ, z), with the following three corresponding vector representa-
tions of the inertial position, velocity and acceleration:

Cartesian Coordinates and {n̂1, n̂2, n̂3} vector components:

r = xn̂1 + yn̂2 + zn̂3

ṙ = ẋn̂1 + ẏn̂2 + żn̂3

r̈ = ẍn̂1 + ÿn̂2 + z̈n̂3

(5.1)

Spherical Coordinates and {êr, êφ, êθ} vector components:

r = rêr

ṙ = ṙêr + rθ̇êθ + rφ̇ cos θêφ

r̈ = (r̈ − rθ̇2 − rφ̇2 cos2 θ)êr
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Transformations to Cartesian Coordinates:

x(r, φ, θ) = r cos θ cosφ, x(d, φ, z) = d cosφ (5.4a)

y(r, φ, θ) = r cos θ sinφ, y(d, φ, z) = d sinφ (5.4b)

z(r, φ, θ) = r sin θ, z(d, φ, z) = z (5.4c)

Spherical Transformations:

r(x, y, z) =
√

x2 + y2 + z2, r(d, φ, z) =
√

d2 + z2 (5.5a)

φ(x, y, z) = tan−1(y/x), φ(d, φ, z) = φ (5.5b)

θ(x, y, z) = sin−1(z/
√

x2 + y2 + z2), θ(d, φ, z) = sin−1(z/
√

d2 + z2) (5.5c)

Cylindrical Transformations:

d(x, y, z) =
√

x2 + y2, d(r, φ, θ) = r cos θ (5.6a)

φ(x, y, z) = tan−1(y/x), φ(r, φ, θ) = φ (5.6b)

z(x, y, z) = z, z(r, φ, θ) = r sin θ (5.6c)

Thus, even in this simple and most familiar example, we see that that an
infinity of coordinate choices are possible. Depending upon the objectives being
pursued in any given problem, any of these coordinate choices may be appropri-
ate. It is clear that the details of most traditional analyses, such as formulating
the differential equations of motion, are affected by the coordinates selected,
since expressions for all kinematical and physical quantities depend on the co-
ordinate choice. You can verify that the kinetic energy T = mṙ · ṙ/2, for the
three above coordinate choices has the following three corresponding functional
forms:

T (x, y, z, ẋ, ẏ, ż) = m(ẋ2 + ẏ2 + ż2)/2

T (r, φ, θ, ṙ, φ̇, θ̇) = m(ṙ2 + r2θ̇2 + r2φ̇2 cos2 θ)/2

T (d, φ, z, ḋ, φ̇, ż) = m(ḋ2 + d2φ̇2 + ż2)/2

(5.7)

Lagrange, in thinking about the above and analogous issues, was apparently
the first to ask the question: “Can one develop a universal form of the differential
equations of motion, as a function of the system kinetic energy and unspecified
generalized coordinates, i.e., T (q1, q2, ..., qn, q̇1, q̇2, ..., q̇n), that holds for all infin-
ity of possible coordinate choices, and for particle motions, rigid body motions,
translations, rotations, deformational vibrations... ?” The answer to this open
ended, multi-faceted question is a qualified yes. The immortal developments
that follow were introduced, mainly by Lagrange, in his quest to address these
and related issues. In the process of re-tracing some of the work of Lagrange et
al, we will find important branch points to concepts that go far beyond the scope
of the above question. At the heart of these developments, it is evident that the
various vector descriptions for position (r), velocity (ṙ), and acceleration (r̈) ,
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e.g., Eqs. (5.1) – (5.3), are alternative descriptions of mathematical representa-
tions of the same physical quantities, and of course, the corresponding forms of
kinetic energy, e.g., Eq. (5.7), are likewise alternate mathematical representa-
tions for the same physical quantity. Thus the most important key to obtaining
generalized (universal) forms for the equations of motion, for example, from
variation of a generic function for kinetic energy T (q1, q2, ..., qn, q̇1, q̇2, ..., q̇n), is
to consider from the onset a broad class of systems (for both “body models” and
forces) and a brad class of admissible coordinate choices. While broad general-
ity necessarily introduces a level of abstraction in the formulation, the ensuing
analysis is of bearable complexity and well justified by the powerful generalized
results obtained therefrom.

5.2 D’Alembert’s Principle

Here we derive from Newton’s second law an alternative formalism for devel-
oping equations of motion, this formalism will be seen to have an advantage
that certain virtually non-working forces can be ignored. The most important
role of D’Alembert’s Principle, however, is that it is a stepping stone leading to
Lagrange’s Equations, Hamilton’s Principle, and other variational principles in
analytical dynamics.

O

N

C

n̂1
n̂2

n̂3

Ri

Fi

ri

r j

rij

m1
m i

mN

m j

Rj

Fj

Figure 5.2: A System of N Particles
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5.2.1 Virtual Displacements and Virtual Work

We consider a system of N particles, with the ith particle having mass mi.
With reference to Fig. 5.2, we locate mi with an inertial position vector Ri. We
consider the total force vector acting on mi to be segregated into two summed
sub-sets of forces as

Fi = fci
+ fi (5.8)

where fci
is the vector sum of all virtually non-working constraint forces forces

(as explained below) acting on mi, and f i = Fi − fci
is the vector sum of all

other forces acting on mi. We will see that the constraint forces (fci
) can be

eliminated from the analysis and this is an advantageous feature common to all
of the methods of generalized mechanics. In order to accomplish the elimina-
tion of the constraint forces, we introduce the concept of virtual displacement
δRi. A virtual displacement, in the most general context, is an instantaneous
differential displacement for the sake of analysis. The virtual displacement δ(·)
of a dynamical motion variable (·) is closely related to the �rst variation of
coordinates in variational calculus. We discuss subtle differences between vir-
tual displacements and first variations in the developments of this chapter and
especially in chapter 6. In dynamics problems where constraints are present,
the most frequently used subset of virtual displacements δRi are consistent
virtual displacements which locate differentially displaced neighboring positions
Ri + δRi for mi that satisfy the constraint equations. In general, these virtual
displacements are otherwise independently variable at each instant of time, and
do not necessarily locate a family of points on a smooth neighboring trajectory
(although this is an important special case). If the constraints acting on the
system are smooth differential functions of Ri(t, q1, q2, ..., qn), then admissible
Ri are constrained to lie on a smooth holonomic (function of position coordi-
nates only) constraint surface ψ(t, q1, q2, ..., qn), and we see that admissible or
consistent virtual displacements δRi locate points in a tangent plane, whose
normal can be obtained by taking the gradient ∇ψ of the constraint surface.
This idea is illustrated in general by Fig. 5.3. Note that the differential displace-
ment dRi = Ṙi(t)dt is tangent to a particular trajectory, whereas the consistent
virtual displacement δRi is an arbitrary differential displacement to any neigh-
boring point in the tangent plane of feasible displacements. Thus the virtual
displacements are not necessarily tangent to any solution trajectory, but they
are required to locate neighboring differentially displaced points satisfying the
constraints, at some arbitrary and unspecified time t in the motion. Ignoring
friction, the constraint force fci

is always normal to the constraint surface (i.e.,
in the direction of ∇ψ), and therefore can be written as

fci
= λ∇ψ (5.9)

where the scalar λ is a Lagrange multiplier. Friction and all forces (other than
Eq. (5.9)) are accounted for in fi of Eq. (5.8)

The Virtual Work δW is an abstract idea analogous to mechanical work,
but associated with the instantaneous virtual displacements. The virtual work
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Figure 5.3: Particle Moving on a Holonomic Constraint Surface

done on mi as a consequence of virtual displacement δRi is defined as

δWi ≡ Fi · δRi (5.10)

Observe that the constraint force fci
= λ∇ψ is normal to the plane containing

all infinity of admissible virtual displacements δRi, and this can be stated as
the orthogonality condition:

δWci
= fci

· δRi = 0 (5.11)

Thus the virtual work done by the normal constraint force associated with holo-
nomic constraints is zero. Note, substituting Eq. (5.8), and making use of
Eq. (5.9), we find that the virtual work on mi reduces to

δWi = fi · δRi (5.12)

We define the total virtual work to be the sum of the δWi, so that

δW =

N∑

i=1

Fi · δRi =

N∑

i=1

fi · δRi (5.13)

5.2.2 Classical Developments of D’Alembert’s Principle

From Newton’s second law for the motion of mi, we know Fi = miR̈i, so using
Eq. (5.8), we can write

fci
+ fi −miR̈i = 0, for i = 1, 2, ..., N (5.14)

Upon taking the dot product of Eq. (5.14) with an arbitrary virtual displace-
ment δRi and summing over all N particles, we find the most general form of
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D’Alembert’s Principle to be

δW −
N∑

i=1

miR̈i · δRi = 0 (5.15)

We can put Eq. (5.15) in a more convenient form by recognizing that Ri =
Ri(t, q1, q2, ..., qn), so that we can consider δRi to be generated by a set of
independent virtual variations in the qis through

δRi =

n∑

j=1

∂Ri

∂qj
δqj (5.16)

As a consequence, the virtual work can be written from Eq. (5.13) as

δW =

n∑

j=1

Qjδqj (5.17)

where the n generalized forces Qj are defined as a function of the N virtually
working forces fi as

Qj ≡
N∑

i=1

fi ·
∂Ri

∂qj
(5.18)

Using Eqs. (5.16)–(5.18), D’Alembert’s Principle of Eq. (5.15) is brought to the
form

n∑

j=1

[

Qj −
N∑

i=1

miR̈i ·
∂Ri

∂qj

]

δqj = 0 (5.19)

Now, since the δqj are independent virtual variations, they may be chosen inde-
pendently and arbitrarily, so that the only conclusion possible from Eq. (5.19)
is that each [·] term must independently vanish. This gives the most famous
form of D’Alembert’s Principle as

N∑

i=1

miR̈i ·
∂Ri

∂qj
= Qj for j = 1, 2, ..., n (5.20)

These equations are generally a coupled system of n second order differential
equations, as will be illustrated by several examples below. First we consider a
modification of Eq. (5.20) which facilitates derivation of the generalized forces
and also makes connections with the notations of Kane, Moon, et al.

Observe that the position vector Rk = Rk(t, q1, q2, . . . , qn) can be differen-
tiated, using the chain rule, to obtain the expression for velocity

Vi = Ṙi =
∂Ri

∂t
+

N∑

k=1

∂Ri

∂qk
q̇k, i = 1, 2, ..., N (5.21)
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From this equation, we can immediately see the following important identity
(known as the “cancellation of dots identity”)

∂Vi

∂q̇k
=
∂Ṙi

∂q̇k
=
∂Ri

∂qk
≡ vik (5.22)

Note that the time derivatives of the generalized coordinates (q̇k) always
appear linearly in the inertial velocities Vi. The quantities vik of Eq. (5.22) are
simply the vector coefficients of q̇k, so Eq. (5.21) can be re-written as

Vi = Ṙi =
∂Ri

∂t
+

N∑

k=1

q̇kvik , i = 1, 2, ..., N (5.23)

The vectors vik are obviously important kinematic quantities, they have been
given various names such as “partial velocities” (Kane et al)1 and “tangent
vectors” (Lesser, Moon, et al)?, 2 . We adopt Kane’s partial velocity label,

because partial velocity is descriptive of the definition vik ≡ ∂Ṙi

∂q̇k
. Whatever we

choose to call them, the n vectors {vi1,vi2, . . . ,vin} form a vector basis for the
inertial velocity Vi of the ithmassmi, and for the case that time does not appear
explicitly, the q̇k are the coefficients that linearly combine the basis vectors vik
to give the velocity vector Vi. The general case is given by Eq. (5.23).

As a consequence of the truth that the inertial velocities must be formed en
route to determining the inertial accelerations, we can simply record the vectors
vik as they are generated in deriving the velocity-level kinematic description of
the system. We can now re-write D’Alembert’s Principle of Eq. (5.20) and the
generalized force of Eq. (5.18) as

N∑

i=1

miR̈i · vij = Qj for j = 1, 2, ..., n (5.24)

and

Qj ≡
N∑

i=1

fi · vij (5.25)

or, we can combine Eqs. (5.18) and (5.25) write D’Alembert’s Principle in the
form2

N∑

i=1

[fi −miV̇i] · vij = 0 for j = 1, 2, ..., n (5.26)

The above developments can be illustrated by the following example.



SECTION 5.2 D’ALEMBERT’S PRINCIPLE 167

Two Degree of Freedom System                           Free Body Diagram
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êθm2

n̂2

n̂1

m1

g

Figure 5.4: Classical Cart - Pendulum System

Example 5.1:

With reference to Fig. 5.4, we develop this system’s equations of motion using
(i) Newton’s Laws and (ii) then D’Alembert’s Principle. First we set down
the kinematic equations as follows:

Kinematics of m1:

R1 = xn̂1, Ṙ1 = V1 = ẋn̂1, R̈1 = V̇1 = ẍn̂1 (5.27)

Kinematics of m2:

R2 = xn̂1 + rêr = (x+ r sin θ)n̂1 + (−r cos θ)n̂2

Ṙ2 = V2 = ẋn̂1 + rθ̇êθ = (ẋ+ rθ̇ cos θ)n̂1 + (rθ̇ sin θ)n̂2

R̈2 = V̇2 = ẍn̂1 − rθ̇2êr + rθ̈êθ

= (ẍ− rθ̇2 sin θ + rθ̈ cos θ)n̂1 + (rθ̇2 cos θ + rθ̈ sin θ)n̂2

= (ẍ sin θ − rθ̇2)êr + (ẍ cos θ + rθ̈)êθ

(5.28)

Differential Equations Derived via Newton’s Laws:

Making use of Newton’s second law, we have the vector equations of motion

miR̈i = miV̇i = Fi (5.29)

Referring to the free body diagram on the right hand side of Fig. 5.4, and
making use of Eqs. (5.27) and (5.28) to obtain

m1ẍ = −kx+ Fr sin θ

0 = N −m1g − Fr cos θ
(5.30)
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and for the m2 equations, taking components of Eqs. (5.29) in the {er, eθ}
basis

m2(ẍ sin θ − rθ̇2) = −Fr +m2g cos θ

m2(ẍ cos θ + rθ̈) = −m2g sin θ
(5.31)

Solving the first of Eqs. (5.31) for the constraint force (pendulum tension)
Fr, we obtain

Fr = m2g cos θ −m2(ẍ sin θ − rθ̇2) (5.32)

Which, substituting into the first of Eqs. (5.30) and the second of Eqs. (5.31)
eliminates the constraint force Fr and leads to the pair of differential equations
that govern the system dynamics:

(m1 +m2 sin2 θ)ẍ−m2rθ̇
2 sin θ = −kx+m2g sin θ cos θ

(m2 cos θ)ẍ+ (m2r)θ̈ = −m2g sin θ
(5.33)

Differential Equations Derived via D’Alembert’s Principle:

We will make use of Eqs. (5.12) - (5.20) to derive the equations of motion via
a path that does not require us to first introduce the constraint forces (N, Fr),
then eliminate them. For the initial developments we will also not make use of
the partial velocity ideas, but rather directly differentiate the position vectors
to obtain the terms needed in the classical D’Alembert’s Principle equations
of motion. We see that the gradient of the inertial position vectors with
respect to (x, θ) is needed, the needed partial derivatives can be obtained
directly from Ri(x, θ) as

∂R1

∂x
= n̂1

∂R1

∂θ
= 0

∂R2

∂x
= n̂1

∂R2

∂θ
= r

∂êr

∂θ
= rêθ = r(cos θn̂1 + sin θn̂2)

(5.34)

Using these, we obtain the generalized forces from Eqs. (5.18) as

Qx = F1 · ∂R1

∂x
+ F2 · ∂R2

∂x

= [(−kx)n̂1] · [n̂1] + [−mgn2] · [n̂1]

= −kx

Qθ = F1 · ∂R1

∂θ
+ F2 · ∂R2

∂θ

= [(−kx)n̂1] · [0] + [mg cos θêr −mg sin θêθ] · [rêθ]

= −mgr sin θ

(5.35)

We are now prepared to develop the differential equations of motion using
D’Alembert’s Principle in the form of Eqs. (5.20) as follows:

m1R̈1 · ∂R1

∂x
+m2R̈2 · ∂R2

∂x
= Qx

m1R̈1 · ∂R1

∂θ
+m2R̈2 · ∂R2

∂θ
= Qθ

(5.36)



SECTION 5.2 D’ALEMBERT’S PRINCIPLE 169

Substitution of Eqs. (5.35) and (5.34) leads to the system of differential
equations:

(m1 +m2)ẍ+ (m2r cos θ)θ̈ −m2rθ̇
2 sin θ = −kx

(m2r cos θ)ẍ+ (m2r
2)θ̈ = −mgr sin θ

(5.37)

The above developments could be accelerated modestly by making use of
the so called virtual power2 form of D’Alembert’s Principle (Eqs. (5.26)),
and by collecting the partial velocities vij from the velocity level kinematics.
Adopting the notation q1 = x, q2 = θ, then Eqs. (5.26) specializes to

[f1 −m1V̇1] · v11 + [f2 −m2V̇1] · v21 = 0

[f1 −m1V̇2] · v12 + [f2 −m2V̇1] · v22 = 0
(5.38)

where from the velocity-level kinematics we see

V1 = Ṙ1 = ẋn̂1, → v11 = n̂1, v12 = 0

V2 = Ṙ2 = ẋn̂1 + rθ̇êθ, → v21 = n̂1, v22 = rθ̇êθ

(5.39)

Direct substitution of Eqs. (5.39) into Eqs. (5.38), along with f1 = −kxn̂1

and f2 = −mgn̂2, immediately verifies Eqs. (5.37). For many degree of
freedom systems, the systematic notation of the virtual power formulation
offers some advantages. The most important advantage is to recognize that
one does not need to return to the position vector to take the position partial
derivatives in the classical version (5.20), these can be simply replaced by
the partial velocities, by virtue of Eqs. (5.22) which are already available
as a consequence of having derived the velocity expressions in the form of
Eqs. (5.23) en route to the also required acceleration vectors.

Discussion:

Comparing Eqs. (5.37) to those (Eqs. (5.33)) obtained from Newton’s second
law, we see that these equations have different forms. The more elegant
form of Eqs. (5.37) is preferred due to the symmetry of the acceleration
coefficients (the elements of the “mass matrix”). Both sets of equations are
correct and it is easy to re-arrange Eqs. (5.33) via linear combinations of
the two equations to obtain the form of Eqs. (5.37); this development is left
as an exercise. An implicit question arises: How can we guarantee that we
obtain the symmetric form of Eqs. (5.37) directly from Newton’s laws? The
answer can be verified, for this special case, by re-working the Newton’s law
developments and insisting that all acceleration and force vectors be projected
such that all acceleration and force vector components are taken in a common
reference frame [i.e., use either (êr, êθ) or (n̂1, n̂2) unit vectors exclusively,
rather than the mixed pattern used to obtain Eqs. (5.33)] before writing the
two sets of component equations from Newton’s second law. More insight on
this issue can be obtained from the subsequent developments of this chapter.
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5.2.3 Holonomic Constraints

The above developments implicitly assume that the generalized coordinates are
independent. It often occurs that the coordinates are not independent. In the
simplest case, the redundancy of the coordinates arise because of constraining
algebraic relationships of the form

ψk(t, q1, q2, . . . , qn) = 0 k = 1, 2, . . . ,m (5.40)

We note that any velocity-dependent constraint that cannot be integrated to
obtain the above form would not qualify as holonomic, and obviously, all inequal-
ity constraints must be considered non-holonomic. If time does not explicitly
appear, then this special case of holonomic constraints are said to be rheonomic.
For most cases, we restrict attention to the case that the ψk(t, q1, q2, . . . , qn) are
continuous and differentiable with respect to all arguments.

Consider briefly the special case of m = 1, then ψ(q1, q2, . . . , qn) = 0 con-
stitutes a constraint surface on which the admissible trajectories lie, and as a
consequence, the coordinates {q1, q2, . . . , qn} are not independent. There are
two obvious approaches to dealing with the constraint: (i) Solve the constraint
equation for any one of the coordinates as a function of the other n−1 q’s which
may now be considered independent, or (ii) Replace the constraint surface by
an equivalent constraint force that effectively causes the motion to remain on
the constraint surface. These two approaches are illustrated by the following
example.

Example 5.2: Let us study the simple pendulum shown in Fig. 5.5. Consider

θ

êr

êθ

n̂2

n̂1

m

O

r g

Figure 5.5: Classical Pendulum

the redundant coordinates (r, θ). The position, velocity, and acceleration
vectors are given by

R = rêr, Ṙ = ṙêr + rθ̇êθ, R̈ = (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ (5.41)
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We consider two approaches for imposing the holonomic (and rheonomic)
constraint r = R = constant, or

ψ(r, θ) = r −R = 0 (5.42)

Algebraic Constraint Elimination

In this approach, the constraint equation of Eq. (5.42) is trivially solvable for
r = R, and the derived constraint conditions that ṙ = 0, r̈ = 0 are imposed
on the kinematics equations of Eq. (5.41) to obtain

R = Rêr, Ṙ = Rθ̇êθ, R̈ = (Rθ̇2)êr + (Rθ̈)êθ (5.43)

leaving only θ as an independent coordinate. We can now apply D’Alembert’s
Principle of Eq. (5.20) to generate the differential equations as follows

mR̈ · ∂R
∂θ

= Qθ

mR2θ̈ = −mgR sin θ → θ̈ = − g

R
sin θ

(5.44)

Constraint Force via Lagrange Multipliers

In this approach, we observe that the pendulum is physically constrained to
move on a circular constraint surface and the associated force must be normal
to this surface. While the direction is known, the magnitude is not. Thus the
constraint force associated with ψ(r, θ) = r −R = 0 is written as

Fc = λ∇ψ = λêr (5.45)

where the unknown scalar λ is a Lagrange Multiplier.

The total force acting on mass m is −mgn̂2 + λêr so that D’Alembert’s
Principle of Eq. (5.20), considering both r and θ as generalized coordinates
is

mR̈ · ∂R
∂r

= Qr

mR̈ · ∂R
∂θ

= Qθ

(5.46)

which gives

m[(r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ] · (êr) = [−mgn̂2 + λêr] · (êr) = mg cos θ + λ

m[(r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ] · (rêθ) = [−mgn̂2 + λêr] · (rêθ) = −mgr sin θ

(5.47)

Imposing r = constant = R and carrying out the implied algebra, these
simplify to the final result

λ = −m(g cos θ +Rθ̇2)

θ̈ = − g

R
sin θ

(5.48)

So, we see in this example that D’Alembert’s Principle (when used with
a redundant coordinate description of the motion, and imposing the holo-
nomic constraint conditions at the end) generates the constrained equations
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of motion and determines the Lagrange multiplier (which in this case has the
interpretation of the negative of the constraint force Fr) as a function of the
coordinates and their derivatives.

∇ψ

R

O
N

n̂1
n̂2

n̂3

m

f

fc

ψ (x, y, z, t) = 0

x
y

z

Figure 5.6: Particle Moving on a Holonomic Constraint Surface

The above developments can be viewed from several perspectives and gen-
eralized for the case of m constraints and n generalized coordinates. Perhaps
it would be instructive to first consider the case of three rectangular coordi-
nates (x, y, z) and one constraint, with Newton’s second law used to develop
the equations of motion. Consider Figure 5.6, Newton’s second law provides
the equation of motion

f + fc = mR̈ (5.49)

where fc is the constraint force normal to the smooth holonomic constraint
surface

ψ(x, y, z, t) = 0 (5.50)

and f is the vector sum of all other forces not normal to the constraint surface.
Since ψ(x, y, z, t) = 0 is assumed differentiable, then from Eq. (5.50), we have
the derived equation

dψ

dt
=
∂ψ

∂x
ẋ+

∂ψ

∂y
ẏ +

∂ψ

∂z
ż +

∂ψ

∂t
= 0 (5.51)
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The above condition should be viewed as the time derivative of the constraint
at any/all points along the path (x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)). Alternatively,
we can consider the differential of ψ along the path, which also must vanish.

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy +

∂ψ

∂z
dz +

∂ψ

∂t
dt = 0 (5.52)

Conceptually, notice that the differential change dψ along the path is different
from the virtual change δψ:

δψ =
∂ψ

∂x
δx+

∂ψ

∂y
δy +

∂ψ

∂z
δz = 0 (5.53)

Note in Eq. (5.53), (δx, δy, δz) are arbitrary admissible virtual displacements
that locate all infinity of points lying in the local tangent plane whose normal is
∇ψ (see Figure 5.3), whereas (dx, dy, dz) are the particular differential displace-
ments along the path from {x(t), y(t), z(t)} to {x(t + dt), y(t + dt), z(t + dt)}.
From another perspective, Eq. (5.53) can be viewed as the condition that ad-
missible virtual displacements must satisfy. If t is not explicitly contained in
ψ, then {dx, dy, dz} are obviously a special case of {δx, δy, δz}. Following the
same argument leading to Eq. (5.9), we know fc is proportional to ∇ψ

fc = λ∇ψ = λ
∂ψ

∂x
n̂1 + λ

∂ψ

∂y
n̂2 + λ

∂ψ

∂z
n̂3 (5.54)

and thus the equations of motion of Eq. (5.14) become

mẍ = fx + λ
∂ψ

∂x

mÿ = fy + λ
∂ψ

∂y

mz̈ = fz + λ
∂ψ

∂z

(5.55)

ψ(x, y, z, t) = 0 (5.56)

We note that Eqs. (5.55) and (5.56) provide three differential equations and one
algebraic equation — four equations involving four unknowns x(t), y(t), z(t)
and λ(t).

Example 5.3: We return to the simple pendulum of Figure 5.5 and consider
the alternative choice of rectangular coordinates (x, y). In lieu of the polar
coordinate representation of kinematics in Eq. (5.43), we have

R = xn̂1 + yn̂2

Ṙ = ẋn̂1 + ẏn̂2

R̈ = ẍn̂1 + ÿn̂2

(5.57)
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From Eq. (5.55) we have three equations with three unknowns x(t), y(t) and
λ(t) as

mẍ = λ(2x)

mÿ = −my + λ(2y)
(5.58)

x2 + y2 − L2 = 0 (5.59)

We can eliminate λ by taking two time derivatives of Eq. (5.59) as

2xẍ+ 2yÿ + 2ẋ2 + 2ẏ2 = 0 (5.60)

and solving for (ẍ, ÿ) as a function of λ from Eq. (5.58) as

ẍ = λ

(
2x

m

)

ÿ = −g + λ

(
2y

m

) (5.61)

Substitution of (ẍ, ÿ) into Eq. (5.60) and making use of r2 = x2 + y2, we
have

λ =
m

2r2
[
yg − (ẋ2 + ẏ2)

]
(5.62)

And finally, substitution of Eq. (5.62) into Eq. (5.58), we have

mẍ = +
mx

r2
[
yg − (ẋ2 + ẏ2)

]

mÿ = −g +
my

r2
[
yg + (ẋ2 + ẏ2)

] (5.63)

Notice either of the equations in Eq. (5.63) could be solved, together with
either x = ±

√
r2 − y2 or y = ±

√
r2 − x2. These equations are “suffi-

ciently ugly” that we note the un-surprising truth, comparing Eqs. (5.62) and
(5.63) with the familiar/elegant Eqs. (5.48), a judicious coordinate choice is
frequently of vital importance! In this case (r, θ) is vastly superior to (x, y),
because r = R = constant and θ(t) directly describes all feasible motions con-
sistent with the constraint. We note — for small motions near (r, θ) = (R, 0)
and (x, y) = (0,−R) both reduce to essentially the same linear system

θ̈ = − g

R
θ and/or ẍ = − g

R
x (5.64)

and thus we note that coordinate selection is often more forgiving for small
(linear) motions than for large (nonlinear) motions.

We now consider the case that two constraints ψi exist:

ψk(x, y, z, t) = 0 for k = 1, 2 (5.65)

The constraint force fc in Eq. (5.54) is the vector sum of the two constraint
forces as

fc = λ1∇ψ1 + λ2∇ψ2 (5.66)
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and the Newtonian equations of motion become

mẍ = fx + λ1
∂ψ1

∂x
+ λ2

∂ψ2

∂x

mÿ = fy + λ1
∂ψ1

∂y
+ λ2

∂ψ2

∂y

mz̈ = fz + λ1
∂ψ1

∂z
+ λ2

∂ψ2

∂z

(5.67)

and we have the two algebraic equations of Eq. (5.65) providing five equations
in terms of the five unknowns

{x(t), y(t), z(t), λ1(t), λ2(t)} (5.68)

Example 5.4: We note that the above developments all hold for a certain
class of holonomic constraints ψ(x, y, z, t) = 0, for which

ψ̇ = 0 =
∂ψ

∂t
+
∂ψ

∂x
ẋ+

∂ψ

∂y
ẏ +

∂ψ

∂z
ż (5.69)

We will see subsequently that the above developments can be generalized to
consider a class of non-holonomic constraints

B(x, y, z) +A1(x, y, z)ẋ+A2(x, y, z)ẏ +A3(x, y, z)ż = 0 (5.70)

Such constraints, which depend on velocity linearly, are known as Pfa�an
constraints. Notice, if a function ψ(x, y, z, t) exists such that

B(x, y, z) =
∂ψ

∂t

A1(x, y, z) =
∂ψ

∂x
, A2(x, y, z) =

∂ψ

∂y
, A3(x, y, z) =

∂ψ

∂z

(5.71)

then Eqs. (5.70) are said to be integrable to the holonomic constraint ψ(x, y, z, t) =
0. Performing partial integration, it is easy to test directly to see if a Pfaffian
form non-holonomic constraint is integrable to a corresponding holonomic
constraint. Notice the following example. Suppose a spherical pendulum
shown in Figure 5.7 is acted upon by a motor torque which exactly enforces
the motion constraint:

θ̇ =
t(cosφ− φ̇)

2 + sinφ
(5.72)

or, we have the Pfaffian form

(− cos φ)t+ (2 + sinφ)θ̇ + (t)φ̇ = 0 (5.73)

Comparing Eqs. (5.70) and (5.73), we have

B(φ, θ) = −(cosφ)t

A1(φ, θ) = 2 + sinφ

A2(φ, θ) = t

(5.74)
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θ

φ
n̂2n̂1

n̂3

Figure 5.7: Illustration of Motor Driven Spherical Pendulum

To see if the non-holonomic constrain of Eq. (5.73) is integrable, we conjec-
ture the existence of ψ(φ, θ, t) such that

∂ψ

∂t
= B = −(cosφ)t → ψ = −1

2
(cosφ)t2 + f1(φ, θ) (5.75)

∂ψ

∂θ
= A1 = 2 + sinφ → ψ = (2 + sinφ)θ + f2(φ, t) (5.76)

∂ψ

∂φ
= A2 = t → ψ = φt+ f3(θ, t) (5.77)

If ψ exists, there must be a valid choice for the functions of partial inte-
gration f1(φ, θ), f2(φ, t) and f3(θ, t) such that the same function ψ(φ, θ, t)
is obtained from Eqs. (5.75), (5.76) and (5.77). In this case we conjecture
observing Eqs. (5.76) and (5.77) that

f2(φ, t) = φt (5.78)

f3(θ, t) = (2 sinφ)θ → inconsistent, depends on φ! (5.79)

Now, comparing Eqs. (5.75) and (5.76), we conjecture

f1(φ, θ) = (2 + sinφ)θ (5.80)

f2(φ, t) = −1

2
(cos φ)t2 → inconsistent with Eq. (5.78) (5.81)

Finally, comparing Eqs. (5.75) and (5.77), we conjecture

f1(φ, θ) = φt → inconsitent with Eq. (5.80) (5.82)

f3(θ, t) = −1

2
(cosφ)t2 → inconsistent, depends on φ (5.83)

Any of the four inconsistency results obtained for the functions of partial
integration are sufficient that ψ(φ, θ, t) does not exist. Therefore the Pfaffian
form of Eq. (5.73) is a non-integrable non-holonomic constraint.
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5.2.4 Newtonian Constrained Dynamics of N Particles

The above developments are now generalized to N particles subject to m con-
straints. As the most fundamental choice of coordinates, we could choose the
inertial Cartesian set of coordinates

{q} ≡ {q1, q2, q3, . . . , qn} ≡ {x1, y1, z1;x2, y2, z2; . . . ;xn, yn, zn} (5.84)

where n = 3N . More generally, {q} is any set of n = 3N generalized coordinates.
Consider a set of m Pfaffian non-holonomic constraints of the form

n∑

j=1

Akj q̇j +Bk = 0 k = 1, 2, . . . ,m (5.85)

or, in differential form

n∑

j=1

Akjdqj +Bkdt = 0 k = 1, 2, . . . ,m (5.86)

where Akj = Akj(q1, . . . , qn, t) and Bk = Bk(q1, . . . , qn, t). Some, and occasion-
ally all, of the constraints may be integrable to obtain holonomic constraints of
the form

ψj(q1, . . . , qn, t) = 0 j = 1, 2, . . . , n (5.87)

Conversely, given smooth holonomic constraints of the form of Eq. (5.87) can
always be differentiated to obtain Eqs. (5.85) and (5.86). The reverse is true
only for integrable constraints (see example 5.4). The equations of motion for
the N particles, for the case that {q} is the set of n = 3N Cartesian inertial
coordinates is

Mj q̈j = fj + fcj
= fj +

m∑

k=1

Akjλk j = 1, 2, . . . , n (5.88)

where

{M1,M2,M3;M4,M5,M6; . . . ;Mn−2,Mn−1,Mn}
≡ {m1,m1,m1;m2,m2,m2; . . . ;mN ,mN ,mN}

and
n∑

j=1

Akj q̇j +Bk = 0 k = 1, 2, . . . ,m (5.89)

Eqs. (5.85) and (5.88) provide n+m equations in the n+m unknowns

{q1, q2, . . . , qn;λ1, λ2, . . . , λm}
The Eqs. (5.88) and (5.89) constitute a set of Di�erential-Algebraic Equations
(DAEs). Prior to developing the analogous constrained dynamics results for
the generalized methods that follow from D’Alembert’s Principle, we digress to
consider a version of the Lagrange Multiplier Rule for parameter optimization.
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5.2.5 Lagrange Multiplier Rule for Constrained Optimization

Consider the problem of extremizing (maximizing or minimizing) the smooth,
twice differentiable function

φ(q1, q2, . . . , qn) (5.90)

subject to satisfying m equality constraints of the form

ψj(q1, q2, . . . , qn) = 0 j = 1, 2, . . . ,m < n (5.91)

where ψ(q1, q2, . . . , qn) is continuous and at least once differentiable.

An important result, due to Lagrange, is that the necessary conditions for
extremizing Eq. (5.90) subject to Eq. (5.91) are identical to the necessary con-
ditions for extremizing the augmented function

Φ(q1, . . . , qn;λ1, . . . , λm) ≡ φ(q1, . . . , qn) +

m∑

j=1

λjψj(q1, . . . , qn) (5.92)

where {λ1, . . . , λm} are Lagrange multipliers, and, as developed below, the nec-
essary conditions for extremizing Φ is

∂Φ

∂qj

∣
∣
∣
∣
q̂,λ̂

= 0 j = 1, 2, . . . , n (5.93)

∂Φ

∂λj

∣
∣
∣
∣
q̂,λ̂

≡ ψj(q̂1, . . . , q̂n) = 0 j = 1, 2, . . . ,m (5.94)

Eqs. (5.93) and (5.94) provide n + m algebraic equations to be solved for the
“stationary points”

q̂ ≡ (q̂1, . . . , q̂n)
T

λ̂ ≡
(

λ̂1, . . . , λ̂m

)T

(5.95)

The existence of stationary points (q̂, λ̂) that satisfy Eqs. (5.93) and (5.94) is
not guaranteed; there may be one solution, no solution, or multiple solutions.
Furthermore, additional analysis is required to discern whether the point (q̂, λ̂)
represents a local minimum, maximum, or generalized inflection point.

Implicit in the concept (and proof) of the Lagrange multiplier rule is the
idea of locally “constrained differential variations.” For example, suppose we
wish to minimize a function of three variables

φ(x, y, z) (5.96)

subject to one equality constraint

ψ(x, y, z) = 0 (5.97)
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For arbitrary virtual displacements (δx, δy, δz), the virtual differential change
in φ is

δφ =
∂φ

∂x
δx+

∂φ

∂y
δy +

∂φ

∂z
δz (5.98)

Similarly, at an arbitrary admissible point (x, y, z) that satisfies Eq. (5.97), the
virtual change of ψ is

δψ =
∂ψ

∂x
δx+

∂ψ

∂y
δy +

∂ψ

∂z
δz (5.99)

For variations to be admissible, we require δψ = 0, because the differential
variations (δx, δy, δz) must be locally consistent with ψ(x+δx, y+δy, z+δz) = 0.
Since, for all the infinity of points that satisfy the constraint ψ(x, y, z) = 0, to
minimize φ(x, y, z), we seek the particular stationary point(s) x̂, ŷ, ẑ) that satisfy

δφ = 0 =
∂φ

∂x
δx+

∂φ

∂y
δy +

∂φ

∂z
δz (5.100)

δψ = 0 =
∂ψ

∂x
δx+

∂ψ

∂y
δy +

∂ψ

∂z
δz (5.101)

In the absence of the constraint of Eq. (5.97), we could argue that (δx, δy, δz)
are arbitrary. This gives the familiar necessary conditions for an un-constrained
minimum ∂φ

∂x = 0;x → y, z. However, (δx, δy, δz) cannot be taken arbitrarily,
due to the condition of Eq. (5.101). Following Lagrange, we can locally eliminate
any of the three variations (δx, δy, δz) to enforce Eq. (5.101), e.g.

δz = −
(

1
∂ψ
∂z

)(
∂ψ

∂x
δx+

∂ψ

∂y
δy

)

(5.102)

Thus, for all infinity of differential variations (δx, δy), δz from Eq. (5.102) guar-
antees (so long as ∂ψ

∂z 6= 0) that Eq. (5.101) is satisfied — i.e., (δx, δy, δz) lie in
the tangent plane whose normal to ∇ψ(x, y, z) with ψ(x, y, z) = 0. Substituting
Eq. (5.102) into Eq. (5.100) gives

δφ =

[

∂φ

∂x
−
(

∂φ
∂z
∂ψ
∂z

)

∂ψ

∂x

]

δx+

[

∂φ

∂y
−
(

∂φ
∂z
∂ψ
∂z

)

∂ψ

∂y

]

δy = 0 (5.103)

Thus we have “differentially eliminated” δz. Since (δx, δy) must be consistent
with ψ(x, y, z) = 0 and δψ(x, y, z) = 0, then Eq. (5.103) can be interpreted as
the “constrained variation” of φ, along the curve of intersection of φ(x, y, z) with
ψ(x, y, z) = 0. Since all infinity of arbitrary (δx, δy) can now be admitted (while
δz from Eq. (5.102) guarantees satisfaction of Eq. (5.101)), we can argue that
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the coefficients of (δx, δy) in Eq. (5.103) must vanish as the necessary conditions:

∂φ

∂x
−
(

∂φ
∂z
∂ψ
∂z

)

∂ψ

∂x
= 0 = f1(x, y, z)

∂φ

∂y
−
(

∂φ
∂z
∂ψ
∂z

)

∂ψ

∂y
= 0 = f2(x, y, z)

ψ(x, y, z) = 0 = f3(x, y, z)

(5.104)

The equations in (5.104) provide three algebraic equations containing three un-
knowns (x, y, z). The stationary points (x̂, ŷ, ẑ) that satisfy Eq. (5.104) must
be further evaluated to confirm which points are local maxima, minima, and/or
saddle points. Upon evaluating all stationary points, the global minimum can
be discerned as the smallest of the local minima, assuming at least one local
minimum stationary point is found.

The above necessary conditions are not unique, because, instead of differ-
entially eliminating δz, we could have chosen to eliminate δx or δy. These
lead to the two alternate forms of the constrained necessary conditions. For δy
eliminated with (δx, δz) arbitrary we find:

∂φ

∂x
−
(

∂φ
∂y

∂ψ
∂y

)

∂ψ

∂x
= 0

∂φ

∂z
−
(

∂φ
∂y

∂ψ
∂y

)

∂ψ

∂z
= 0

ψ(x, y, z) = 0

(5.105)

and, for δx eliminated with (δy, δz) arbitrary, we find:

∂φ

∂y
−
(

∂φ
∂x
∂ψ
∂x

)

∂ψ

∂y
= 0

∂φ

∂z
−
(

∂φ
∂x
∂ψ
∂x

)

∂ψ

∂z
= 0

ψ(x, y, z) = 0

(5.106)

Lagrange noticed this lack of uniqueness and “automated” the derivation of all
possibilities by introducing a free multiplier parameter λ, and set

δφ+ λδψ =
(
∂φ

∂x
+ λ

∂ψ

∂x

)

δx+

(
∂φ

∂y
+ λ

∂ψ

∂y

)

δy +

(
∂φ

∂z
+ λ

∂ψ

∂z

)

δz = 0 (5.107)

As before, it “isn’t fair” to set the three ( ) terms to zero using the argument that
(δx, δy, δz) are arbitrary and independent — but since λ is arbitrary, we can set
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any one of the three ( ) terms to zero to determine λ (and thereby eliminate
one of the three of (δx, δy, δz)) — since the remaining two of (δx, δy, δz) can be
chosen arbitrarily, all three ( ) terms must vanish. This argument leads to the
following four equations as the constrained necessary conditions:

∂φ

∂x
+ λ

∂ψ

∂x
= 0

∂φ

∂y
+ λ

∂ψ

∂y
= 0

∂φ

∂z
+ λ

∂ψ

∂z
= 0

ψ(x, y, z) = 0

(5.108)

It is easy to verify that all three sets of constrained necessary conditions
(Eqs. (5.104), (5.105) or (5.106)) are implicit in Eq. (5.108), depending upon
which equation is used to solve for λ and then eliminating λ in the other equa-
tions. More generally, the equations in (5.108) provide four equations to deter-
mine the four unknowns (x, y, z, λ).

Lagrange noticed that the above necessary conditions could be obtained by
taking the gradient with respect to (x, y, z, λ) of the augmented function

Φ ≡ φ(x, y, z) + λψ(x, y, z) (5.109)

The Lagrange multiplier rule is given in Eqs. (5.90), (5.91) and (5.92), and is
proved by a straight-forward extension of the above developments.

Example 5.5: Assume we would like to minimize

φ(x, y) = x2 + y2 (5.110)

subject to

ψ(x, y, ) = (x− 5)2 + (y − 5)2 − 1 = 0 (5.111)

Geometrically, we seek the point on the circle of Eq. (5.111) that is nearest
the origin. We form the augmented function

Φ = x2 + y2 + λ
[
(x− 5)2 + (y − 5)2 − 1

]
(5.112)

Following the Lagrange multiplier rule, the necessary conditions are

∂Φ

∂x
= 2x+ 2λ(x− 5) = 0 (5.113)

∂Φ

∂y
= 2y + 2λ(y − 5) = 0 (5.114)

∂Φ

∂λ
= (x− 5)2 + (y − 5)2 − 1 = 0 (5.115)

From Eqs. (5.113) and (5.114), we solve for (x, y) as a function of λ as

x =
5λ

1 + λ
y =

5λ

1 + λ
(5.116)
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Observing Eq. (5.115), we form

x− 5 = 5

(
λ− 1

λ+ 1

)

y − 5 = 5

(
λ− 1

λ+ 1

) (5.117)

Substituting Eq. (5.117) into Eq. (5.115) we obtain

(
λ− 1

λ+ 1

)

= ± 1

5
√

2
(5.118)

These, in turn, give from Eq. (5.117) the stationary points

x̂ = 5 ± 1√
2

ŷ = 5 ± 1√
2

(5.119)

It is easy to verify from Eq. (5.110), the global constrained minimum is at
the stationary point

(x̂, ŷ) =

(

5 − 1√
2
, 5 − 1√

2

)

(5.120)

and

φ̂ = x̂2 + ŷ2 =
(

5
√

2 − 1
)2

(5.121)

and similarly (x̂, ŷ) = (5 + 1√
2
, 5 + 1√

2
), locates the global maximum of

φ̂ = (5
√

2 + 1)2.

5.3 Lagrangian Dynamics

As presented above, D’Alembert’s principle offers a fundamental advantage over
Newton’s second law, in that the internal forces and all other virtually non-
working constraint forces can be simply ignored in developing the equations of
motion. On the other hand, the vector kinematic algebraic overhead associated
with Newton’s second law and D’Alembert’s Principle is essentially identical,
since both require vector kinematics to be taken through the acceleration level.
In this section, we develop the first of several classical formulations (Lagrange’s
Equations) which require only velocity level vector kinematics. For the devel-
opments so far in this chapter, we use the system of particles model for the
system; these developments will subsequently be generalized to accommodate
rigid bodies, systems of rigid bodies, and general collections of particles, rigid
bodies, and distributed parameter systems.
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5.3.1 Minimal Coordinate Systems and Unconstrained Motion

We begin by writing the D’Alembert’s Principle form of the system differential
equations of motion from Eqs. (5.18), (5.20) as

N∑

i=1

miR̈i ·
∂Ri

∂qj
=

N∑

i=1

fi ·
∂Ri

∂qj
for j = 1, 2, ..., n

which using cancellation of dots identity of Eqs. (5.22) become

N∑

i=1

miR̈i ·
∂Ṙi

∂q̇j
=

N∑

i=1

fi ·
∂Ṙi

∂q̇j
for j = 1, 2, ..., n (5.122)

Lagrange was apparently the first to recognize that differential equations
closely related to Eqs. (5.122) could be generated using position and velocity
coordinate gradients of energy functions. We verify these classical developments,
beginning with the definition of Kinetic energy for a system of N particles:

T =
1

2

N∑

i=1

miṘi · Ṙi (5.123)

We observe that the partial derivatives of T with respect to (qj , q̇j) are

∂T

∂qj
=

N∑

i=1

miṘi ·
∂Ṙi

∂qj
and

∂T

∂q̇j
=

N∑

i=1

miṘi ·
∂Ṙi

∂q̇j
(5.124)

Now consider the following developments:

d

dt

(
∂T

∂q̇j

)

=

N∑

i=1

miR̈i ·
∂Ṙi

∂q̇j
+

N∑

i=1

miṘi ·
d

dt

(

∂Ṙi

∂q̇j

)

=

N∑

i=1

(fi + fci) ·
∂Ṙi

∂q̇j
+

N∑

i=1

miṘi ·
d

dt

(
∂Ri

∂qj

)

=
N∑

i=1

fi ·
∂Ṙi

∂q̇j
+

N∑

i=1

miṘi ·
(

∂Ṙi

∂qj

)

=

N∑

i=1

fi ·
∂Ṙi

∂q̇j
+
∂T

∂qj

(5.125)

From the above and Eqs. (5.122), we establish the following elegant result (La-
grange’s Equations)

d

dt

(
∂T

∂q̇j

)

− ∂T

∂qj
=

N∑

i=1

fi ·
∂Ṙi

∂q̇j
≡ Qj , for j = 1, 2, . . . , n (5.126)
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This is the most fundamental version of Lagrange’s Equations, and these
equations are amongst the most important results in analytical dynamics. We
will subsequently seek alternative paths to these equations, via Hamilton’s Prin-
ciple, for example. Notice from Eqs. (5.126), there results a system of n second
order differential equations of the form

fj(t; q1, . . . , qn; q̇1, . . . , q̇n; q̈1, . . . , q̈n) = Qj , j = 1, 2, . . . , n (5.127)

that are generated by simply differentiating the system kinetic energy T (t; qj ; q̇j)
with respect to the chosen set of generalized coordinates (qj , q̇j , j = 1, . . . , n)
and summing the dot product of the virtually working forces with the partial

velocities vik ≡ ∂Ṙi

∂q̇k
. While we have have developed these equations in the

context of a system of particles, we will see that an appropriate definition of
kinetic energy results in these equations applying to systems of rigid bodies
and particles. Also of significance, we will find that these apply to some degree
of approximation, upon introducing appropriate spatial discretization methods
such as the Ritz method or the finite element method,3 to approximate the
dynamics of distributed parameter systems such as vibrating flexible structures.
Also implicit in these equations is the assumption that, if constraints are present,
they are simple algebraic holonomic constraints which have been kinematically
eliminated to establish a minimal coordinate description of the system, i.e.,
constraints have been enforced in the kinematic description of the system, so
the generalized coordinates {q1, q2, . . . , qn} must be independent in Eqs. (5.126).
We consider three examples to introduce the reader to the process of applying
Lagrange’s Equations.

Example 5.6: With reference to Fig. 5.8, the radius is decreasing at a
constant rate, determine angular velocity as a function of time. The general
expression for velocity is Ṙ = ṙêr +rθ̇êθ. Upon imposing the constraint that
ṙ = −c = constant, then only θ remains as a generalized coordinate and
imposing this kinematic constraint, the velocity is Ṙ = −cêr + (ro − ct)θ̇êθ.
Thus the kinetic energy has the specific structure: T = 1

2
m[c2+(ro−ct)2θ̇2].

From Lagrange’s equations in the form

d

dt
(
∂T

∂θ̇
) − ∂T

∂θ
= (Frêr) · ∂Ṙ

∂θ̇
= Qθ

we have

d

dt
[m(ro − ct)2θ̇] − [0] = [0]

from which

m(ro − ct)2θ̇ = constant = mr2o θ̇o

giving the desired result

θ̇ = (
ro

ro − ct
)2θ̇o

Discussion: Observe that the kinetic energy does not depend on θ and Qθ =
0, and a consequence, d

dt
( ∂T

∂θ̇
) = 0 and pθ = ∂T

∂θ̇
= constant. Whenever
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the derivative q̇j of a coordinate qj appears in T , but not the coordinate
itself, then such coordinates are called cyclic. If the generalized force Qj is
zero, then the corresponding generalized conjugate momentum pj = ∂T

∂q̇j
is

a constant of the motion. When the observation is made that a coordinate
is cyclic and Qj = 0, then the corresponding generalized momentum can
immediately be set to a constant, thereby by-passing the formal algebra of
Lagrange’s equations. In this case, pθ = mr2θ̇ = constant has the physical
interpretation of angular momentum conservation.

θ

êr

êθ

n̂2
n̂1

m

O

r

Fr

Horizonal Plane

Figure 5.8: Particle on Table with Constantly Decreasing Radius

Example 5.7: Consider two particles sliding on a frictionless horizontal plane
as shown in Figure 5.9. The particles are connected by a linear spring whose
un-stretched length is R. The form of the equations of motion depend upon

Inertial Horizonal Plane

xy

m1

m2

k

(x1, y1 )

(x2, y2 )

θ

Figure 5.9: Two Particles Sliding on a fixed Inertial Plane

the coordinates chosen, also, judicious coordinates often reveal easier insight
into the system behavior. In particular, the same system may have cyclic
coordinates with one coordinate choice, but not for other coordinate choices.
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To illustrate, consider the two Cartesian coordinate choices:

set 1 (x1, y1, x2, y2) Inertial Coordinates

set 2 (xc, yc, x12, y12) Mass Center Motion and Relative Motion

where

xc =
1

m
(m1x1 +m2x2) , m = m1 +m2

yc =
1

m
(m1y1 +m2y2)

(5.128)

x12 = x2 − x1, y12 = y2 − y1 (5.129)

The spring force has a magnitude k(r − d) where r2 = x2
12 + y2

12. The
direction of the force is along the instantaneous line of centers, oriented by
angle θ. Note cos θ = x12/r, sin θ = y12/r. Thus Newton’s laws lead to the
equations of motion for set 1 as

m1ẍ1 = k(r − d)
x12

r
, m1ÿ1 = k(r − d)

y12
r

m2ẍ2 = −k(r − d)
x12

r
, m2ÿ2 = −k(r − d)

y12
r

(5.130)

with r =
√

x2
12 + y2

12. For the special case of d = 0, these simplify to the
linear system

m1ẍ1 = k(x2 − x1), m1ÿ1 = k(y2 − y1)

m2ẍ2 = −k(x2 − x1), m2ÿ2 = −k(y2 − y1)
(5.131)

For the set 2 choice of coordinates, use Eqs. (5.128) and (5.129) to verify
that the general dynamical equations are for the case where d 6= 0

mẍc = 0,

(
m1m2

m1 +m2

)

ẍ12 = −k(r − d)
x12

r

mÿc = 0,

(
m1m2

m1 +m2

)

ÿ12 = −k(r − d)
y12
r

(5.132)

For the special case where d = 0, the equations of motion become

mẍc = 0,

(
m1m2

m1 +m2

)

ẍ12 = −kx12

mÿc = 0,

(
m1m2

m1 +m2

)

ÿ12 = −ky12
(5.133)

With the set 2 coordinate choice, we see in all cases that the mass center
moves in a straight line, and the relative motion dynamics un-couples from
the mass center motion. For d = 0, we see that the relative motion in the
x and y direction also un-couples and becomes simple harmonic motion with

the natural frequency ω =
√

k/ m1m2

m1+m2
.
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You can verify that the same differential equations in Eq. (5.130) and (5.133)
result if Lagrange’s equations are utilized for coordinate set 1. The kinetic
energy T is given by

T =
1

2

(
m1ẋ

2
1 +m1ẏ

2
1 +m2ẋ

2
2 +m2ẏ

2
2

)
(5.134)

while the potential energy V is expressed as

V = V (x1, y1, x2, y2) =
1

2
k(r − d)2 (5.135)

with r =
√

(x2 − x1)2 + (y2 − y1)2. For coordinate set 1, the solution is
straight forward. However, for coordinate set 2, you will need to express the
energies as functions of the set 2 coordinates as

T = T (xc, yc, x12, y12)

V = V (xc, yc, x12, y12)
(5.136)

and for this you need the coordinate transformations:

xi = fi(xc, yc, x12, y12) i = 1, 2

yi = gi(xc, yc, x12, y12) i = 1, 2
(5.137)

These are obtained by inverting Eqs. (5.128) and (5.129). You will find
(xc, yc) do not appear explicitly in T and V . Therefore (xc, yc) are cyclic
and ẋc = constant, ẏc = constant are immediately obvious. These steps are
left as an exercise.

5.3.2 Lagrange’s Equations for Conservative Forces

Recall that the generalized forces can in general be written as Qj =
∑N

i=1 fi ·
∂Ri

∂qj
, and for the case of conservative forces, fi = − ∂V

∂Ri
, so the generalized

conservative forces can be written as

Qj =

N∑

i=1

fi ·
∂Ri

∂qj
= −

N∑

i=1

∂V

∂Ri
· ∂Ri

∂qj
= −∂V

∂qj
j = 1, 2, . . . , n (5.138)

We introduce the definition of the Lagrangian function:

L = L(t, q1, . . . , qn; q̇1, . . . , q̇n) ≡ T − V (5.139)

Since V = V (t, q1, . . . , qn), it follows that ∂L
∂q̇j

= ∂T
∂q̇j

and ∂L
∂qj

= ∂T
∂qj

− ∂V
∂qj

, then

for the case that all forces are conservative, then Eqs. (5.127) assume the most
famous form of Lagrange’s equations

d

dt

(
∂L
∂q̇j

)

− ∂L
∂qj

= 0, for j = 1, 2, . . . , n (5.140)
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For many elementary conservative systems, the potential and kinetic energy can
be simply written with a minimum of derivations; for these cases, Eqs. (5.140)
do not require derivation of any generalized forces and are therefore especially
attractive. In more general circumstances for which there are both conservative
and nonconservative forces which do virtual work, then Eqs. (5.140) are replaced
by the more general form

d

dt

(
∂L
∂q̇j

)

− ∂L
∂qj

= Qncj =

N∑

i=1

fnci ·
∂Ṙi

∂q̇j
, for j = 1, 2, . . . , n (5.141)

where fnci is the nonconservative force acting on mi. Of course, the special

case of non-conservative forces which act normal to the vector ∂Ri

∂qj
≡ ∂Ṙi

∂q̇j
has

Qnc = 0 and this special class of non-conservative systems’ equations of motion
are also given by Eq. (5.140). The utility of these forms of Lagrange’s equations
are illustrated in the following examples.

Example 5.8: With reference to Fig. 5.10, the linear spring pendulum is con-

θ

êr

êθ

n̂2

n̂1

m

O

r

g

Figure 5.10: Classical Spring Pendulum

sidered (nominal unstretched spring length (ro), linear spring constant (k)).
The objective is to use the version of Lagrange’s Eqs. (5.141) to efficiently
develop the equations of motion. It is evident that the only virtually working
forces are the spring force and gravity, and that there are two generalized
coordinates (r, θ). The position and velocity vectors are given by

R = rêr, Ṙ = ṙêr + rθ̇êθ

Thus the kinetic energy is

T =
1

2
mṘ · Ṙ =

1

2
m(ṙ2 + r2θ̇2)

From inspection of Fig. 5.10,, it is evident that the potential energy function
is

V = mgr(1 − cos θ) +
1

2
k(r − ro)

2
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so the Lagrangian function is

L = T − V =
1

2
m(ṙ2 + r2θ̇2) −mgr(1 − cos θ) − 1

2
k(r − ro)

2

mr̈ + k(r − ro) −mrθ̇2 −mg cos θ = 0

mr2θ̈ +mgr sin θ + 2mrṙθ̇ = 0

To appreciate the efficiency of the above path to obtain the equations of
motion, it is instructive to repeat the solution using Eqs. (5.126), including
the formulation of generalized forces

Qr = [−k(r − ro)êr −mgn̂2] · ∂Ṙ
∂ṙ

= . . . = −k(r − ro) +mg cos θ

Qθ = [−k(r − ro)êr −mgn̂2] · ∂Ṙ
∂θ̇

= . . . = −mgr sin θ

arising from the spring force and the gravity force. When conservative forces
that have easily established potential energy functions are present, then Eqs. (5.141)
clearly results in significant reductions in the algebra associated with deriva-
tion of the generalized force functions. Obviously, we can ignore all internal
and constraint forces, as well as all conservative forces, and consider only
the nonconservative virtually working forces when determining the general-
ized force functions. In this case, all virtually working forces are conservative,
so it is not necessary to formulate any generalized forces (they are implicitly
accounted for by being included in the potential energy function).

Example 5.9: With reference to Fig. 5.11, we generalize the earlier example

r

θ

x
k

êr

êθm2

n̂2

n̂1

m1

g

c

Figure 5.11: Damped Cart - Pendulum System
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solved using Newton’s laws and D’Alembert’s Principle, to include the dashpot
linear damper with associated damping force (−cẋn̂1). We note that, among
the virtually working forces, only the damping force is nonconservative. This
means that the generalized forces are easily determined as

Qx = [−cẋn̂1] · ∂Ṙ1

∂ẋ
= −cẋ

Qθ = 0

Ṙ1 = V1 = ẋn̂1

Ṙ2 = V2 = ẋn̂1 + rθ̇êθ

The kinetic and potential energies are

T =
1

2
(m1 +m2)ẋ

2 +
1

2
m2[ẋ

2 + r2θ̇2 + 2ẋrθ̇ cos θ]

V =
1

2
kx2 +m2g(1 − cos θ)

It is easy to verify that Eqs. (5.141) immediately give

(m1 +m2)ẍ+ (m2r cos θ)θ̈ −m2rθ̇
2 sin θ = −kx− cẋ

(m2r cos θ)ẍ+ (m2r
2)θ̈ = −mgr sin θ

This process is an elegant alternative to the previous development of the
equations of motion via Newton’s laws or D’Alembert’s Principle, especially
with regard to requiring only velocity-level vector kinematics.

5.3.3 Redundant Coordinate Systems and Constrained Motion

Here we extend Lagrange’s equations to consider redundant coordinates subject
to Pfaffian non-holonomic constraints. Recall our path to Lagrange’s equations
for a system of N particles.

Newton’s 2nd Law: fi + fci
−miR̈i = 0 (5.142)

Virtual Work: δWi = (fi + fci
−mR̈i) · δRi = 0 (5.143)

Consistent Virtual Displacements: δWci
= fci

· δRi = 0 (5.144)

Virtual Work Becomes: δWi = (fi −mR̈i) · δRi = 0 (5.145)

Total Virtual Work: δW =

N∑

i=1

(fi −miR̈i) · δRi = 0 (5.146)

Introduce Generalized Coordinates: Ri = Ri(q1, . . . , qn, t) (5.147)

We made us of Ri = Ri(q1, . . . , qn, t) to write

δRi =

n∑

j=1

∂Ri

∂qj
δqj (5.148)
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so that the virtual work δW of Eq. (5.146) can be re-written as

δW =

n∑

j=1

(
N∑

i=1

fi ·
∂Ri

∂qj
−

N∑

i=1

miR̈i ·
∂Ri

∂qj

)

δqj = 0 (5.149)

We previously defined the generalized force

Qj ≡
N∑

i=1

fi ·
∂Ri

∂qj
j = 1, 2, . . . , n (5.150)

and we proved the identity

N∑

i=1

miR̈i ·
∂Ri

∂qj
≡ d

dt

(
∂T

∂q̇j

)

− ∂T

∂qj
j = 1, 2, . . . , n (5.151)

that that Eq. (5.149) becomes

δW =
n∑

j=1

[

Qj +
∂T

∂qj
− d

dt

(
∂T

∂q̇j

)]

δqj = 0 (5.152)

Now, in the previous developments of section 5.3.1, we assumed n was the
number of degrees of freedom (which implicitly means all holonomic constraints
have been eliminated, and that {q1, . . . , qn} are a minimal set of independent
coordinates). For this case, we argued that the virtual displacements δqj could
be chosen arbitrarily — Eq. (5.152) can only be satisfied if each bracketed [ ]j
coefficient of δqj must vanish independently — leading to the most familiar
forms of Lagrange’s equations.

However, if {q1, . . . , qn} are not independent, and constraints are present,
then we cannot set the coefficient of δqj in Eq. (5.152) to zero. In particular,
consider the case of m differential non-holonomic constraints of the Pfaffian
form

n∑

j=1

Akj q̇j +Bk = 0 k = 1, 2, . . . ,m (5.153)

or, along an trajectory, we have the differential constraint

n∑

j=1

Akjdqj +Bkdt = 0 k = 1, 2, . . . ,m (5.154)

For instantaneous virtual displacements consistent with these constraints in
Eq. (5.154), we have

n∑

j=1

Akjδqj = 0 k = 1, 2, . . . ,m (5.155)
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Any m of the n δqj ’s could be solved from the algebraic equations in (5.155)
as a function of the remaining (n −m) δqj ’s analogous to the above develop-
ments for the Lagrange multiplier rule. These m equations could be used in
Eq. (5.152) to eliminate m δqj ’s. Recollection of the terms would give virtual
work as a constrained variation function of (n −m) δqj ’s which can be chosen
independently. Again, analogous to the development of the Lagrange multiplier
rule, it is easy to argue that the following Lagrange multiplier rule “automates”
all possible differential constraint eliminations:

δW =

n∑

j=1

[

Qj +

m∑

k=1

λkAkj +
∂T

∂qj
− d

dt

(
∂T

∂q̇j

)]

δqj = 0 (5.156)

Leading to the constrained version of Lagrange’s equations of motion

d

dt

(
∂T

∂q̇j

)

− ∂T

∂qj
= Qj +

m∑

k=1

λkAkj j = 1, 2, . . . , n (5.157)

n∑

j=1

Akj q̇j +Bk = 0 k = 1, 2, . . . ,m (5.158)

constituting an (n+m) differential-algebraic system of equations in the (n+m)
unknowns

{q1(t), . . . , qn(t), λ1(t), . . . , λm(t)}

We mention that a more convenient version of Lagrange’s equation, in lieu
of Eq. (5.157), can be written as a generalization of Eq. (5.141) as

d

dt

(
∂L
∂q̇j

)

− ∂L
∂qj

= Qncj
+

m∑

k=1

λkAkj j = 1, 2, . . . , n (5.159)

Where L = T − V , V = V (q1, . . . , qn) is the potential energy function, Qj =

− ∂V
∂qj

, fi = fnci
−∇V , and Qncj

=
∑N

i=1 fnci
· ∂Ri

∂qj
.

Example 5.10: Consider the particle sliding in a rotating tube as shown in
Figure 5.12. The forces are shown in the free-body diagram. Fθ is the normal
reaction force due to interaction of the mass m with the tube wall. First, we
develop the equations of motion using Newton’s second law

F = mR̈ (5.160)

From kinematics we find that

R̈ = (r̈ − rθ̇2)êr + (rθ̈ + 2ṙθ̇)êθ

and introducing the kinematic constraint θ̇ = Ω =constant, we have

R̈ = (r̈ − rΩ2)êr + (2ṙΩ)êθ
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r

êr

êθ

ên
Ω

N
Nonlinear Spring
F(r) = −k1r − k2r 3

m

Figure 5.12: Particle Moving in a Rotating Tube

From the free-body diagram, we have

F = −(k1r + k2r
3)êr + (Fθ)êθ (5.161)

so the equations of motion are

−(k1r + k2r
3)êr + Fθêθ = m

[
(r̈ − rΩ2)êr + (2ṙΩ)êθ

]
(5.162)

leading to the scalar differential equation

mr̈ −mΩ2r = −k1r − k2r
3 (5.163)

and the constraint force

Fθ = 2mṙΩ (5.164)
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work (because (Fθêθ) · (δrêr) = 0 ) — therefore Qnc = 0 and the equations
of motion from Eqs. (5.141) reduce to

d

dt

(
∂L
∂q̇j

)

− ∂L
∂qj

= 0 j = 1, 2, . . . , n

For the one-dimensional dynamical system considered in this present example
this yields

d

dt

(
∂L
∂ṙ

)

− ∂L
∂r

= 0

and specifically, substituting Eq. (5.169) gives

mr̈ + (k1 −mΩ2)r2 + k2r
3 = 0 (5.170)

Both Eqs. (5.163) and (5.170) give the identical differential equation of mo-
tion, which can be written as

r̈ + (α2
1 − Ω2)r2 + α2

2r
3 = 0 (5.171)

with

α2
1 ≡ k1

m
α2

2 ≡ k2

m
(5.172)

Thirdly, we can use a redundant coordinate set (r, θ), and make use of the de-
velopments presented in the current section, namely Eqs. (5.158) and (5.159).
The kinetic energy, for general planar motion, is

T =
1

2
m(ṙ2 + r2θ̇2) (5.173)

and the Lagrangian is

L = T − V =
1

2
ṙ2 +

1

2
mr2θ̇2 − k1

2
r2 − k2

4
r4 (5.174)

The constraint θ̇ = Ω = constant is written as the Pfaffian form

θ̇ − Ω = 0 (5.175)

We note that Eq. (5.175) is the particular case of Eq. (5.158). Taking
(q1, q2) = (r, θ), we have by direct inspection:

A11 = 0 A12 = 1 B1 = Ω (5.176)

The equations of motion follow from Eq. (5.159) as

d

dt

(
∂L
∂ṙ

)

− ∂L
∂r

= λ(0)

d

dt

(
∂L
∂θ̇

)

− ∂L
∂θ

= λ(1)

(5.177)
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Carrying out the differentiations, by substituting Eq. (5.174) into (5.177) we
have

mr̈ −mrθ̇2 + k1r + k2r
3 = 0 (5.178)

mr2θ̈ + 2mrṙθ̇ + 0 = λ (5.179)

Imposing the constraint of Eq. (5.175) on Eqs. (5.178) and (5.179), we obtain

mr̈ + (k1 −mΩ2)r + k2r
3 = 0 (5.180)

λ = 2mrṙΩ ≡ rFθ (5.181)

We see that Eq. (5.180) is identical to Eqs. (5.170) and (5.171), whereas λ
is the moment causes by the constraint force Fθ = 2mṙΩ.

5.3.4 Vector-Matrix Form of the Lagrangian Equations of Mo-
tion

We note that the Lagrangian equations of motion in Eq. (5.159) and the system
of Pfaffian constraints can be written in the vector-matrix form

d

dt

(
∂L
∂q̇

)

− ∂L
∂q

= Qnc + [A]Tλ (5.182)

and

[A]q̇ + B = 0 (5.183)

where

L(q, q̇, t) = T (q, q̇, t) − V (q, t)

Qnc = col

(
N∑

i=1

fnci
· ∂Ri

∂q1
,
N∑

i=1

fnci
· ∂Ri

∂q2
, . . . ,

N∑

i=1

fnci
· ∂Ri

∂qn

)

≡ col

(
N∑

i=1

fnci
· ∂Ṙi

∂q̇1
,

N∑

i=1

fnci
· ∂Ṙi

∂q̇2
, . . . ,

N∑

i=1

fnci
· ∂Ṙi

∂q̇n

)

q ≡
(
q1 q2 · · · qn

)T

λ ≡
(
λ1 λ2 · · · λm

)T

[A] =








A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

Am1 Am2 · · · Amn








= [A(q)]

B =
(
B1 B2 · · ·Bn

)T
= B(q)
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Once a vector basis for expressing positions and velocities has been selected,
more explicit Lagrange’s equations of motion can be written. Starting with the
velocity expression in the vector form of

Ṙi =
∂Ri

∂t
+

n∑

k=1

vik q̇k i = 1, 2, . . . , N (5.184)

Letting F{Ri} denote a matrix of components of Ri in frame F and similarly
for vectors F{Ri

∂t

}
and F{vik}, then the vector equations of Eqs. (5.184) can be

written as the corresponding matrix equations

F{Ṙi} =
F{

Ri

∂t

}

+

n∑

k=1

F{vik}q̇k i = 1, 2, . . . , N (5.185)

or

F{Ṙi} =
F{

Ri

∂t

}

+ [FVi]{q̇} i = 1, 2, . . . , N (5.186)

where

q̇ =
(
q̇1 q̇2 · · · q̇n

)T

[FVi] =
[F{Vi1} F{Vi2} · · · F{Vin}

]

We elect to delete “F” and simply understand that all vector’s components are
taken in some reference frame, thus we write Eq. (5.186) as

{Ṙi} =

{
Ri

∂t

}

+ [Vi]{q̇} i = 1, 2, . . . , N (5.187)

The 3 × 3 partial velocity matrices [Vi] are important, because they directly
parameterize the system mass matrix, as will be seen. Note the vector version
of kinetic energy, for a system of particles, is written as

T =
1

2

N∑

i=1

miṘi · Ṙi (5.188)

The corresponding matrix expression for T is

T =
1

2

N∑

i=1

mi{Ṙi}T {Ṙi} (5.189)

Substitution of Eqs. (5.187) into Eq. (5.189) gives

T2 =
1

2
q̇T [M ]q̇ (5.190)
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and

T =
1

2
q̇T [M ]q̇ + T1 + T0 (5.191)

where the symmetric positive definite system mass matrix [M ] = [M ]T is defined
as an explicit function of the [Vi] matrices:

[M(q)] =

N∑

i=1

mi[Vi]
T [Vi] (5.192)

The remaining two energy components T1 and T0 are defined as

T1 =

N∑

i=1

{
∂Ri

∂t

}T

[Vi]q̇ (linear in q̇) (5.193)

T0 =
1

2

N∑

i=1

{
∂Ri

∂t

}T {
∂Ri

∂t

}

(does not contain q̇) (5.194)

Substitution of Eqs. (5.191) – (5.194) into Eq. (5.182) gives

d

dt

(

[M ]q̇ +

N∑

i=1

{
∂Ri

∂t

}T

[Vi]

)

− col

(
1

2
q̇T
[
∂M

∂q1

]

q̇,
1

2
q̇T
[
∂M

∂q2

]

q̇, . . . ,
1

2
q̇T
[
∂M

∂qn

]

q̇

)

+
∂T1

∂q
+
∂T0

∂q
+
∂V

∂q
= Qnc + [A]Tλ

which is rearranged to the form

[M ]q̈ + G(q, q̇) = Qnc + [A]Tλ (5.195)

[A]q̇ + B = 0 (5.196)

where

G(q, q̇) = [Ṁ ]q̇ +
d

dt

(
N∑

i=1

{
∂Ri

∂t

}T

[Vi]

)

− col

(
1

2
q̇T
[
∂M

∂q1

]

q̇,
1

2
q̇T
[
∂M

∂q2

]

q̇, . . . ,
1

2
q̇T
[
∂M

∂qn

]

q̇

)

− ∂

∂q
(T0 + T1 − V ) (5.197)

Finally, the nonlinear term can be simplified to the form

G(q, q̇) = (5.198)

Example 5.11: Will do the five bar mechanism here
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Problems

θ

m

gR

k

O

Figure 5.13: Illustration of a Pendulum with a Linear Torsional Spring

5.1
Consider the system shown in Figure 5.13. The pendulum has a weightless rod
of length R. In addition to gravity, consider the torsional linear spring (moment
= −kθ, spring potential energy = 1

2
kθ2). Your tasks are to derive the equations

of motion using:

a) Newton’s laws

b) Euler’s Equations of motion (L = Ḣ), taking moment about pivot point
O.

c) A version of Lagrange’s equations

θ
m

R
g

êr

êθ

êφ

Ω

O

Figure 5.14: Illustration of a Particle Sliding Inside a Frictionless Ro-
tating Circular Tube.
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5.2
Consider the particle of mass m sliding with out friction in a rotating circular
tube as shown in Figure 5.14. The angular rate φ̇ = Ω is constant.

a) Formulate the “minimal coordinate” version of the kinetic energy T (θ, θ̇)
and potential energy V (θ) and derive the equations of motion using La-
grange’s method. Find all equilibrium points θeq for which θ̈ = θ̇ = 0.
Investigate the stability of all points as a function of Ω over the range
0 ≤ Ω ≤ ∞. Verify that Ω =

√
g/r is a critical frequency where stability

properties change.

b) Formulate kinetic and potential energy as a function of the redundant
coordinates (r,φ, θ)

T = T (r,φ, θ, ṙ, φ̇, θ̇) V = V (r,φ, θ)

Use the Lagrange multiplier rule and Lagrange’s equations in the form

d

dt

(
∂L
∂q̇j

)

− ∂L
∂qj

= Qj +
2∑

k=1

λk
∂ψk

∂qj

with the generalized coordinates

(q1, q2, q3) = (r,φ, θ)

and the holonomic constraints

ψ1(r,φ, θ) = r −R = 0

ψ2(r,φ, θ) = φ− Ωt = 0

Derive the system equations, determine the Lagrange multipliers (λ1, λ2)
as functions of (θ, θ̇,Ω, R,m) and eliminate them to verify the equation
of motion of a).

m1 m2
k

x1

x2

x12

Figure 5.15: Illustration of a Spring Connected Two-Particle System.
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5.3
Consider the two-particle system shown in Figure 5.15. The particles move along
a straight line on a frictionless plane. The un-stretched spring length is d, so
that the force acting on m1 is k[(x2 − x1)− d] = k(x12 − d). Consider two sets
of generalized coordinates:

Set I: (q1, q2) ≡ (x1, x2)

Set II: (q1, q2) ≡ (xc, x12)

with xc = 1
m1+m2

(m1x1 +m2x2). Your tasks are to:

a) Formulate the equations of motion using

i) Newton’s Laws

ii) Lagrange’s Equations

b) Starting with the equation of motion for Set I arranged in the matrix form

[M ]

(
ẍ1

ẍ2

)

= F

First derive the 2 × 2 constant transformation matrix [A]

(
x1

x2

)

= [A]

(
xc

x12

)

and verify that the part a.i) differential equations are obtained from

[A]T [M ][A]

(
ẍc

ẍ12

)

= [A]TF

m1 m2

x1

x2

m3

x3

c12 c23

c13

k13

k23k12

Figure 5.16: Illustration of a Spring and Dashpot Connected Three-
Particle System.
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5.4
Consider the three-particle system shown in Figure 5.16. The particles move
along a straight line on a frictionless inertially fixed plane. The un-stretched
lengths of the linear springs are dij so that the force acting on m1 is

k12 [(x2 − x1) − d12] + c12(ẋ2 − ẋ1) + k13 [(x3 − x1) − d13] + c13(ẋ3 − ẋ1)

Consider the following three sets of generalized coordinates:

Set I: (q1, q2, q3) ≡ (x1, x2, x3)

Set II: (q1, q2, q3) ≡ (x12, x23, x3)

Set III : (q1, q2, q3) ≡ (x12, x23, xc)

with xij = xj − xi, xc = 1
m

(m1x1 +m2x2 +m3x3) and m = m1 +m2 +m3.
Your tasks are as follows:

a) Formulate the equations of motion for each set of generalized coordinates
using

i) Newtons Laws

ii) Lagrange’s Equations

b) Starting with the differential equations of motion derived from the Set I
written in the matrix form

[M ]ẍ = F (x) x = (x1, x2, x3)
T

first derive the 3 × 3 transformation matrices [A] and [B] such that

x = [A]yy = (x12, x23, x3)
T

x = [B]zz = (x12, x23, xc)
T

Then introducing x = [A]y and x = [B]z into [M ]ẍ = F (x) find the
transformed differential equations

([A]T [M ][A])ÿ = [A]TF ([A]y)

([B]T [M ][B])z̈ = [B]TF ([B]z)

and verify that these are identical to the results for coordinate sets II and
II in part a).
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m1

m2

m3

k12

c12 c23

c13

k23

k13

(x3, y3)

(x2, y2 )

(x1, y1 )

x

y

O

Figure 5.17: Illustration of a Planar Spring and Dashpot Connected
Three-Particle System.

5.5 Consider a three-particle system moving on a frictionless, inertially fixed plane
as shown in Figure 5.17. Generalize the results of problem 5.4, with the three
coordinate choices

Set I: XT ≡
(
x1 y1 x2 y2 x3 y3

)

Set II: Y T ≡
(
x12 y12 x23 y23 x3 y3

)

Set III : ZT ≡
(
x12 y12 x23 y23 xx yx

)

where

xij = xj − xi yij = yj − yi

xc =
1

m
(m1x1 +m2x2 +m3x3)

yc =
1

m
(m1y1 +m2y2 +m3y3)

Verify that setting either yi ≡ 0 or xi ≡ 0 one can obtain the differential
equations found in problem 5.1.
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Chapter Seven

Nonlinear Spacecraft
Stability and Control

CONSIDER a spacecraft which is to be reoriented to a new heading. It
is possible to prescribe a corresponding trajectory and then derive the re-

quired control effort through inverse dynamics which will accomplish the desired
maneuver. Such maneuvers are called open-loop maneuvers since no position or
velocity feedback is present to indicate how accurately these maneuvers are being
accomplished. Naturally, any real system will not be modeled perfectly and un-
modeled dynamics and external influences will cause the spacecraft to drift from
the desired trajectory or final state; i.e., the inverse solution for the open-loop
contains modeling approximations. To guarantee stability of the maneuver, a
feedback control law is required. This control law operates on measured updates
of the current states and compares them to the where the spacecraft should be
at any instant of time. The state errors are then used to modify the control
input such that the spacecraft returns to the desired trajectory. Open-loop ref-
erence maneuvers are not always required to perform reorientations. In several
control laws, spacecraft are reoriented to the new attitude by simply feeding the
difference between current and final desired attitude to the control law.

This chapter will develop several control laws for both the regulator problem
(maintaining a fixed orientation or configuration) and the trajectory tracking
problem, and discuss their stability characteristics. Designing spacecraft atti-
tude control laws combines the skills of rigid body kinematics and kinetics, as
well as control methodology. In fact, the proper choice of attitude coordinates
can be crucial to the usability of the resulting control law. If large, arbitrary
rotations are to be performed, clearly any set of the Euler angle family would be
a poor choice due to their small non-singular rotation range. Attitude control
laws that make judicious use of various attitude coordinates will be presented.

205
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7.1 Nonlinear Stability Analysis

To design the nonlinear control laws and study their stability, typically Lya-
punov’s direct method is used. This section will briefly discuss and review the
basic concepts involved in nonlinear stability analysis. It is not intended as a
complete study of nonlinear stability and control theory. Instead, our goal is to
provide enough insight into the essence of Lyapunov stability theory to allow the
reader to follow the developments of the attitude control laws and their stability
proofs. The reader is assumed to already be familiar with basic linear control
concepts. Representative references for linear control theory are references 1
and 2. For a more complete study of nonlinear stability analysis and control
theory, the reader is referred to references 3–5.

7.1.1 Stability Definitions

Let x be a generalized state vector, then nonlinear dynamical systems can be
written in the form

ẋ = f(x, t) (7.1)

If the function f(x, t) does not explicitly depend on time, then the dynamical
system is said to be autonomous. Otherwise the system is said to be non-
autonomous. A spacecraft unfolding its solar panels at a prescribed rate would
yield a non-autonomous dynamical system, since its inertia matrix would be
time dependent. Let u be the autonomous feedback control

u = g(x) (7.2)

then the closed-loop dynamical system is given by

ẋ = f(x,u) (7.3)

To define stability of a dynamical system, the notions of an equilibrium state
xe and nominal reference motion xr are required.

Definitionn 7.1 (Equilibrium State) A state vector point xe is said to be
an equilibrium state (or equilibrium point) of a dynamical system described by
ẋ = f(x, t) at time t0 if

f(xe, t) = 0 ∀ t > t0

Therefore, once the system reaches the state xe, it will remain there for all
time. Equilibrium states can be thought of as the “natural states” of the system.
Consider a free-swinging vertical pendulum. Its natural equilibrium state would
be being hanging straight down at rest, or perhaps inverted.

Example 7.1: Let us evaluate the equilibrium states of a undamped spring-
mass system with a nonlinear spring stiffness.

mẍ+ k1x+ k2x
3 = 0
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The stiffnesses k1 and k2 are positive scalar constants. To write these equa-
tions in the form of Eq. (7.1), the state vector x is introduced.

x =

(
x1

x2

)

=

(
x
ẋ

)

The dynamical system is then written as

ẋ = f(x) =

(
x2

− k1

m
x1 − k2

m
x3

1

)

To find all equilibrium states, the function f(x) is set equal to the zero vector.
The first component immediately indicates that any equilibrium state of this
system must have x2 = 0. Setting the second component equal to zero yields
three possible roots.

x1 = 0 and x1 = ±
√

−k1

k2

Since solely real solutions are of interest for this spring mass system and
ki > 0, the only equilibrium state vector is found to be xe = (0, 0)T .

If the dynamical system is to follow a prescribed motion, then this motion
is referred to as the nominal reference motion xr(t). To describe the proximity
of one state to another, the notion of neighborhoods is defined.

Definitionn 7.2 (Neighborhood Bδ) Given δ > 0, a state vector x(t) is
said to be in the neighborhood Bδ(xr(t)) of the state xr(t) if

||x(t) − xr(t)|| < δ =⇒ x(t) ∈ Bδ(xr(t))

Since the norm used in the Definition 7.2 is the standard Euclidean norm, neigh-
borhoods can be visualized as being n-dimensional spherical regions (balls) of
radius δ around a particular state xr(t).

A simple form of stability is the concept of a motion simply being bounded
(or Lagrange stable) relative to xr(t). Note that x(t0) could lie arbitrarily close
to xr(t0) while x(t) may still deviate from xr(t). The only stability guarantee
made here is that this state vector difference will remain within a finite bound
δ.

Definitionn 7.3 (Lagrange Stability) The motion x(t) is said to be Lagrange
stable (or bounded) relative to xr(t) if there exists a δ > 0 such that

x(t) ∈ Bδ(xr(t)) ∀ t > t0

Declaring a motion to be Lyapunov stable (also referred to simply as being
stable) is a stronger statement than saying it is Lagrange stable. With stability
it is possible to keep the difference between x(t) and xr(t) arbitrarily small.
Let us first define stability relative to xr(t). Stability relative to an equilibrium
point is a special case of this more general setting.
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Definitionn 7.4 (Lyapunov Stability) The motion x(t) is said to be Lya-
punov stable (or stable) relative to xr(t) if for each ε > 0 there exists a δ(ε) > 0
such that

x(t0) ∈ Bδ(xr(t0)) =⇒ x(t) ∈ Bε(xr(t)) ∀ t > t0

( )( )tBδ xr 0

( )xr t

( )xr t0 ( )x t0

( )x t

State Space
( )( )tBε xr

Figure 7.1: Illustration of Lyapunov Stability Definition

In other words, if the state vector x(t) is to remain within any arbitrarily small
neighborhoodBε of xr(t), then there exists a corresponding initial neighborhood
Bδ(xr(t0)) from which all x(t) must originate. This concept is illustrated in
Figure 7.1. If x(t) is not stable, then it is said to be unstable. If the reference
motion xr(t) is an equilibrium state xe, then Definition 7.4 simplifies to:

Definitionn 7.5 (Lyapunov Stability) The equilibrium state xe is said to
be Lyapunov stable (or stable) if for each ε > 0 there exists a δ(ε) > 0 such that

x(t0) ∈ Bδ(xe) =⇒ x(t) ∈ Bε(xe) ∀ t > t0

These stability definitions only guarantee that the motion will remain arbitrarily
close to the desired target state, provided that the initial state is close enough
to the target state. Nothing is said whether or not the motion will actually
converge to the target state.

Example 7.2: Let us analyze the equilibrium point stability of the simple
spring-mass system

mẍ+ kx = 0

using the Lyapunov stability definition. Writing the dynamical system in state
space form we get

ẋ = f(x) =

[
0 1

− k
m

0

]

x (7.4)

where x = (x, ẋ)T and xe = (0, 0)T . Solving the second order differential
equations analytically, the trajectory x(t) is found to be

x(t) = A sin(ωt+ φ)
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where ω =
√
k/m is the natural frequency, φ is the phase angle and A

is the oscillation amplitude. The spring stiffness k is assumed to be larger
than the mass m, therefore ω > 1. Note that both A and φ are determined
through the initial conditions. Assume that the all initial states x(t0) are in
a neighborhood Bδ of xe, then

||x(0)|| =
√

x(0)2 + ẋ(0)2 = A
√

1 + (cos2 φ) (ω2 − 1)

Depending on the phase angle, the initial state magnitudes will vary between
A ≤ ||x(0)|| ≤ Aω since ω > 1. Therefore, if all ||x(0)|| ∈ Bδ(xe), then

δ = Aω

The state vector magnitude for t > 0 is

||x(t)|| = A
√

1 + cos2(ωt+ φ)(ω2 − 1)

Since ω > 1, this is bounded from above by

||x(t)|| ≤ Aω = δ

For a given ε > 0, to guarantee that any trajectory x(t) ∈ Bε(xe), the initial
neighborhood size δ must be chosen such that δ ≤ ε. Note that in order
to prove stability, it was necessary to solve for x(t). For this simple linear
system this was possible. However, for general nonlinear system this becomes
exceedingly difficult.

A stronger stability statement is to say the motion x(t) is asymptotically
stable. In this case the difference between x(t) and xr(t) will approach zero
over time.

Definitionn 7.6 (Asymptotic Stability) The motion x(t) is asymptotically
stable relative to xr(t) if x(t) is Lyapunov stable and there exists a δ > 0 such
that

x(t0) ∈ Bδ(xr(t0)) =⇒ lim
t→∞

x(t) = xr(t)

In other words, there exists a non-empty neighborhood of size δ around xr(t0)
wherein each x(t0) results in a motion that asymptotically approaches xr(t).
This result could again be simplified for the case of asymptotic stability of an
equilibrium state by setting xr(t) = xe. Note that asymptotic stability only
guarantees that the state error will approach zero, yet it does not predict any
specific decay rate.

Definitionn 7.7 (Exponential Stability) The motion x(t) is said to be ex-
ponentially stable relative to xr(t) if x(t) is asymptotically stable and there exists
a δ > 0 and corresponding α(δ) > 0 and λ(δ) > 0 such that

x(t0) ∈ Bδ(xr(t0)) =⇒ ||x(t) − xr(t)|| ≤ αe−λt||x(t0) − xr(t0)||
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Therefore exponential stability guarantees that the state errors will decay at
least at a rate λ. Of all the stability definitions presented, the concept of La-
grange stability is clearly the weakest, while exponential stability is the strongest
statement. Unfortunately, proving exponential stability is also the most chal-
lenging.

Except for the Lagrange stability definition, all other types of stability de-
fined are referred to as local stability. The initial state vector has to be within a
certain neighborhood Bδ relative to the desired state vector for stability to be
guaranteed. If stability is guaranteed for any initial state vector x(t0), then the
system is said to be globally stable or stable at large.

Definitionn 7.8 (Global Stability) The motion x(t) is said to be globally
stable (asymptotically stable or exponentially stable) relative to xr(t) if x(t) is
stable (asymptotically stable or exponentially stable) for any initial state vector
x(t0).

7.1.2 Linearization of Dynamical Systems

For design purposes and to perform stability analysis, many nonlinear dynamical
systems are linearized about a nominal reference motion xr(t) which is defined
through the differential equation ẋr = f(xr,ur). This allows for standard linear
control techniques and stability theory to be applied. Assume the dynamical
system x(t) is defined through ẋ = f(x,u). The control effort error δu is
defined as

δu = u − ur (7.5)

and the state error vector δx be defined as

δx = x − xr (7.6)

The derivative of δx is written as

δẋ = ẋ − ẋr (7.7)

Performing a Taylor series expansion of x about (xr,ur) we obtain

δẋ = f(xr,ur) +
∂f(xr,ur)

∂x
δx +

∂f(xr,ur)

∂u
δu +H.O.T − f(xr,ur) (7.8)

After dropping the higher order terms, this leads to the linearized dynamical
system

δẋ ' ∂f(xr,ur)

∂x
δx +

∂f(xr,ur)

∂u
δu (7.9)

Defining the two Jacobian matrices to be the time-varying matrix functions

[A] =
∂f(xr,ur)

∂x
(7.10)

[B] =
∂f(xr,ur)

∂u
(7.11)
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the linearized system is written in the standard form

δẋ ' [A]δx + [B]δu (7.12)

If the nominal reference motion xr(t) is simply an equilibrium state xe, then
the state vector x is typically expressed relative to xe. Therefore, having x = 0
implies that the system is at the equilibrium point. The nominal control ur is
zero in this case. The linearized dynamical system about the equilibrium state
xe is expressed as

ẋ ' [A]x + [B]u (7.13)

Note that since the original nonlinear system ẋ = f(x,u) was assumed to
be autonomous, the generally time varying matrices [A] and [B] are constant
matrices for this case.

Linear stability analysis can now be used on either Eq. (7.12) or (7.13).
However, note that any stability claim resulting from this analysis will inherently
only be a local stability claim. Any stable linear system is inherently globally
exponentially stable. However, just because a linearized dynamical system is
stable does not imply that the nonlinear system will be globally stable. Using
linear stability theory on the linearized dynamical system only guarantees that
there exists an non-empty neighborhood Bδ about the reference motion xr(t0)
from which all nonlinear motions x(t) will be stable if x(t0) ∈ Bδ(xr(t0).

Example 7.3: Let us find the linearized equations of motion of the nonlinear
dynamical system

mẍ+ cẋ+ k1x+ k2x
3 = 0

about some reference motion xr(t). The given oscillator system has a cubi-
cally nonlinear spring with stiffness k2. To write this second order differential
equation in state space form, let us introduce the state vector x as

x =

(
x
ẋ

)

The dynamical system is then written as the first order differential equation

ẋ = f(x) =

(
ẋ

− k1

m
x− k2

m
x3 − c

m
ẋ

)

Using Eq. (7.10), the Jacobian matrix [A] is found by taking the first partial
derivative of f(x) with respect to the state vector x.

[A] =
∂f

∂x
=

[
0 1

− k1

m
− 3 k2

m
x2 − c

m

]

The linearized dynamical system about the reference motion xr(t) is then
expressed as

δẋ '
[

0 1

− k1

m
− 3 k2

m
x2

r − c
m

]

δx
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If the reference motion is simply xr(t) = 0, then the linearized motion about
the origin simplifies to

δẋ '
[

0 1

− k1

m
− c

m

]

δx

Note that the linearized system can be used to establish local stability guaran-
tees. To verify that the nonlinear damped oscillator system is indeed globally
stable further analysis is needed.

For zero control effort u, the linearized system in Eq. (7.13) is stable if
no eigenvalues of [A] lie on the right half side of the complex plane (i.e. no
eigenvalues with positive real parts). The system is said to be strictly stable if all
eigenvalues have negative real parts. This guarantees that all states will decay to
zero. The system is marginally stable if all eigenvalues are on the left half plane
and at least one eigenvalue is purely imaginary. The modes corresponding to
the imaginary eigenvalues will exhibit an oscillatory, non-decaying motion. The
following theorem provides the conditions from which local nonlinear stability
can be concluded from linear stability analysis.

Theorem 7.1 (Lyapunov’s Linearization Method) Assume the linearized
dynamical system is found to be

1. strictly stable, then the nonlinear system is locally asymptotically stable.

2. unstable, the the nonlinear system is unstable.

3. marginally stable, then one cannot conclude anything about the stability of
the nonlinear system without further analysis.

This theorem is also referred to as Lyapunov’s indirect method. The theorem
makes intuitive sense. If the linearized system is either strictly stable or unsta-
ble, then one would expect that a neighborhood would exist where the nonlinear
system would also be either stable or unstable. However, if the linearized sys-
tem is only marginally stable, then the neglected second and higher order terms
could render the nonlinear system either stable or unstable.

7.1.3 Lyapunov’s Direct Method

Proving stability of nonlinear systems with the basic stability definitions and
without resorting to local linear approximations can be quite tedious and dif-
ficult. Lyapunov’s direct method provides a tool to make rigorous, analytical
stability claims of nonlinear systems by studying the behavior of a scalar, energy-
like Lyapunov function. A major benefit of this method is that this can be done
without having to solve the nonlinear differential equations. To visualize the
concept of Lyapunov’s direct method, imagine a ball rolling down a steep U-
shaped canyon. Having the ball roll down the center of the canyon is assumed
to be the nominal reference motion. Initially, the ball is at rest half-way up
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the smooth canyon wall. After release, the ball will roll down toward the val-
ley center, overshoot and rise up on the other canyon wall. However, due to
the conservation of energy, as long as the other wall is at least as high as the
previous one, there is no way the ball can escape the canyon (be unstable).
Instead it will roll down the canyon oscillating from wall to wall resulting in
a locally stable motion. This example is only locally stable since the ball has
to start within the canyon to guarantee stability. If friction drag effects are
included in this study, then the oscillations will eventually dampen out and the
ball motion will asymptotically track the canyon center. Here stability can be
rigorously guaranteed by only looking at the total kinetic and potential energy
of the system without having to actually solve for the resulting motion.

To mathematically create a virtual “canyon” around a target state xr, the
concept of positive definite functions is important. These functions are zero at
the target state (e.g., the canyon floor) and positive away from the target (e.g.,
the canyon walls).

Definitionn 7.9 (Positive (Negative) Definite Function) A scalar contin-
uous function V (x) is said to be locally positive (negative) de�nite about xr if

x = xr =⇒ V (x) = 0

and there exists a δ > 0 such that

∀ x ∈ Bδ(xr) =⇒ V (x) > 0 (V (x) < 0)

excluding x = xr. If the above property is true for any state vector x, then
V (x) is said to be globally positive (negative) de�nite.

If a function is positive definite in a finite region around a target state, then
this guarantees that this scalar function has a unique minimum at xr. Since
dynamical systems naturally tend toward a state of minimum total energy, the
fundamental importance of this method becomes clear. Similarly the concepts
of negative definite and semi-definite functions can be defined. A function V (x)
is negative definite if −V (x) is positive definite.

Definitionn 7.10 (Positive (Negative) Semi-Definite Function) A scalar
continuous function V (x) is said to be locally positive (negative) semi-de�nite
about xr if

x = xr =⇒ V (x) = 0

and there exists a δ > 0 such that

∀ x ∈ Bδ(xr) =⇒ V (x) ≥ 0 (V (x) ≤ 0)

excluding x = xr. If the above property is true for any state vector x, then
V (x) is said to be globally positive (negative) semi-de�nite.
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If a function is only semi-definite, then this function may have extremas other
than the desired target state. If the canyon had uneven walls with dips and
rises, then it is possible for the ball to come to rest in such a “local valley” and
not continue on to the center of the canyon. However, just because a function
is only semi-definite near a reference state xr, does not guarantee that other
local minima or maxima of V (x) exists. A matrix [K] is said to be positive or
negative (semi-) definite if for every state vector x

xT [K]x







> 0 ⇒ positive definite

≥ 0 ⇒ positive semi-definite

< 0 ⇒ negative definite

≤ 0 ⇒ negative semi-definite

(7.14)

To prove stability of a dynamical system, special positive definite function called
Lyapunov functions are sought.

Definitionn 7.11 (Lyapunov Function) The scalar function V (x) is a Lya-
punov function for the dynamical system ẋ = f(x) if it is continuous and there
exists a δ > 0 such that for any x ∈ Bδ(xr)

1. V (x) is a positive de�nite function about xr

2. V (x) has continuous partial derivatives

3. V̇ (x) is negative semi-de�nite

Even though V (x) explicitly only depends on the state vector x, since x(t) is
time varying, the Lyapunov function V is time varying too. Using the chain
rule, the derivative of V is found to be

V̇ =
∂V

∂x

T

ẋ =
∂V

∂x

T

f(x) (7.15)

where the last step holds since x(t) must satisfy the equations of motion ẋ =
f(x). Therefore the derivative V̇ is often referred to as the directional deriva-
tive of V along the system trajectory. This idea is illustrated in Figure 7.2.
The Lyapunov function is illustrated as a “bowl shaped” function over the state
plane (x1, x2). If the projection of the motion x(t) onto the Lyapunov func-
tion V (x) always has a non-positive slope, then V cannot grow larger and the
corresponding dynamical system is stable about the origin. As will become ev-
ident in the sequel developments, the Lyapunov function, if one exists, is not
unique – general stability in-the-large is often provable by any of a large family
of Lyapunov functions. On the other hand, we will also see that the Lyapunov
functions generalize the class of functions to which “total mechanical energy”
belongs, and the simplest way to think qualitatively about Lyapunov functions
is to simply view them as positive measures of displacement (in the state space)
from a prescribed reference trajectory xr(t).
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Figure 7.2: Illustration of a Lyapunov Function

If the following stability definitions are only valid in finite neighborhoods
Bδ(xr), then they are only local stability theorems. However, if the Lyapunov
function V (x) is radially unbounded (i.e. V (x) → ∞ as ‖x‖ → ∞), then the
stability claims are globally valid. To simplify the following theorems, it is
assumed that the stability of x(t) is always examined relative the origin. If the
origin is not the equilibrium state or nominal reference motion being examined,
than a coordinate transformation can always be accomplished such that this is
the case.

Theorem 7.2 (Lyapunov Stability) If a Lyapunov function V (x) exists for
the dynamical system ẋ = f(x), then this system is stable about the origin.

Note that, as is the case with all Lyapunov stability theorems, if Theorem 7.2
is not fulfilled, then one cannot conclude that the system is unstable. In this case
another Lyapunov function or stability theorem must be used to prove stability
or instability. While using Lyapunov functions allows one to rigorously predict
stability of nonlinear systems, finding an appropriate function to do so is not
always a trivial matter. However, in many cases it is beneficial to first use the
total energy expression as a first starting point for developing the Lyapunov
function, as is done in the following example.

Example 7.4: The stability of the spring-mass system studied in Example 7.2
is verified here using Lyapunov stability theory. The dynamical system is given
by

mẍ+ kx = 0

The total kinetic and potential energy of this system provides a convenient
Lyapunov function of the system motion about the system states ẋ = 0 and
x = 0.

V (x, ẋ) =
1

2
mẋ2 +

1

2
kx2
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By inspection V (x, ẋ) satisfies the three criteria of Definition 7.11. Note that
V (x, ẋ) is radially unbounded and therefore any stability guarantee will be
globally valid. Taking the derivative of V we find

V̇ (x, ẋ) = (mẍ+ kx) ẋ

After substituting the dynamical system this is written as

V̇ (x, ẋ) = 0 ≤ 0

Since V̇ is negative semi-definite, the spring-mass system is only stable in
the sense of Lyapunov, not asymptotically stable. Contrary to the more
complicated stability proof in Example 7.2, this Lyapunov approach did not
involve actually solving the equations of motion for x(t), which could be a
very challenging task to perform for many nonlinear systems. Since for this
example, the Lyapunov function represents the total energy and its rate is
shown to be zero for all time, we have also shown the well known truth that
the total energy for the spring-mass system is conserved.

Theorem 7.3 (Asymptotic Stability) Assume V (x) is a Lyapunov func-
tion about xr(t) for the dynamical system ẋ = f(x), then the system is asymp-
totically stable if

1. the system is stable about xr(t)

2. V̇ (x) is negative de�nite about xr(t)

Theorem 7.4 (Exponential Stability) Assume V (x) is a Lyapunov func-
tion V (x) of the dynamical system ẋ = f(x) and the system is asymptotically
stable, then the system is exponentially stable if there exists scalar constants
c2 ≥ c1 > 0 and λ > 0, k > 0 such that

1. V̇ ≤ −λV
2. c1‖x‖k ≤ V (x) ≤ c2‖x‖k

To guarantee convergence of x(t) to the reference motion xr(t) (i.e. asymp-
totic stability), Theorem 7.3 states that a sufficient condition is V̇ < 0. However,
this is only a sufficient, not a necessary condition. It is possible for a dynami-
cal system to be asymptotically stable, while the Lyapunov function derivative
along the system trajectory is only negative semi-definite. In essence, if V̇ does
vanish at some point other than xr, this point must not be an equilibrium state.
The following very useful theorem allows one to prove asymptotic stability, if
this indeed exists, when V̇ (x) ≤ 0 by investigating the higher order derivatives
of the Lyapunov function.6–8

Theorem 7.5 Assume there exists a Lyapunov function V (x) of the dynamical
system ẋ = f(x). Let Ω be non-empty the set of state vectors such that

x ∈ Ω =⇒ V̇ (x) = 0
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If the �rst k − 1 derivatives of V (x), evaluated on the set Ω, are zero

diV (x)

dxi
= 0 ∀ x ∈ Ω i = 1, 2, . . . , k − 1

and the k-th derivative is negative de�nite on the set Ω

dkV (x)

dxk
< 0 ∀ x ∈ Ω

then the system x(t) is asymptotically stable if k is an odd number.

Example 7.5: To illustrate Theorems 7.3 through 7.5, the stability of the
following linear spring-mass-damper system is studied.

mẍ+ cẋ+ kx = 0

Again the total kinetic and potential energy is used as a radially unbounded
Lyapunov function to measure the state errors from the equilibrium states
x = 0 and ẋ = 0.

V (x, ẋ) =
1

2
mẋ2 +

1

2
kx2

Taking the derivative of V (x, ẋ) and substituting the equations of motion,
the following result is obtained:

V̇ (x, ẋ) = (mẍ+ kx) ẋ = −cẋ2 ≤ 0

Note that V̇ is only negative semi-definite, and not negative definite. Even
though we know from the easy analytical solution that this spring-mass-
damper system is asymptotically stable, only Lyapunov stability can be con-
cluded at this point in the analysis. Using Theorem 7.5, the higher order
derivatives of V are investigated to prove asymptotic stability. The set of
states Ω where V̇ = 0 is Ω = {(x, ẋ)|ẋ = 0}. The second derivative of V is

V̈ = −2cẍẋ = 2
c

m
(cẋ+ kx) ẋ

which is 0 when evaluated on the set Ω where ẋ ≡ 0. After taking an-
other derivative and substituting the system equations of motion, the third
derivative of V is expressed as

...
V = −2

c

m2

(
(cẋ+ kx)2 + c2ẋ2 + ckxẋ− kẋ2)

Evaluated on the set Ω, this third Lyapunov derivative simplifies to

...
V = −2

ck2

m2
x2

which is negative definite for for all x in Ω. Since the first non-zero higher
order derivative of V is of odd order and negative definite on Ω, the system
is globally asymptotically stable.
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Note that the previous example does not prove that the given linear spring-
mass-damper system is exponentially stable (which we know independently to be
true from the analytical solution). Indeed with the chosen Lyapunov function
it is impossible to satisfy the two primary conditions in Theorem 7.4. The
following theorem allows Lyapunov theory to be conveniently used when proving
various forms of stability of an autonomous linear system.

Theorem 7.6 (Lyapunov Stability Theorem for Linear Systems) An
autonomous linear system ẋ = [A]x is stable if and only if for any symmetric,
positive de�nite [R] there exists a corresponding symmetric, positive de�nite [P ]
such that

[A]T [P ] + [P ][A] = −[R] (7.16)

is satis�ed. Eq. (7.16) is called the algebraic Lyapunov equation.

The corollary to Theorem 7.6 is that if we know that [A] is a stable ma-
trix (i.e. all eigenvalues have negative real parts), then we know that for any
choice of symmetric, positive definite [P ] we are guaranteed the existence of a
corresponding symmetric, positive definite [R]. This property is very useful in
the following example, and in fact, the proof follows from generalization of this
example.

Example 7.6: Let us revisit the linear spring-mass-damper system from the
previous example using an alternate Lyapunov function. First, we define the
state vector x to be

x =

(
x
ẋ

)

Now we are able to write the second order differential equation of motion in
first order state space from.

ẋ =

[
0 1

− k
m

− c
m

]

︸ ︷︷ ︸

[A]

x

To study the system stability about the fixed point x = 0, we define the
candidate Lyapunov function

V (x) = xT [P ]x

where [P ] is some positive definite matrix. This causes V (x) to be positive
definite about the origin. Taking the derivative of V (x) we find

V̇ = xT ([A]T [P ] + [P ][A])x

Since [A] is clearly a stable matrix for positive m, k and c, using Theorem 7.6
we are guaranteed that a symmetric, positive definite [R] exists such that
[A]T [P ] + [P ][A] = −[R]. The Lyapunov rate is then rewritten as

V̇ = −xT [R]x
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which is negative definite in the state vector x. By choosing this alternate
Lyapunov function we are able to guarantee asymptotic stability in one step.
This new V also lends itself to proof that all stable linear systems of the
form ẋ = [A]x are indeed exponentially stable. From linear algebra it is clear
that the following Rayleigh-Ritz inequalities must hold for positive definite
matrices:1, 3

λPmin
||x||2 ≤ x[P ]x ≤ λPmax ||x||2

λRmin
||x||2 ≤ x[R]x ≤ λRmax ||x||2

where λmin and λmax are the respective smallest and largest eigenvalues of
[P ] and [R]. If we chose λ such that

λ ≤ λRmin

λPmax

then the first requirement of Theorem 7.6 is satisfied. To satisfy the second
requirement, we chose k = 2 and c1 ≤ λPmin

, c2 ≥ λRmax .

7.2 Generating Lyapunov Functions

Lyapunov’s stability theory provides a very elegant method to guarantee sta-
bility characteristics of nonlinear dynamical systems without having to actually
solve the corresponding equations of motion. Also, as will be evident, selec-
tion of Lyapunov functions can be approached simultaneously with control law
designs. However, generating appropriate positive definite Lyapunov functions
is not always a trivial matter. This section presents several Lyapunov func-
tions that can be used to describe state errors of common aerospace systems.
These functions are broken up into two categories, namely elemental Lyapunov
functions that measure velocity or functions that measure position state errors.
Separate elemental Lyapunov functions are linearly combined to provide the de-
sired system Lyapunov function. The following motivational example illustrates
how Lyapunov functions are used to generate control laws and make stability
guarantees of the closed-loop system.

Example 7.7: We would like to have a particle m, whose position is given
by the state vector x, track a reference motion xr(t). The dynamical system
for this particle is given by Newton’s second law.

mẍ = u

where the control vector u is the external force being applied to the particle.
The tracking error δx is defined as

δx = x− xr

and the tracking error velocity as

δẋ = ẋ− ẋr
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Having both δx and δẋ go to zero implies that perfect tracking is being
achieved. To develop an asymptotically stabilizing control law u, the candi-
date Lyapunov function V is defined as the “error energy”

V (δx, δẋ) =
1

2
mδẋT δẋ+

1

2
kδxT δx

The first term of V (δx, δẋ), which measures velocity errors, is a “kinetic-
energy-error-like” term. If the reference velocity ẋr = 0, then it would be the
kinetic energy of the particle. The second term provides a positive definite
measure of the position errors. It can be viewed as a “potential-energy-like”
function. For example, the fictitious potential energy function used here is
very similar in form to the real potential energy function of a linear spring.
The parameter k can be thought of as a spring stiffness constant. Taking the
first time derivative of V we find the “power” or work/energy equation

V̇ = δẋT (mδẍ+ kδx)

For the closed loop system to be stable, Lyapunov stability theory requires
that V̇ be at least negative semi-definite. Therefore, we set V̇ equal to

V̇ = −PδẋT δẋ ≤ 0

where P > 0. Note that this V̇ is not negative definite since it does not
depend explicitly on the position error vector δx. Setting these two Lyapunov
function derivatives equal and using δẍ = ẍ−ẍr leads to the following stable
closed-loop dynamical system.

mẍ−mẍr + kδx+ Pδẋ = 0 (7.17)

To find the control law u which will yield these dynamics, the system equa-
tions of motion are substituted into the closed-loop system, and we solve for
the required control vector

u = −kδx− Pδẋ+mẍr

Note that the scalar parameters k and P are position and velocity feedback
gains that provide stiffness and damping. To guarantee that this control law
is indeed asymptotically stabilizing, the higher order time derivatives of V
must be investigated. For this example V̇ is zero whenever δẋ is zero. The
second (even) derivative of V is

V̈ = −2PδẋT δẍ

which is zero on the set Ω = {(δx, δẋ)|δẋ = 0}. The third (odd) derivative
of V is

...
V = −2PδẍT δẍ− 2PδẋT δẍ

Substituting the closed-loop dynamical system and setting δẋ equal to zero
yields

...
V (δx, δẋ = 0) = −2P

k2

m2
δxT δx < 0

which is negative definite. Since the first non-zero V derivative is of odd
order, the control law u is actually asymptotically stabilizing.
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This example illustrates the powerful fusion of control law design and system
stability analysis with Lyapunov method. Finding a globally asymptotically
stabilizing control law and proving the stability guarantees went hand-in-hand
and were accomplished in a straight forward manner. A drawback to these
Lyapunov methods is that the process of finding appropriate Lyapunov functions
is not always obvious. The following two sections present several Lyapunov
function prototypes that can be applied to many aerospace systems.

7.2.1 Elemental Velocity-Based Lyapunov Functions

We consider here a class of mechanical systems to provide physical motivation.
We first consider the case that only the velocity of a dynamical system is to be
controlled. Thus the state space of interest is simply (q̇) and not the classical
(q, q̇). The control vector here will be a force or torque type vector. We note
the developments in this section seeks to rive q̇ → 0, but generally q will not be
stabilized with input to a particular point. It is convenient to use the system
kinetic energy expression T as the candidate Lyapunov function. For natural
systems, the kinetic energy can always be written in the quadratic form

T =
1

2
q̇T [M ]q̇ (7.18)

where the vector q is a generalized position state vector. In general, the mass
matrix [M(q)] is positive definite and symmetric. The standard Lagrange equa-
tions of motion for a natural unconstrained system are

[M(q)]q̈ = −Ṁ(q, q̇)]q̇ +
1

2
q̇T [Mq(q)]q̇ + Q (7.19)

where the vector Q is the generalized forcing term (includes both conservative
and non-conservative forces). Note that the notation [Mq] indicates the partial
derivative of the matrix [M ] with respect the vector q and the matrix product

q̇T [Mq(q)]q̇ ≡








q̇T
[
∂M
∂q1

]

q̇

...

q̇T
[
∂M
∂qN

]

q̇








(7.20)

is an N -dimensional column vector.
If the reference velocity vector is the zero vector, then Eq. (7.18) itself pro-

vides a candidate Lyapunov function V.

V (q̇) =
1

2
q̇T [M(q)]q̇ (7.21)

Since the mass matrix [M ] is symmetric, the derivative of V can be written as

V̇ = q̇T [M ]q̈ +
1

2
q̇T [Ṁ ]q̇ (7.22)
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Substituting for [M ]q̈ from the equations of motion in Eq. (7.19), V̇ is reduced
to

V̇ = q̇T
(

−1

2
[Ṁ ]q̇ +

1

2
q̇T [Mq]q̇ + Q

)

(7.23)

After noting the identity

q̇T
(
q̇T [Mq]q̇

)
=

N∑

i=1

q̇i
(
q̇T [Mqi

]q̇
)

= q̇T [Ṁ ]q̇ (7.24)

the Lyapunov (kinetic energy) time derivative is written as the simple work-rate
equation9

V̇ = q̇TQ (7.25)

Suitable control vectors Q could now be developed to render V̇ negative defi-
nite or negative semi-definite. For example, a simple control law would to set
Q = −[P ]q̇ with [P ] being a positive definite matrix. This control law would
asymptotically bring the system velocity q̇ of the system given in Eq. (7.19) to
rest.

If the reference velocity vector q̇r is non-zero, then the Lyapunov function
is defined in terms of the velocity state error vector δq̇ = q̇− q̇r as the “kinetic-
energy-like” function of departure velocity

V (q̇) =
1

2
δq̇T [M(q)]δq̇ (7.26)

Taking the derivative of Eq. (7.26) we find

V̇ = δq̇T
(

[M ]δq̈ +
1

2
[Ṁ ]δq̇

)

(7.27)

After making use of the definition of δq̇ and substituting the equations of motion,
V̇ is written as

V̇ = δq̇T
(

−1

2
[Ṁ ]

(
1

2
q̇ + q̇r

)

+
1

2
q̇T [Mq]q̇ − [M ]q̈r + Q

)

(7.28)

When tracking a time varying reference state, the elemental velocity-measure
Lyapunov function rates no longer simplify to the classical power form of the
work-energy equation in Eq. (7.25).

When controlling the angular velocities of rigid bodies, the elemental Lya-
punov function in Eqs. (7.21) is specialized to kinetic energy expression of a
rigid body given by

V (ω) = T =
1

2
ωT [I ]ω (7.29)
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where [I ] is the rigid body inertia matrix. Note that since the ω and [I ] compo-
nents are assumed to be taken in the body frame B, taking the derivative of the
scalar quantity V involves taking local derivatives of ω and [I ] as seen by by
B frame. Using Euler’s rotational equations of motion in Eq. (4.32), the time
derivative of the Lyapunov (kinetic energy) function is expressed as

V̇ = ωT ([I ]ω̇) = ωT (−[ω̃][I ]ω + Q) = ωTQ (7.30)

where Q is the total torque vector acting on the rigid body. The fact that [I ]
is constant as seen by the B frame (i.e. rigid body) and that ω̇ ≡ Nd/dt(ω) =
Bd/dt(ω) were used in deriving this expression.

To measure the angular velocity error relative to some reference rotation
defined through ωr, we define the angular velocity vector

δω = ω − ωr (7.31)

Since both δω and ω have components taken in the body frame B, and the
reference angular velocity vector ωr is typically given with the components
taken in the reference frame R, the angular velocity error Bδω is computed as

Bδω = Bω − [BR]Rωr (7.32)

The Lyapunov function is written as the kinetic energy like expression

V (δω) =
1

2
δωT [I ]δω (7.33)

The matrix components of δω and [I ] are implicitly taken in the B frame. Taking
the derivative of the scalar quantity V involves taking derivatives of the scalar
B frame components of Eq. (7.33).

V̇ = δωT [I ]
Bd

dt
(δω) (7.34)

Using the transport theorem in Eq. (1.21) and the identity in Eq. (4.30), the
derivative of δω as seen by the B frame is given by

Bd
dt

(δω) = ω̇ − ω̇r + ω × ωr (7.35)

Substituting Eq. (7.35) and Euler’s rotational equations of motion into the Lya-
punov rate expression in Eq. (7.34), V̇ is expressed as

V̇ = δωT (−[ω̃][I ]ω + ω × ωr − [I ]ω̇r + Q) (7.36)

Because most mechanical systems are natural systems, the Hamiltonian spe-
cializes for this case to the total system energy. This motivates the alternative
use of the Hamiltonian as a more general Lyapunov function candidate.10 Let
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L(q, q̇) be the system Lagrangian. In the previous chapter the Hamiltonian H
was defined in terms of the canonical coordinates q and p as

H(q,p) = pT q̇ −L(q, q̇) (7.37)

where p is the canonical (or conjugate) momentum defined

p =
∂L
∂q̇

(7.38)

After some calculus and using Lagrange’s equations, this leads to Hamilton’s
canonical equations of motion in terms of the gradient of H with respect to
(q,p).

q̇ =
∂H

∂p
(7.39)

ṗ =
∂H
∂q̇

+ Q (7.40)

It is important in the partial derivatives of Eqs. (7.39) and (7.40) to consider
H = H(q,p) rather than H = H(q, q̇). The generalized coordinate rate vector
q̇ has been eliminated by inverting Eq. (7.38) for p = g(q, q̇). Taking the time
derivative of the Hamiltonian H in Eq. (7.37) we find

Ḣ = ṗT q̇ + pq̈ − ∂L
∂t

− ∂L
∂q

T

q̇ − ∂L
∂q̇

T

q̈ (7.41)

After substituting Eqs. (7.38) and (7.40) and setting the Lyapunov function
equalH , the Hamiltonian (Lyapunov) time rate is written as the modified power
equation

V̇ = Ḣ = QT q̇ − ∂L
∂t

(7.42)

Generally L = L(t, q, q̇), but if L = L(q, q̇) is not an explicit function of time,
such as is the case with natural systems, the Hamiltonian rate reduces to the
simple work-energy equation

V̇ = Ḣ(q,p) = QT q̇ (7.43)

Let the vector F be the external force being applied to a rigid body, L be
the external torque vector, and ω and R measure angular velocity and inertial
position respectively, then Ḣ is written as

V̇ = Ḣ = LTω + F T Ṙ (7.44)

Note that Eqs. (7.42) through (7.44) are kinematic results that were derived in-
dependent of the system dynamics! This has two important implications. First,
when using the Hamiltonian (total energy) as the Lyapunov function of natural
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system, it is not necessary to differentiate V explicitly and grind through the
algebra to find an expression for V̇ . Instead, the work-energy rate expressions
in Eqs. (7.43) and (7.44) can be written directly using some version of the work-
energy equation. This can save a substantial amount of algebra and calculus.
Second, any stabilizing control vector Q (that renders V̇ negative semi-definite
in some state space neighborhood) for the regulator control problem will remain
stabilizing even in the presence of model errors. This is a direct consequence
of the V̇ expression being independent of the system dynamics (depends only
upon forces, moments, and velocities of the points to which forces are applied.
Therefore, if the inertia or mass matrix is modelled incorrectly, then the same
control vector Q will still stabilize the system. The stability guarantees of such
Lyapunov derived control laws, using total mechanical energy as the Lyapunov
function, are thus very robust to the presence of modelling errors. Naturally
the performance would differ in the system model was incorrect. It is implicitly
necessary, however, that the actual system must be controllable and the actual
Hamiltonian must be positive definite with respect to departures for the tar-
get state. Otherwise, it is necessary to establish sufficient insight to modify V
and/or the number of control inputs. Whenever the actual system has addi-
tional degrees of freedom whose coordinates do not appear in the work/energy
equation, this idealized analysis may break down, and caution showed be used
to overstate stability guarantees.

Example 7.8: Assume the multi-link manipulator shown in Figure 7.3 is to be
brought to rest. Choosing the inertial polar angles as generalized coordinates,
the state vector is q = (θ1, θ2, θ3)

T . The system mass matrix is then given
by

M(q) =





(m1 +m2 +m3)l
2
1

(m2 +m3)l1l2 cos(θ2 − θ1)
m3l1l3 cos(θ3 − θ1)

· · ·

· · ·
(m2 +m3)l1l2 cos(θ2 − θ1) m3l1l3 cos(θ3 − θ1)

(m2 +m3)l
2
2 m321l3 cos(θ3 − θ2)

m3l2l3 cos(θ3 − θ2) m3l
2
3





Assuming a torque Qi is applied to each link, then the equations of motion
for this 3-link manipulator system are given by

[M ]q̈ + [Ṁ ]q̇ − 1

2
q̇

T [Mq]q̇ = Q

Since the final link orientation is not relevant in this velocity control situation,
the Lyapunov function is simply chosen to be the total kinetic energy of the
system given by

V (q̇) =
1

2
q̇

T [M(q)]q̇

Using Eq. (7.25), the Lyapunov rate is then given by

V̇ = q̇T
Q
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Figure 7.3: Three-Link Manipulator System Layout.

To guarantee that V̇ is negative definite, standard control analysis leads to
the velocity feedback control law Q1

Q1 = −P1q̇

where P1 is a positive scalar velocity feedback gain. As shown in Refs. 11
and 12, since the mass matrix [M ] is symmetric positive-definite, using the
velocity feedback control law Q2

Q2 = −P2[M(q)]q̇

also leads to an asymptotically stable system with P2 being a different positive
scalar feedback gain. The configuration variable mass matrix [M(q)] acts
here as a variable feedback gains which produces some interesting and useful
feedback performance enhancements. Note that p = [M(q)]q̇ ≡ ∂L

∂q̇
is the

canonical conjugate momentum vector. One benefit of Q2 over Q1 is that
Q2 can easily be shown to be exponentially stabilizing, providing the control
designer with predictable exponential velocity error decay rate. Property 1 of
Theorem 7.4 is trivially satisfied by setting λ = 2P2.

V̇ = −P2q̇
T [M ]q̇ = −2P2V ≤ −λV

To verify property 2, we employ the Rayleigh-Ritz inequality1, 3 which states

λmin

(

q̇
T
q̇
)

≤ q̇T [M ]q̇ ≤ λmax

(

q̇
T
q̇
)

where λmin and λmax are respectively the smallest and largest eigenvalues of
the system mass matrix [M ]. Using the definition of the Lyapunov function,
this inequality is rewritten as

2λmin||q̇||2 ≤ V (q̇) ≤ 2λmax||q̇||2

where the Euclidean norm is used. After setting c1 = 2λmin, c2 = 2λmax

and k = 2, the second property of Theorem 7.4 are verified and the control
law Q2 is therefore exponentially stabilizing and V (t) ≤ V0e

−λt.

The following numerical simulation compares the performance of the two
velocity feedback control laws Q1 and Q2. The simulation parameters are
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Figure 7.4: Isolated Initial Rotation Stabilization

Table 7.1: Parameters of Isolated Initial Motion Study

Parameter Value Units

li 1 m
mi 1.0 kg
P1 1.0 kg-m2/sec
P2 0.72 kg-m2/sec
x(t0) [−90 30 0] deg
ẋ(t0) [0.0 0.0 10] deg/sec

given in Table 7.1. The feedback gains were chosen such that the maximum
control torque encountered is the same for both control laws. The initial
conditions are such that only the third link has some initial rotation. The
other two links are at rest when the stabilizing control is turned on. The
resulting motion for both control laws is shown in Figure 7.4. While Q1 is
able to stabilize the system and bring all links to rest, the kinetic energy of
the third link is partially transmitted to the other two links, thus exciting
the entire system. However, the control law Q2 behaves quite differently as
seen in Figure 7.4(i). The first two links remain essentially at rest while the
the third link is brought to rest separately. This decoupling behavior was
found will all chains of rigid links and is discussed in detail in References 11
and 12. The control torque components of each control law are shown in
Figure 7.4(ii). While Q1 has all three torque motors active, Q2 only drives
the second and third torque motors. For the same maximum allowable control
torque, theQ2 was found to have much better state error convergence to zero
in the end game.

7.2.2 Elemental Position-Based Lyapunov Functions

This section provides elemental position-based Lyapunov functions that allow
us to control the position of a body. Analogous to the elemental velocity-based
Lyapunov functions, the state space of interest here is simply (q) and not the
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more general (q, q̇). Note that q̇ is treated as as the control variable. The
control laws that are developed using purely position-based Lyapunov functions
are often referred to as steering laws. The control law will determine a desired
q̇(t) trajectory that must be followed to stabilize the system about a desired
position. To achieve this q̇(t) time history, separate lower level servo loops
are assumed to be present that will maintain the desired coordinate rate. For
example, consider the multi-link system shown in Example 7.8. If a position
based steering law were applied, then it would be assumed that servo loops were
present on each joint link to maintain the q̇(t) required by the steering law.

However, besides leading to system steering laws, the elemental position-
based Lyapunov functions can also be combined with the elemental velocity-
based Lyapunov functions to develop control laws that stabilize both velocity
and position errors. This type of development is shown in the next section.

To provide a scalar measure of position displacements relative to a target
state, potential energy-like functions are created which are zero at the target
state. In many instances it is possible to use an actual mechanical potential
energy function as the Lyapunov function. Consider a linear spring-mass system
with the coordinate x measuring the displacement of the spring and the scalar
parameter K being the spring constant. For this system, the spring potential
function provides the positive definite measure of the displacement x.

V (x) =
1

2
kx2 (7.45)

The derivative of V is then

V̇ = ẋ (kx) (7.46)

To combine the position-based Lyapunov functions later on with the velocity-
based Lyapunov functions, it is usually be necessary to write the velocity expres-
sions in the position-based Lyapunov functions in terms of the same velocity-
coordinates used in the velocity-based Lyapunov function. With many dynami-
cal systems it is not possible to express the position errors relative to some target
state in terms of an actual potential energy function, because there may be no
inherent “stiffness” that attracts the system to the desired state. Instead, a fic-
titious potential energy function is created which is zero at the target state and
positive elsewhere (i.e. positive definite about the target state). A standard ap-
proach to create such a function is to express the position error as the weighted
sum square of all position coordinates. This is written in matrix notation as

V (q) =
1

2
qT [K]q (7.47)

where the position vector q is assumed to be measured relative to the target
state. The symmetric matrix [K] must be positive definite to guarantee that
the Lyapunov function is a positive definite function of q. When using these
Lyapunov functions to create feedback control laws, the matrix [K] assumes
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the role of a position feedback gain matrix and also has the perfect analog to a
system of linear springs. Since [K] = [K]T , the derivative of Eq. (7.47) is

V̇ = q̇T ([K]q) (7.48)

To create a steering law for q, the Lyapunov function in Eq. (7.47) is written
without the gain matrix [K] as

V (q) =
1

2
qT q (7.49)

Defining the steering q̇ to be

q̇ = −[K]q (7.50)

the resulting V̇ = −qT [K]q is negative definite in q. Thus this q̇ steering law
would bring q asymptotically to zero. Note that in all steering laws (controlling
q and treating q̇ as a control variable), the system dynamics do not appear. The
internal servo control loops, which maintain the desired q̇(t) coordinate rates,
effectively hide the system level dynamics from the steering law. However,
every system will exhibit certain limits as to how fast it is able to move and
accelerate. Steering law gains must be carefully chosen such that the required
q̇(t) time histories to not exceed these limits. Otherwise the servo loops will
not be able to track the required coordinate rates and the steering law stability
guarantees are no longer valid without further analysis.

With the remaining position-based Lyapunov functions presented in this
section, analogous steering laws could be constructed for each system. All these
control laws demand a specific coordinate rate and assume a lower level system
servo loop will achieve this desired rate. The advantage of using steering laws
is that the control designer can focus the control on having the system states
avoid singularities or other constraints. However, a drawback is that the internal
servo control loops must run at a much higher digital sampling frequency to be
able to track the desired coordinate rate time histories. This type of steering
control is often used in robotics applications where a desired joint time history
is prescribed, and each joint degree of freedom has a separate control servo
loop which attempt to track the prescribed coordinate rates. The steering law
can then be designed such that joint limits and singularities are not approached,
while leaving the system level dynamics to be compensated for by the rate servo
loop.

In rigid body dynamics, the kinetic energy is typically not expressed in
terms of position coordinate derivatives (i.e. q̇i’s), but rather in terms of the
body angular velocity vector ω. Therefore, velocity expressions in V̇ for rigid
bodies will need to be written in terms of ω too. As was discussed in the
chapter on rigid body kinematics, there is a multitude of attitude coordinates
available to describe rigid body orientations. Convenient Lyapunov functions
for a selected subset of the attitude coordinates discussed are presented below.
A popular set of attitude coordinates is the Euler angle vector θ, where θi could
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be either the 3-2-1 yaw, pitch and roll angles, the 3-1-3 Euler angles or any other
set of sequential rotational coordinates. Assume θ measures the current rigid
body attitude relative to some target orientation, then the candidate Lyapunov
function

V (θ) =
1

2
θT [K]θ (7.51)

provides a positive definite measure of the attitude error. Using either Eq. (3.56)
or (3.58) to express θ̇ = [B(θ)]ω, the derivative of Eq. (7.51) is expressed as

V̇ = ωT ([B(θ)][K]θ) (7.52)

Contrary to the V̇ in Eq. (7.48), the V̇ in Eq. (7.52) will not lead to a linear
feedback law in terms of the position/orientation coordinates due to the nonlin-
ear nature of the [B(θ)] matrix. Also, If the target attitude is non-stationary,
but defined through the reference body angular velocity vector ωr, then the
relative attitude error rate θ̇ is given by

θ̇ = [B(θ)]δω (7.53)

where θ is the attitude vector from the reference frame to the body frame. The
corresponding Lyapunov function time derivative is

V̇ = δωT ([B(θ)][K]θ) (7.54)

For the remainder of this section, unless noted otherwise, it will always be
assumed that the attitude vector is measured relative to the target state and
not relative to some inertial frame. Therefore no distinction will be made if this
reference state is stationary or not since the corresponding angular velocities ω

and δω can be interchanged trivially as shown in Eqs. (7.52) and (7.54).
The Gibbs or classical Rodrigues parameter vector q is another popular atti-

tude coordinate vector used to describe large rotations. To establish a feedback
control law with a fully populated positive definite feedback gain matrix [K], a
corresponding candidate Lyapunov function is expressed as

V (q) = qT [K]q (7.55)

with the time derivative

V̇ = ωT
((
I − [q̃] + qqT

)
[K]q

)
(7.56)

If the feedback gain is permitted to be a scalar value K, then V̇ in Eq. (7.56) is
simplified to

V̇ = ωT
(
K
(
1 + q2

)
q
)

(7.57)

where the notation q2 = qT q is used again. Due to the (1+q2) term, Eq. (7.57)
leads to a nonlinear feedback control law in q. This nonlinear scaling term can
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be avoided by choosing a different Lyapunov function as was shown in Ref. 13.
Instead of using the standard weighted sum square approach to generating an
attitude Lyapunov function, a logarithmic sum squared approach is used.

V (q) = K ln
(
1 + qTq

)
(7.58)

Taking the derivative of Eq. (7.58) we find

V̇ =
2K

1 + q2
q̇T q (7.59)

which, after substituting the Gibbs vector differential kinematic equation in
Eq. (3.128), is reduced to the remarkably simply form

V̇ = ωT (Kq) (7.60)

Using Eq. (7.58), an attitude steering law Lyapunov function can be defined as

V (q) = ln
(
1 + qTq

)
(7.61)
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Note that by switching the MRP’s to their alternate shadow set whenever
σ2 > 1, this Lyapunov function can describe any orientation error without
encountering a singularity. Further, it provides a bounded measure of the at-
titude error. This is convenient, since two orientations can only differ by a
�nite rotation. Therefore, having a bounded Lyapunov function describing the
attitude error inherently reflects this fact and will have some important conse-
quences when designing attitude feedback control laws in terms of the MRPs.
After substituting the MRP differential kinematic equations in Eq. (3.150), has
the simple first time derivative

V̇ = ωT (Kσ) (7.68)

As was shown with the Gibbs vector steering law, the Lyapunov function V (σ) =
2 ln

(
1 + σTσ

)
allows us to show that the MRP steering law

ω = −[K]σ (7.69)

is asymptotically stabilizing. Note however that such steering laws are not
typically applied to the rigid body attitude problem. Rather, the control law
is formulated to provide a torque level input and control both the attitude and
rotational rate. This development will be shown in the following section.

The most popular redundant, non-singular attitude coordinates are the Eu-
ler parameters βi. The zero orientation vector is defined in terms of Euler
parameters as

β̂ =







1
0
0
0







(7.70)

With β being the orientation vector relative to the desired orientation, we define
the candidate Lyapunov function V as

V (β) = K
(

β − β̂
)T (

β − β̂
)

(7.71)

Using the Euler parameter differential equation in Eq. (3.105), and since β̂ is
constant, the Lyapunov derivative is given by

V̇ = KωT [B(β)]T
(

β − β̂
)

(7.72)

Making use of the identity [B(β)]Tβ = 0 in Eq. (3.107), the Lyapunov rate
expression is reduced to the simple form

V̇ = KωT





β1

β2

β3



 = ωT (Kε) (7.73)

where the ε definition in Eq. (3.109) is used.
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Defining V (β) =
(

β − β̂
)T (

β − β̂
)

, the steering law

ω = −Kε (7.74)

leads to the negative semi-definite Lyapunov rate V̇ = −KεT ε. Note that V̇
goes to zero whenever ε → 0. However, having ε = 0 implies that β0 is either
+1 or -1. Thus at first glance it might appear as if the steering law would
not always reorient the body to the desired orientation. Recalling that having
β0 = ±1 represents the same attitude (due to the duality of the Euler parameters
β and −β for the same direction cosine matrix), the steering law in Eq. (7.74)
will orient the body to the desired attitude. However, it is not guaranteed that
the steering law will guide the body along the shortest rotational path to the
desired orientation.

7.3 Nonlinear Feedback Control Laws

The elemental Lyapunov functions can be linearly combined to develop veloc-
ity and/or position feedback control laws for numerous mechanical aerospace
systems. This section will develop and analyze in detail a reference trajectory
tracking attitude and angular velocity feedback control law that will stabilize the
rotation of a rigid body. Any set of attitude coordinates could be used describe
the rigid body orientation. However, since large and arbitrary rotations must be
considered, certain coordinates such as the Euler angles are less suited for large
motion cases. A very popular set of coordinates used when performing large
rotations are the Euler parameter βi. Since they are nonsingular, a globally
stable feedback control law in terms of βi will be able to stabilize a body from
any attitude error. Instead of using these well known redundant coordinates,
the feedback control law can be developed in terms of the more recently de-
veloped modified Rodrigues parameters σi. We will adopt the σi’s to illustrate
the process. With only the minimal number of three coordinates, they achieve
many similar properties as is accomplished with the Euler parameters. While
the expression of the final feedback control law will depend on which attitude
coordinates were chosen, the steps taken in the development of this control law
holds for any choice of attitude coordinates.

7.3.1 Unconstrained Control Law

The modified Rodrigues parameter vector σ is very well suited for describing
attitude errors in a feedback control law setting. Particularly when very large
attitude errors are present, the MRPs are extremely attractive. By switching
between the original and shadow MRP set they are able to describe any arbitrary
orientation without encountering singularities by only using three parameters
instead of four as do the Euler parameters. Adopting the switching surface σ2 =
1 bounds the attitude error vector norm within the unit sphere |σ| ≤ 1 where
the σ-motion is approximately linear with respect to ω. This bounded attitude
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error property is very useful since it will make designing the attitude feedback
gain much easier. Choosing the σ2 = 1 switching surface also has a big benefit
when trying to bring a tumbling rigid body to rest. Conventional attitude
parameters such as the Euler angles have no explicit means of determining
the shortest rotational distance back to the reference attitude. Consider this
one dimensional example. If a rigid body has tumbled past 180o from the
reference attitude, it would be much simpler for the control law to just assist
the body in completing the tumble and then bring it to rest as it approaches
the reference attitude from the opposite direction, as opposed to “unwinding”
the motion through a rotation of greater than 180o. Using MRPs with the
σ2 = 1 switching surface (in a feedback control law setting) provides a set
of attitude coordinates that will naturally do just that. As is shown in the
cases in Eq. (3.140), bounding the MRP vector to unit magnitude or less limits
corresponding principal rotation angle Φ to be 180 degrees or less. In other
words, these MRPs will always measure the shortest rotational error to the
reference attitude, and control laws seeking to null σ will implicitly seek the
shortest angular path to the target state. Of course the discontinuous switch
of σ2 = 1 is a cause for some concern, but these concerns typically turn out to
have negligible practical consequences. Difficulties may arise if an unusual large
external disturbance causes cyclic motion through this 180o condition.

Let [I ] be the rigid body inertia matrix, ω(t) be the body angular velocity
vector and u(t) be some unconstrained external torque vector. The vector L is
some known external torque acting on the body. Euler’s rotational equations of
motion for a rigid body are given by14

[I ]ω̇ = −[ω̃][I ]ω + u + L (7.75)

The vector σ(t) measures the attitude error of this rigid body to some reference
trajectory which itself is defined through the reference angular velocity vector
ωr(t). The error δω(t) in angular velocities is defined as

δω = ω − ωr (7.76)

The MRP rate vector σ̇ and the body angular velocity error vector δω are then
related through

σ̇ =
1

4

[
(1 − σ2)I + 2[σ̃] + 2σσT

]
δω (7.77)

Combining Eqs. (7.36) and (7.67) leads to the Lyapunov function15–17

V (ω,σ) =
1

2
δωT [I ]δω + 2K log

(
1 + σTσ

)
(7.78)

which provides a positive definite, radially unbounded measure of the rigid body
state error relative to the reference trajectory. The parameter K is a positive
scalar attitude feedback gain. Making use of the Lyapunov rates in Eq. (7.34)
and (7.68), the derivative of the Lyapunov function V is expressed as

V̇ = δωT

(

[I ]
Bd
dt

(δω) +Kσ

)

(7.79)
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We write the derivative of δω as Bd/dt(δω) to clarify that δω is not treated here
as a regular vector, but rather as a 3× 1 matrix of scalar B frame components.
To guarantee stability we force V̇ to be negative semi-definite by setting it equal
to

V̇ = −δωT [P ]δω (7.80)

where [P ] is the positive definite angular velocity feedback gain matrix. This
leads to the following stability constraint.

[I ]
Bd
dt

(δω) + [P ]δω +Kσ = 0 (7.81)

After making use of the local derivative expression of δω in the B frame given in
Eq. (7.35) and substituting the rigid body dynamics in Eq. (7.75) into Eq. (7.81),
the feedback control u is given by

u = −Kσ − [P ]δω + [I ] (ω̇r − [ω̃]ωr) + [ω̃][I ]ω − L (7.82)

Since the Lyapunov function V in Eq. (7.78) is radially unbounded and the
MRPs with the σ2 = 1 switching surface are non-singular, the feedback control
law u is guaranteed to be globally stabilizing. The cross-coupling term ω ×
ωr is sometimes neglected in this feedback control law. For typical spacecraft
maneuvers, both ω and ωr are relatively small and this cross product is not
scaled by any inertia components or feedback gains. Therefore this product
of ω and ωr usually has a negligible impact on the control law performance.
However, to rigorously guarantee stability or to include the possibility of large
ω and ωr vectors, this cross-coupling term must be included.

Note that if the reference trajectory is a stationary attitude (i.e. ωr(t) =
0), then the globally stabilizing feedback control law of Eqs. (7.82) simplifies
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substituting for derivatives along assumed continuous trajectories. Unless a
large L(t) causes the σ2 = 1 surface to be frequently encountered, no practical
difficulty is expected due to “chatter”, but pathological problems can obviously
be invented. Typically switches at σ2 = 1 are rare events, since σ is an attitude
error expected to be small.

If we had chosen to use the Euler parameters as our attitude coordinates
and used elemental Lyapunov function in Eq. (7.71) instead of Eq. (7.67), then
only the attitude feedback term in our control law would change as follows:

u = −Kε− [P ]δω + [I ]ω̇r − ω × ωr + [ω̃][I ]ω − L (7.84)

The vector ε = (β1, β2, β3)
T is defined in Eq. (3.109). While both control laws

in Eq. (7.82) and (7.84) are essentially singularity free, the Euler parameter
control law control law will not automatically drive the body back to the ref-
erence trajectory through the shortest rotational path as was the case with the
combined MRP and shadow-MRP control law. If a body nearly completes a
full rotation, then the above Euler parameter control law will try to reverse this
rotation, even though the body is already near the correct attitude. This prob-
lem can be avoided with a minor modification performed in a similar manner as
was done with the MRPs. Since the Euler parameters too are non-unique, one
can always switch the attitude description to the alternate set; in this case the
transformation would be simply β′ = −β (or ε = −ε for the shown Euler pa-
rameter feedback control law). By ensuring that the current βi parameters have
β0 ≥ 0 one is guaranteed that the vectors describes the shortest rotational dis-
tance back to the reference trajectory. Thus in both cases, a switch at the 180o

error condition is required to obtain this desired attitude control law property.

7.3.2 Asymptotic Stability Analysis

Since V̇ in Eq. (7.80) is only negative semi-definite, it can only be concluded at
this point that the control law u in Eq. (7.82) is globally stabilizing. To prove
that it is indeed globally asymptotically stabilizing, the higher time derivatives
of the Lyapunov function V can be investigated as indicated in Theorem 7.5.
A sufficient condition to guarantee asymptotic stability is that the first nonzero
higher-order derivative of V , evaluated on the set of states such that V̇ is zero,
must be of odd order and be negative definite.6–8 To simplify the notation
from here on in this chapter, it understood that the derivative expression δω̇ is
actually Bd/dt(δωr). The same holds true for higher derivatives of δω. For this
dynamical system V̇ is zero if δω̇ is zero. Differentiating Eq. (7.80) yields

V̈ = −2δωT [P ]δω̇ (7.85)

which is zero for the set where δω is zero. Differentiating again the third deriva-
tive of the Lyapunov function V is

...
V = −2δωT [P ]δω̈ − 2δω̇T [P ]δω̇ (7.86)
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Substituting Eq. (7.81) into Eq. (7.86) and setting δω = 0, the third derivative
of the Lyapunov function is expressed as

...
V (σ, δω = 0) = −K2σT

(
[I ]−1

)
[P ][I ]σ (7.87)

which is a negative definite quantity since both [I ] and [P ] are positive definite
matrices. Therefore the control law u in Eq. (7.82) is globally asymptotically
stabilizing.

If some unmodeled external torque ∆L is present, then Euler’s rotational
equations of motion are written as

[I ]ω̇ = −[ω̃][I ]ω + u + L + ∆L (7.88)

Substituting these equations of motion into the Lyapunov rate expression in
Eq. (7.79) and keeping the same feedback control law u given in Eq. (7.82)
leads to the new Lyapunov rate expression

V̇ = −δωT [P ]δω + δωT∆L (7.89)

For a nonzero ∆L vector, this V̇ is not negative semi-definite and the control law
u is no longer said to be globally stabilizing in the sense of Lyapunov. However,
for a constant, bounded external torque vector ∆L, Eq. (7.89) shows that δω
cannot become unstable and grow unbounded in magnitude. The reason for
this is that since the expression −δωT [P ]δω is negative semi-definite and ∆L

is constant, the first term in the V̇ expression is guaranteed to become negative
and dominant as δω grows in magnitude. As soon as this happens the Lyapunov
function, which is a measure of the state errors, will decay again and the angular
velocities will not grow unbounded. The new closed-loop equations of motion
are written as

[I ]δω̇ + [P ]δω +Kσ = ∆L (7.90)

Taking the derivative of Eq. (7.90) and making use of σ̇ = 1
4 [B(σ)]δω given in

Eq. (3.150), we obtain a second order differential equation in terms of δω.

[I ]δω̈ + [P ]δω̇ +
K

4
[B(σ)]δω = ∆L̇ ≈ 0 (7.91)

The last step holds if the unmodeled torque vector is assumed to change very
slowly with time. Note that this differential equation is of the standard form of
a damped, spring mass system with a nonlinear spring stiffness matrix K[B(σ)]
if the matrix [B(σ)] can be shown to be positive definite. To do so we verify that
ωT [B(σ)]ω > 0 for any nonzero angular velocity vector ω. Using Eq. (3.150)
we find

ωT [B(σ)]ω = ωT
[
(1 − σ2)I + 2[σ̃] + 2σσT

]
ω (7.92)

= (1 − σ2)ωTω + 2
(
ωTσ

)2
> 0 (7.93)
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where the last step holds since the MRP attitude vector is maintained such
that σ2 ≤ 1. Therefore the spring-damper-mass system in Eq. (7.91) is stable
the angular velocity error vector δω will approach a constant steady-state value
δωss as time grows large. Taking the limit of Eq. (7.91) we find the steady state
condition

K[B(σss)]δωss = 0 (7.94)

Since [B(σ)] was shown to be near-orthogonal in Eq. (3.152), it is always of full
rank. Therefore the steady-state angular velocity tracking error is

δωss = 0 (7.95)

Thus, even in the presence of an unmodeled external torque vector ∆L, the
angular velocity tracking errors will decay to zero asymptotically. However, the
attitude tracking errors will not decay to zero. Taking the limit of Eq. (7.90)
we find the steady state attitude error to be

σss = lim
t→∞

σ =
1

K
∆L (7.96)

Without further modification to the control law in Eq. (7.82), the attitude
tracking errors will settle on a finite offset σss in the presence of a constant,
unmodeled external torque. The control law u is therefore stabilizing in the
sense of Lagrange, since the state tracking errors are only guaranteed to remain
bounded. The magnitude of the attitude offset σss can be controlled with the
attitude feedback gain K. This steady-state attitude offset is common to PD
type control laws (Proportional-Derivative) and is not related to the choice
of attitude coordinates. Had Euler parameters or other attitude coordinates
been chosen, a similar behavior would have been observed. By using the MRPs
though it was possible to analytically predict what the σss will be. This behavior
can be visualized by considering a mass being suspended by the ceiling by a
spring with stiffness K. Since a constant gravity force of magnitude mg is
acting on the mass, the spring must deflect a certain amount before it can
cancel the gravity force. Including drag effects, the mass will then come to rest
with the spring stretched a certain distance past its natural, undeformed length.
By increasing the spring stiffness, this offset is reduced. Analogous behavior is
evident with the PD control laws derived in Eqs. (7.82) through (7.84).

Example 7.9: A rigid body with a large initial attitude error is to be brought
to rest at a zero reference attitude. All three principal inertias are 10 kg-
m2. The rigid body is initially at rest with an MRP attitude vector σ(t0) =
(−0.3,−0.4, 0.2)T . The control law used to stabilize the body is of the simple
PD form

u = −Kσ − Pω

which was shown to be globally asymptotically stabilizing if no unmodeled
torques are present. The scalar feedback gains K and P are chosen to be
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1 kg-m2/sec2 and 3 kg-m2/sec respectively. To illustrate the steady-state
attitude tracking error produced by this control law, an unmodeled, constant
external torque vector ∆L = (0.05, 0, 10,−0.10) Nm is added. This torque is
chosen to be much larger than what a spacecraft would normally experience
in orbit due to solar or atmospheric drag, to more clearly illustrate its effect
and verify the validity of the σss estimation of Eq. (7.96), even for large
disturbances.
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Figure 7.5: Steady-State Attitude Offset Due to Unmodeled External
Torque Vector

The resulting maneuver is illustrated in Figure 7.5. As predicted in Eq. (7.95),
Figure 7.5(i) shows the angular velocity errors decay to zero despite the pres-
ence of the external torque vector ∆L. The initial attitude error is reduced by
the feedback control law u. However, instead of asymptotically approaching
zero, they settle down at the offset σss predicted in Eq. (7.96) given by

σss =
1

K
∆L =





0.05
0.10

−0.10





To reduce this attitude offset σss in the presence of this large ∆L vector, the
attitude feedback gain K would need to be enlarged. This would stiffen up
the feedback control and may cause the control devices to be more quickly
saturated; other methods to address steady state offset are available.

To achieve asymptotic tracking with unmodeled external torques present,
the control law in Eq. (7.82) is modified by adding an integral feedback term.
To accomplish this, a new state vector z is introduced.18

z(t) =

∫ t

0

(Kσ + [I ]δω̇) dt (7.97)

Note that δω̇ is given by Eq. (7.35). If the steady state attitude vector σss is
non-zero, then the corresponding state vector z would grow without bounds.
Designing a control law that forces z to remain bounded will implicitly force σ
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to go to zero. To design this feedback control law u, the Lyapunov function in
Eq. (7.78) is augmented by an additional positive definite quantity in terms of
the state vector z.

V (ω,σ, z) =
1

2
δωT [I ]δω + 2K log

(
1 + σTσ

)
+

1

2
zT [KI ]z (7.98)

where the positive definite matrix [KI ] is the integral feedback gain matrix.
Taking the derivative of Eq. (7.98) leads to Lyapunov rate expression

V̇ = (δω + [KI ]z)T ([I ]δω̇ +Kσ) (7.99)

To ensure stability, V̇ is set equal to the following negative semi-definite expres-
sion

V̇ = − (δω + [KI ]z)
T

[P ] (δω + [KI ]z) (7.100)

where [P ] is again the positive definite angular velocity feedback gain matrix.
Assume at first that no unmodeled external torques are present, then equating
Eqs. (7.99) and (7.100) the closed-loop error dynamics are give by

[I ]δω̇ + [P ]δω +Kσ + [P ][KI ]z = 0 (7.101)

Substituting Eq. (7.35) and the rotational equations of motion in Eq. (7.75) into
Eq. (7.101) leads to the following feedback control law u.

u = −Kσ − [P ]δω − [P ][KI ]z + [I ] (ω̇r − [ω̃]ωr) + [ω̃][I ]ω − L (7.102)

While the definition of the internal error state vector z in Eq. (7.97) is conve-
nient for control analysis purposes, it is not very convenient to implement. In
particular the term [I ]δω̇ could cause problems since it requires angular accel-
eration information. Since the inertia matrix of a rigid body [I ] is constant, the
z vector can also be written in the useful form

z(t) = K

∫ t

0

σdt+ [I ] (δω − δω0) (7.103)

where δω0 is the initial body angular velocity error vector. Using this z vector
expression, the control law u is expressed as

u = −Kσ − ([P ] + [P ][KI ][I ]) δω −K[P ][KI ]

∫ t

0

σdt+

[P ][KI ][I ]δω0 + [I ] (ω̇r − [ω̃]ωr) + [ω̃][I ]ω − L (7.104)

The integral feedback gain matrix [KI ] is typically kept small in size relative
to the angular velocity feedback gain matrix [P ]. The integral feedback term
is only added to rid the closed-loop dynamics of any non-zero steady-state at-
titude vectors. It is not desirable for this integral feedback term to drastically
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change the closed loop response behavior. As is evident in Eq. (7.104), a rela-
tively large [KI ] would change the effective closed loop frequency and damping
characteristics in a substantial manner.

Since V̇ in Eq. (7.100) is negative semi-definite, all the states ω, σ and z are
Lyapunov stable. Further, Eq. (7.100) shows that the quantity δω+[KI ]z will go
to zero. To investigate if the states are asymptotically stable without unmodeled
external torques present, the higher order derivatives of V are investigated on
the set where4577 0 TdΩ(a.65e)TjΩ27.9021 0 TdΩ(ffi)TjΩ/R44 9.96264 TfΩ4.79336 0 TdΩ(!)TjΩ/R34 99TdΩ(TfΩ7.79299 09rna(+)TjΩ8.03076 0 TdΩ([)TjΩ/R98 9.96264 TfΩ2.75964 0 TdΩ(K)TjΩ/R146 6.9264t)TfΩ8.58115 -1.43999 TdΩ(I)TjΩ/R34 9.96264 TfΩ4.44001 1.43999 TdΩ(])TjΩ/R44 9.96264 TfΩ2.75297 0 TdΩ(z)TjΩ/R34 9.96264 TfΩ8.75=7 0 TdΩ5lyo01t derivative opanduuldTjΩ20.6941 0 TdΩ(deriv)TjΩ21.4577 0 TdΩ(ativ)TjΩ16.7757 0 TdΩ(t)TjΩ17.14v4 0 Td223642d



242 NONLINEAR SPACECRAFT STABILITY AND CONTROL CHAPTER 7

This agrees with our earlier stability analysis which stated if ∆L is zero, then
z would go to zero. The closed-loop equations of motion for this system are
written as

[I ]δω̇ + [P ]δω +Kσ = ∆L − [P ][KI ]z (7.109)

Therefore, as [P ][KI ]z → ∆L as shown in Eq. (7.108), then the integral feed-
back term in time will effectively cancel the external torque disturbance. Once
this happens the closed-loop dynamics are the same as Eq. (7.101) where no
unmodeled external torques were present.

Example 7.10: The simulation in Example (7.9) is repeated here with the in-
tegral feedback term added to the control law. The initial attitude error is the
same as before, but the initial angular velocity error is ω(t0) = (0.2, 0.2, 0.2)
rad/sec. Since all three principal inertias are set to be equal, then we can use
the short-hand notation I = 10 kg-m2. The feedback control law used is

u = −Kσ − [ω̃][I]ω − P (1 +KII)ω − PKIK

∫ t

0

σdt+ PKIIω(t0)

The scalar integral feedback gain KI was set to 0.01 sec−1. Having the
additional integral feedback term should make σss go to zero. Further, since
∆L is a non-zero vector for this simulation, the state vector z is expected to
approach the finite limit

lim
t→∞

z =
1

KII
∆L =





1.66
3.33
−3.33



 kg-m2/sec

The resulting maneuver is illustrated in Figure 7.6. Figures 7.6(i) and 7.6(ii)
clearly show that the state errors ω and σ indeed both decay to zero. The con-
trol torque vector components are shown Figure 7.6(iii). Since the feedback
control law u has to compensate for the external disturbance, its components
remain non-zero at the maneuver end. The state vector z is shown in Fig-
ure 7.6(iv). As indicated in Eqs. (7.108) and (7.109), the z vector does not
decay to zero. Rather, it asymptotically approaches the prescribed values to
cancel the influence the external torque disturbance.

Another method to reduce the tracking error σss would be to adaptively
learn the external torque vector by comparing the predicted Lyapunov decay
rate to the actual decay rate as shown in Ref. 19. This method has been found
to yield a very simple adaptive law that is also able to compensate for inertia
matrix modeling errors as well as external torque vectors.

7.3.3 Feedback Gain Selection

To determine appropriate feedback gains, the closed loop dynamics are studied.
Substituting the feedback control law u given in Eq. (7.82) into Eq. (7.75)
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The linearized set of closed loop equations are given by

(
σ̇

δω̇

)

=

[
0 1

4I
−K[I ]−1 −[I ]−1[P ]

](
σ

δω

)

(7.112)

Given the rigid body inertia matrix [I ], any standard linear control design
method such as a pole placement method can be used to determine the de-
sired response of the linearized closed loop dynamics. If both the inertia matrix
[I ] and the angular velocity feedback gain matrix [P ] are diagonal matrices with
entries Ii and Pi respectively, then Eq. (7.112) can be conveniently decoupled
into three sets of differential equations12, 17

(
σ̇i
δω̇i

)

=

[
0 1

4

−K
Ii

−Pi

Ii

](
σi
δωi

)

i = 1, 2, 3 (7.113)

whose roots are explicitly given by

λi = − 1

2Ii

(

Pi ±
√

−KIi + Pi
2

)

i = 1, 2, 3 (7.114)

For an underdamped system, the corresponding closed loop natural frequencies
ωni

and damping ratios ξi are

ωni
=

1

2Ii

√

KIi − 2P 2
i (7.115)

ξi =
Pi

√

KIi − 2P 2
i

(7.116)

The decay time constants Ti which indicates how long it would take for the state
errors to decay to 1

e of their respective initial values are given by

Ti =
2Ii
Pi

(7.117)

It is interesting to note that only the angular velocity feedback gain constants Pi
dictate how fast the state errors will decay. The attitude feedback gain constant
K contributes to both the natural frequency and damping ratios of the closed
loop response. The damped natural frequency ωdi

is given by

ωdi
=

1

2Ii

√

KIi − P 2
i (7.118)

This enables an explicit “pole placement” design process in which (K,Pi) can
be chosen to achieve specific desired (ωdi

, Ti) or (ωdi
, ξi) characteristics for the

closed loop system. The use of the feedback control law in Eq. (7.82), along
with the design of the feedback gains, is illustrated in the following numerical
simulation.
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Example 7.11: Assume a rigid body with body axes aligned along the prin-
cipal axes is initially in a tumbling situation. The reference trajectory is set
to be the zero attitude at rest. The parameter values for the numerical sim-
ulation are shown in Table 7.11. The relative orientation of the rigid body
to the zero attitude is expressed through the MRP vector σ. Note that
the rigid body has a large initial angular velocity about the first body axis
which will cause the body to tumble through the Φ = 180 degree orien-
tation. Other three-parameter sets of attitude coordinates cannot describe
arbitrary rotations without encountering singularities. For example, had the
classical Rodrigues parameters been used in the simulation they would early
on encounter a singularity at Φ = 180 degrees.

Table 7.2: Parameter of MRP Control Law Numerical Simulation

Parameter Value Units

I1 140.0 kg-m2

I2 100.0 kg-m2

I3 80.0 kg-m2

σ(t0) [0.60 − 0.40 0.20]
ω(t0) [0.70 0.20 − 0.15] rad/sec
[P ] [18.67 2.67 10.67] kg-m2/sec
K 7.11 kg-m2/sec2

The feedback gains for this simulation were chosen such that the closed loop
dynamics will be very underdamped. Clearly the resulting performance would
not be what is needed to control a real system. However, having visible state
oscillations present will allow for the predicted damped natural frequency in
Eq. (7.118) and decay time constants in Eq. (7.117) to be verified.

The results of the numerical simulation are shown in Figure 7.7. The control
vector u stabilizes the tumbling rigid body and brings it to rest at the zero
attitude. The decay time constant T2, which controls how fast the states
σs and ωs are reduced, was chosen purposely to be much larger than the
other two time constants. This results in the second body axis state errors
being reduced much slower than the other two, simulating a situation where
less control authority is present about this axis. As is seen in Figures 7.7(i)
and 7.7(ii) the nonlinear response corresponds very well with the linearized
prediction. As the body tumbles through the “upside down” orientation at
Φ= 180o, the MRP vector switches automatically near σ2 = 1 to the alternate
set. At this point the corresponding control law ceases to fight the tumble
and lets the body complete the revolution before bringing it to rest at the
origin as seen in Figure 7.7(iii).

Let vector ε be the state error vector whose components are given by

εi =
√

σ2
i + ω2

i i = 1, 2, 3 (7.119)

To study the damped natural frequencies ωdi
and the decay times Ti the

natural logarithm of εi is plotted in Figure 7.7(iv). This Figure clearly shows
the decay rate and the natural oscillations of the underdamped response.
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Figure 7.7: MRP Feedback Control Law Simulation Without Control
Constraints

Note that the simulated maneuver performs a very large rotation which in-
cludes a complete tumble. Typically, when studying the closed loop response
of a control law, only small attitude errors in the order of 10s of degrees are
used. Table 7.3 compares the actual averaged decay rates and damped natu-
ral frequencies of the nonlinear system to the ones predicted by the linearized
feedback gain design. As expected, the linearization used in Eq. (7.111)
yields accurate closed loop performance predictions because of the extremely
large domain in which the exact σ-motion is near linear. The percent differ-
ences between the actual nonlinear Ti and ωdi

and the ones obtained from
the linearized model are only in the 1 to 2 percent range. Thus the MRP
feedback law in Eq. (7.82) achieves predictable, global, asymptotic stabil-
ity by only using three attitude coordinates as compared to four coordinates
required by Euler parameter feedback laws. Some control laws using other
three parameter sets of attitude coordinates such as the standard yaw, pitch
and roll angles also claim to have global stability. However, they all come
with a disclaimer warning against rotating the rigid body to certain attitudes
because of the inherent singularities of the chosen attitude coordinates. Such
control laws can therefore hardly be considered globally stabilizing. The MRP
attitude description allows for arbitrary rotations and has the added benefit
of always indicating the shortest rotational distance back to the origin when
the switching surface σ2 = 1 is chosen. There is one caveat for bounded
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Table 7.3: Comparison of Actual Averaged Closed-Loop Response Pa-
rameters vs. Predicted Linearized Values

Parameter Actual Average Predicted Value Percent Difference

T1 14.71 s 15.00 s 1.97%
T2 76.92 s 75.00 s -2.50%
T3 14.71 s 15.00 s 1.97%
ωd1

0.0938 rad/s 0.0909 rad/s -3.12%
ωd2

0.1326 rad/s 0.1326 rad/s 0.08%
ωd3

0.1343 rad/s 0.1333 rad/s -0.74%

controls: large unknown disturbances which cause cyclic passage through the
180o error condition could cause a problem with control chatter.

7.4 Lyapunov Optimal Control Laws

The feedback control laws in Eqs. (7.82) and (7.104) were developed assum-
ing that no control magnitude constraints are present. However, most control
devices such as reaction wheels, CMGs or thrusters have an upper bound on
how much control authority they can exert onto a system. If a control device is
operating at such a bound, it is said to be saturated. This section investigates
the stability of dynamical systems with saturated control present.

There are essentially two possibilities for dealing with saturated controls.
One solution is to reduce the feedback gains such that the anticipated required
control effort never saturates any control devices. This is typically done when
designing open-loop reference trajectories. However, this method has the draw-
back that the overall performance of the feedback control law is greatly reduced,
perhaps to an un-acceptable degree. When trying to stabilize a system about a
reference state, a more efficient method of dealing with saturated controls is to
allow individual control devices to become saturated. This leads to a saturated
control law which is said to be Lyapunov optimal. Being Lyapunov optimal
means that the time derivative of the given Lyapunov function V is made as
negative as possible during intervals where one or more of the control devices
are saturated.9, 20, 21 However, certain difficulties, including possible loss of con-
trollability, are potentially implicit in this approach if the most negative V̇ is
still positive!

The goal of the controller design process is to choose a control law from an
admissible set that will stabilize the system in an optimal fashion (i.e. make V̇
as negative as possible). For saturated controls of a natural system, the classical
stabilizing controller takes the form

Qi = −Qimax
sgn(q̇i) (7.120)

where Qi are the generalized control forces, q̇i are the derivatives of the general-
ized coordinates and Qimax

are the control bounds. This control law is Lyapunov
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optimal for minimizing the performance index J

J = V̇ =

n∑

i=1

q̇iQi (7.121)

The control law is optimal in a sense analogous to Pontryagin’sPrinciple for opti-
mal control because the controls are selected from an admissible set |Qi| ≤ Qimax

such that the instantaneous work rate (in the common event that V has an en-
ergy interpretation) is minimized at every point in time. Note that mathemati-
cal difficulties and practical system performance issues arise if this controller is
implemented directly for most systems.22 The discontinuity at the origin must
typically be replaced with a region of unsaturated control to avoid chattering
near q̇i = 0. This unsaturated controller can either approximate the disconti-
nuity or be some other stable/optimal feedback controller that transitions from
the saturated controller on the saturation boundary. We restrict attention here
to control laws that transition continuously at the saturation boundary. The
obvious choice is to augment Eq. (7.120) with a linear controller of the type

Qi =

{

−Kiq̇i for |Kiq̇i| ≤ Qimax

−Qimax
sgn(q̇i) for |Kiq̇i| > Qimax

(7.122)

where Ki > 0 is a chosen feedback gain. This control continuously transitions
across the saturation boundary and eliminates chattering. Note that Eq. (7.122)
allows some elements of the control vector to become saturated, while others are
still in the unsaturated range. This differs from conventional gain scheduling
and deadband methods which typically reduce the feedback gains to keep all
controls in the unsaturated range.

Example 7.12: Let us design a saturated control law for a single degree
of freedom nonlinear oscillator. Assuming m, c, k, kN > 0, the equation of
motion of a Duffing oscillator are given by

mẍ+ cẋ+ kx+ kNx
3 = u

The Lyapunov function (the system Hamiltonian of the unforced and un-
damped system) is

V =
1

2
mẋ2 +

1

2
kx2 +

1

4
kNx

4

V is positive definite and vanishes only at the origin, which is the only real
equilibrium point of the un-forced system. The performance index is the time
derivative of V and can be written immediately from Eq. (7.43) as

J = V̇ = ẋQ = ẋ(−cẋ+ u)

For bounded control |u| ≤ umax, the performance index J is minimized by
the feedback controller

u = −umaxsgn(ẋ)
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Using this control law, V̇ is reduced to the energy dissipation rate

V̇ (x, ẋ) = −cẋ2 − umaxẋ · sgn(ẋ)

It is of interest to note that an arbitrary, unknown, positive definite potential
energy function ∆V (x) could be added to V — and exactly the same result
is obtained for V̇ and u. Thus the structure of the control law and the
stability guarantee is invariant (and therefore inherently robust) with respect
to a large family of modeling assumptions.

Since V̇ (x, ẋ) is negative semi-definite, it can only be concluded at this point
that the system has globally stable motion near the origin; thus x and ẋ will
remain bounded. Since the control u is bounded by definition, the duffing
oscillator equations of motion show that ẍ will also be bounded. To prove
asymptotic stability, the higher derivatives of V must be investigated. The
only point where V̇ vanishes is ẋ = 0. The second derivative of V is

d2V

dt2
= −2cẋẍ− umaxẍsgn(ẋ)

which is also zero for all x when ẋ = 0. The third derivative of V is

d3V

dt3
= −2cẍ2 − 2cẋ

d3x

dt3
− umax

d3x

dt3
sgn(ẋ)

Using the duffing oscillator equations of motion, we find on the set where
ẋ = 0 that

d3V

dt3

∣
∣
∣
∣
ẋ=0

= −2
c

m

(
kx+ kNx

3)2

which is a negative definite function of x. Therefore, according to Theo-
rem 7.5, the saturated control law u is globally asymptotically stabilizing.

If a tracking control law is subjected to control constraints, then Lyapunov
optimality is difficult to define because tracking stability cannot be guaranteed
during saturated control intervals. Nevertheless, globally asymptotically stable
tracking controllers can often be achieved by generalizing the method devel-
oped in this section. A generalized work/energy equation that is equivalent to
Eq. (7.43) is not possible because the position and/or attitude error tracking
coordinates are measured in a non-inertial reference frame (thus a more tedious
process is required to establish the V̇ equation for each system. Also, consid-
eration must be given to whether the prescribed trajectory is a feasible exact
trajectory of the system.

Consider the case of having a rigid body track a given reference trajectory
ωr(t). The unsaturated control law uus given by

uus = −Kσ − [P ]δω + [I ] (ω̇r − [ω̃]ωr) + [ω̃][I ]ω − L (7.123)

has been shown to be globally, asymptotically stabilizing. The corresponding
Lyapunov rate function V̇ can be expressed as

V̇ = δωT (−[ω̃][I ]ω + u − [I ] (ω̇r − [ω̃]ωr) +Kσ) (7.124)
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Assume that the available control torque about the i-th body axis is limited by
umaxi

. Then following earlier analysis, we augment the unsaturated control law
uus with a Lyapunov optimal saturated term to yield a modified control law u.

ui =

{

uusi
for |uusi

| ≤ umaxi

uusi
· sgn(uusi

) for |uusi
| > umaxi

(7.125)

A conservative stability boundary (a sufficient condition for stability) for this
modified control torque u is found to be

| ([I ] (ω̇r − [ω̃]ωr) + [ω̃][I ]ω −Kσ)i | ≤ umaxi
(7.126)

Note that, for this higher dimensional system, this stability constraint may
be overly conservative. The condition in Eq. (7.126) is clearly violated if the
inequality fails about any one body axis.

Let us now consider the problem of a tumbling rigid body where the controls
are saturated. In such a case tracking a reference trajectory is no longer a
primary concern, rather stabilizing the motion is. Therefore ωr(t) is set to zero.
This allows V̇ of Eq. (7.124) to be simplified, using ωT [ω̃], to

V̇ = ωT (u +Kσ) (7.127)

The control torque uus for unsaturated conditions is then reduced to

uus = −Kσ − [P ]ω (7.128)

A conservative stability condition is found by studying V̇ in Eq. (7.127):

K|σi| ≤ umaxi
(7.129)

Since the magnitude of the MRP attitude error vector σ is bounded by 1, this
stability condition can also be written as

K ≤ umaxi
(7.130)

As shown in Ref. 9, while this condition in Eq. (7.129) guarantees stability, it it
not a necessary condition for stability. If one simply wanted to stop the tumbling
motion without regard to the final attitude, then one could set K = 0. Assume
that the velocity feedback gain matrix [P ] is diagonal. Then the saturated
control law u is

ui =

{

−Piiωi for |Piiωi| ≤ umaxi

−umaxi
· sgn(ωi) for |Piiωi| > umaxi

(7.131)

which leads to the Lyapunov rate function

V̇ (ω) = −
M∑

i=1

Piiω
2
i −

N∑

i=M+1

ωi · sgn(ωi) (7.132)
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where M is the number of unsaturated control inputs currently present. Since
this V̇ is negative de�nite (we only care in this case about ω, not about atti-
tude), the combined saturated, unsaturated control law in Eq. (7.131) is globally
asymptotically stabilizing.

Limiting K through the stability condition in Eq. (7.130) is usually overly
conservative. As the numerical simulation in Example 7.13 will illustrate, hav-
ing a K > umaxi

still typically leads to an asymptotically stable closed-loop
dynamics. The reason for this is the bounded nature of the attitude error
vector. The stability condition in Eq. (7.129), and therefore the requirement
of V̇ being negative, may indeed be locally violated for finite periods of time.
These violations are likely to occur whenever the rigid body tumbles towards the
Φ = ±180 degrees condition. After the body tumbles past Φ = ±180 degrees,
the sign of attitude vector components are switched through σS = −σ. As is
seen in Figure 7.7(iii), the required unsaturated control torque drops drastically
in magnitude during this switching. Before the switching, where the body is
still rotating away from the origin, both the angular velocity and the attitude
feedback are demanding a control torque in the same direction and their effects
are added up to produce the large control torque before the switching. After
the switching at the σ2 = 1 surface, the body now starts to rotate back towards
the origin and the sign of the attitude feedback control is switched. This results
in the angular velocity and attitude feedback control partially cancelling each
other and therefore producing a much smaller control torque. Therefore the
required control torques are larger and more likely to be saturated approaching
Φ = ±180 degrees then they are leaving the “upside-down orientation.” Since
the body is tumbling, the σ vector magnitude will always periodically come
close to zero where the stability condition in Eq. (7.129) is satisfied and kinetic
energy is guaranteed to be pumped out of the system because we guarantee
in Eq. (7.132) that V̇ ≤ 0. Eventually, perhaps after several revolutions or
tumbles, the body will come to rest.

Example 7.13: The rigid body detumbling maneuver in Example 7.11 is
repeated here in the presence of control constraints umaxi

= 1 Nm. The
unsaturated control law

u = −Kσ − [P ]ω (7.133)

is augmented with a saturated control law as shown in Eq. (7.125). The
numerical simulation results are shown in Figure 7.8.

As Figure 7.8(i) shows, with the limited control effort present the rigid body
now performs about five tumbles before coming to rest at the origin. The
large initial body angular velocity about the first body axis is gradually reduced
until the control torque u remains in the unsaturated regime. As shown in
Figure 7.8(ii), from there on ω1 starts to exhibit the anticipated underdamped
oscillations as were present with the unsaturated control law. For the first
100 seconds into the simulation, the control torque components ui remain
mostly saturated as shown in Figure 7.8(iii). Once the angular velocity errors
are sufficiently reduced, the required control effort remains in the unsaturated
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(iii) Feedback Control Vector u
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(iv) Illustration of Positive V̇ Regions
With the MRP Vector Components
Superimposed

Figure 7.8: Saturated MRP Feedback Control Law Simulation

regime. Figure 7.8(iv) shows the MRP attitude vector components for up to
120 seconds into the simulation. In the background the time regions are
grayed out where the Lyapunov function time derivative V̇ is actually positive
for this dynamical system. As predicted, V̇ becomes temporarily positive
when the rigid body is rotating towards the “upside-down” orientation. As
soon as the body rotates past this orientation V̇ becomes negative again. This
happens even though the control torque vector components ui are mostly still
saturated.

Therefore, even though K was chosen to be much larger than umaxi
= 1 for

this simulation, the saturated control law in Eq. (7.125) still asymptotically
stabilized the rigid body. Thus, one beautiful property of this MRP feedback
control law is that not only does it perform well for small orientation errors, it
also scales well to handle the much tougher problem of controlling arbitrary
large tumbling motions in the presence of control saturation.
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7.5 Linear Closed-Loop Dynamics

Whereas the previous attitude feedback control laws were found by first defining
a candidate Lyapunov function and then extracting the corresponding stabiliz-
ing control, it it also possible to start out instead with a desired (or prescribed)
set of stable closed-loop dynamics and then extract the corresponding feedback
control law using a variation of the “inverse dynamics” approach common in
robotics open-loop path planning problems. This technique is very general and
can be applied to a multitude of systems. Paielli and Bach present such a con-
trol law derived in terms of the Euler parameter components in Ref. 23. Let
the ε = (β1, β2, β3)

T be the vector portion of the Euler parameters as defined in
Eq. (3.109). Note that ε contains information about both the principal rotation
axis and principal rotation angle. Therefore, if ε → 0, then the body has rotated
back to the origin. Let’s assume that we desire the closed loop dynamics to have
the following prescribed linear form

ε̈ + P ε̇ +Kε = 0 (7.134)

where P and K are the positive scalar velocity and position feedback gains.
From linear control theory it is evident that for any initial ε and ε̇ vectors, the
resulting motion would obviously be asymptotically stable. If desired, one could
also easily add an integral feedback term to the desired closed loop equations.

ε̈ + P ε̇ +Kε +Ki

∫ t

0

εdt = 0 (7.135)

With judicious choices for P , K and Ki, stable ε(t) motions can be specified by
Eq. (7.135). Note that instead of the Euler parameter vector component ε, any
attitude or position vector could have been used. Next we will impose kinematic
and dynamical differential constraints to find the control law that will render
the closed loop dynamics of a rigid body equal to Eq. (7.134). Through Euler’s
rotational equation of motion

[I ]ω̇ + [ω̃][I ]ω = u (7.136)

once the body angular acceleration vector ω̇ is found consistent with Eq. (7.134)
or (7.135), then the control law vector u is also given. To find an expression for
ω̇, we need to differentiate the Euler parameter kinematic differential equation.
Assuming the target state has zero angular velocity, from Eq. (3.104) the vector
ε̇ is expressed as

ε̇ =
1

2
[T ]ω (7.137)

where the matrix [T ] = [T (β0, ε)] is given by

[T ] =





β0 −β3 β2

β3 β0 −β1

−β2 β1 β0



 = β0I3×3 + [ε̃] (7.138)
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The term β̇0 is also expressed from Eq. (3.104) as

β̇0 = −1

2
εTω (7.139)

Differentiating the differential kinematic equation in Eq. (7.137) we find

ε̈ =
1

2
[T ]ω̇ +

1

2
[Ṫ ]ω (7.140)

Using Eq. (7.138) the term [Ṫ ]ω is expressed as

[Ṫ ]ω = β̇0ω − [ω̃]ε̇ (7.141)

Substituting this [Ṫ ]ω and making use of Eqs. (7.137) and (7.139), the vector ε̈

is written as

ε̈ =
1

2
[T ]ω̇ − 1

4

(
εTωω + [ω̃][T ]ω

)
(7.142)

This expression can be further simplified by substituting Eq. (7.138) and using
the identities [ã]a = 0 and

[ã][ã] = aaT − aTaI3×3 (7.143)

Using these Eq. (7.142) is written in its most compact form

ε̈ =
1

2
[T ]ω̇ − 1

4
ω2ε (7.144)

where the shorthand notation ω2 = ωTω is used. Eq. (7.144) introduces
the necessary ω̇ term which leads to the control vector u. After substitut-
ing Eqs. (7.137) and (7.144) into our desired linear closed loop dynamics of
Eq. (7.134), the following constraint equation can be found.

[T ]

(

ω̇ + Pω + [T ]−1

(

−1

2
ω2ε + 2Kε

))

= 0 (7.145)

The matrix inverse of [T ] can be written explicitly as

[T ]−1 = [T ]T +
1

β0
εεT (7.146)

This expression can be readily verified by using it to confirm [T ]−1[T ] = I3×3.
From Eq. (7.146) it is evident that the matrix inverse of [T ] is always possible
except when β0 → 0. This corresponds to the rigid body being rotated ± 180
degrees relative to the target state at ε = 0. Since [T ] is of full rank everywhere
with the exception when β0 = 0, other than at this particular orientation, from
Eq. (7.145) the following acceleration constraint must hold to achieve the desired
tracking dynamics of Eq. (7.134):

ω̇ + Pω + [T ]−1

(

−1

2
ω2ε + 2Kε

)

= 0 (7.147)
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Substituting Eq. (7.138) and (7.146), the body angular acceleration vector ω̇ is
expressed as

ω̇ = −Pω − 2

(

K − ω2

4

)
ε

β0
(7.148)

After substituting this desired (or required) acceleration ω̇ into Euler’s rota-
tional equations of motion, we can solve for the required nonlinear feedback
control law vector u as

u = [ω̃][I ]ω + [I ]

(

−Pω − 2

(

K − ω2

4

)
ε

β0

)

(7.149)

Note that since the vector q = ε/β0 is the Gibbs vector, this control law is alter-
natively written as a function of (q,ω) and is singular near principal rotations of
± 180 degrees. Therefore this control law is not globally stabilizing despite the
linear closed loop dynamics (motions which tumble through ±180 degrees are
excluded). It is interesting to compare this control law with the Gibbs vector
control law previously derived from a Lyapunov function. Using the Lyapunov
functions in Eq. (7.29) and (7.58) leads to the asymptotically stabilizing control
law

u = [ω̃][I ]ω − Pω −Kq (7.150)

The reason the control law in Eq. (7.150) does not lead to linear closed loop
dynamical equations is because of the quadratic nonlinearity present in the
Gibbs vector differential kinematic equations. However, this nonlinearity is
very weak for a large range of rotations and ω2ε and [ω̃][I ]ω can typically be
ignored when designing the feedback gains. Only if it is necessary to precisely
predict the closed loop behavior with linear control theory is it advantageous to
add the more complex ω and q feedback in Eq. (7.149). We remark that it is
possible to parallel the above developments using the MRP vector σ instead of
ε (or q), and eliminate the singularity at ±180 degrees, and still have a linear
tracking error dynamics. This is evident in Example 7.14 below.

An attractive part of this methodology is that the structure of the closed loop
equations can easily be modified using standard linear control theory techniques.
It is also of paramount importance that this methodology has been generalized
with adaptive control methods to obtain even more robust version of these
feedback control laws.24, 25 If it is necessary that the feedback control reject
external disturbances, an integral measure of the attitude error is added to the
closed loop equations as shown in Eq. (7.135). Following similar steps as were
done previously in this section, the desired body angular acceleration vector ω̇

which results in an integral feedback control law is then written as

ω̇ = −Pω − 2

(

K − ω2

4

)
ε

β0
− 2Ki

(

[T ]T +
1

β0
εεT

)∫ t

0

εdt (7.151)

Where the integral feedback term in the Lyapunov function derived control law
in Eq. (7.104) has a constant feedback gain, the integral feedback of ε is scaled
by a nonlinear term.



256 NONLINEAR SPACECRAFT STABILITY AND CONTROL CHAPTER 7

If the target state angular velocity vector ωr is non-zero, then the ε differ-
ential kinematic equation is written as

ε̇ =
1

2
[T ]δω (7.152)

where the vector δω is the error vector in body angular velocities defined as

δω = ω − ωr (7.153)

The error angular acceleration vector is found be taking the inertial derivative
of Eq. (7.153).

δω̇ = ω̇ − ω̇r (7.154)

Note that here δω is treated as a vector, not as a 3×1 matrix. Therefore this δω̇
expression is different then the local derivative expression in Eq. (7.35) used in
deriving the Lyapunov feedback control laws. After differentiating Eq. (7.152)
the vector ε̈ is found.

ε̈ =
1

2
[T ]δω̇ +

1

2
[Ṫ ]δω (7.155)

Substituting these ε̇ and ε̈ expressions into the linear closed loop dynamics in
Eq. (7.134), and making use of Eq. (7.154), the body angular acceleration vector
ω̇ is found to be

ω̇ = ω̇r − Pδω − 2

(

K − δω2

4

)
ε

β0
(7.156)

The ω̇ in Eq. (7.151) which leads to an integral feedback control law can be
modified in a similar manner to track a reference rotation ωr(t).

Example 7.14: Instead of using the Euler parameter vector ε as the attitude
measure, this example will use the MRP vector σ. Assume that the closed
loop attitude error dynamics are desired to be of the stable second order form

σ̈ + P σ̇ +Kσ = 0

where P and K are positive scalar feedback gains. The kinematic differential
equation of the modified Rodrigues parameters is expressed as

σ̇ =
1

4
[B(σ)]ω

where the matrix [B] is defined in Eq. (3.150). To introduce the ω̇ term,
the time derivative of this kinematic equation is taken to produce the exact
relation

σ̈ =
1

4
[B]ω̇ +

1

4
[Ḃ]ω
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Substituting the expressions for σ̇ and σ̈ into the desired linear closed loop
dynamical equations, the following constraint condition is found.

σ̈ + P σ̇ +Kσ =
1

4
[B]
(

ω̇ + Pω + [B]−1
(

[Ḃ]ω + 4Kσ
))

= 0

Since for |σ| ≤ 1 the matrix [B] is always invertible, then the constraint on
ω̇ is

ω̇ + Pω + [B]−1
(

[Ḃ]ω + 4Kσ
)

= 0

Using the vector product definition of the [B] matrix in Eq. (3.150), the
matrix product [Ḃ]ω is expressed as

[Ḃ]ω =
1

2

(

2σT
ω
(
1 − σ2

)
ω −

(
1 + σ2

)
ω2
σ − 4σT

ω[ω̃]σ + 4
(

σ
T
ω
)2

σ

)

Using this expression along with the analytic inverse of matrix [B] given in
Eq. (3.152) as

[B]−1 =
1

(1 + σ2)2
[B]T

allows the body angular acceleration vector ω̇ constraint to be reduced to the
remarkably simple form

ω̇ = −Pω −
(

ωω
T +

(
4K

1 + σ2
− ω2

2

)

I3×3

)

σ (7.157)

This MRP feedback control is only slightly more complicated than the angular
acceleration associated with the Gibbs vector control in Eq. (7.148). How-
ever, since whenever σ2 > 1 the MRPs are switched to their corresponding
shadow set, this ω̇ yields a globally, asymptotically stable feedback control
law, whereas Eq. (7.148) is singular at ±180 degree rotations about any axis.

Table 7.4: Linear MRP Closed Loop Dynamics Numerical Simulation
Parameters

Parameter Value Units

I1 30.0 kg-m2

I2 20.0 kg-m2

I3 10.0 kg-m2

σ(t0) [−0.30 − 0.40 0.20]
ω(t0) [0.20 0.20 0.20] rad/sec
[P ] 3.0 kg-m2/sec
K 1.0 kg-m2/sec2

The following numerical example illustrates the linear closed loop dynamics
of this nonlinear feedback control law. The simulation parameters are shown
in Table 7.4 and the resulting reorientation is shown in Figure 7.9. No ex-
ternal disturbances were included in this simulation. Figure 7.9(i) shows the
MRP attitude vector σ components. Their behavior can easily be verified by
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Figure 7.9: Linear Closed-Loop Dynamics using the MRP Vector

solving the linear differential equation σ̈+P σ̇+Kσ = 0 for the given initial
conditions. Figure 7.9(ii) shows the corresponding nonlinear control u.

7.6 Reaction Wheel Control Devices

Instead of using propellant expelling thrusters, often spacecraft rotational ma-
neuvers are performed using some type of momentum exchange devices. The
two most common such devices are the Reaction Wheels (RWs) and the Con-
trol Moment Gyroscopes (CMGs). Both are electrically powered and are thus
well suited for long-duration missions. Reaction wheels are body fixed disks
which are spun up or down to exert a torque onto the spacecraft. They have
a relatively simple construction and are cheaper to produce than CMGs. How-
ever, their torque output is rather small compared to the torque output of a
single-axis CMG.

This section develops feedback control laws that control a spacecraft contain-
ing reaction wheel control devices. The following section will deal with CMG
and VSCMG control and steering laws. Assume a rigid spacecraft has N re-
action wheels attached. Each RW spin axis is denoted through the body fixed
vector ĝsi

. The equations of motion for this system were developed in Chapter 4
within Example 4.5 and are repeated here for the reader’s convenience.

[IRW ]ω̇ = −[ω̃] ([IRW ]ω + [Gs]hs) − [Gs]us + L (7.158)

Note that the inertia matrix [IRW ] is fixed as seen by the body frame B and is
defined as

[IRW ] = [Is] +

N∑

i=1

(
Jti ĝti ĝ

T
ti + Jgi

ĝgi
ĝTgi

)
(7.159)
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The RW motor torques usi
are given by

usi
= Jsi

(

Ω̇i + ĝTsi
ω
)

(7.160)

The angular vector components of hs are given by

hsi
= Jsi

(ωsi
+ Ωi) (7.161)

Let the angular velocity error vector δω be defined as

δω = ω − ωr (7.162)

where ωr is the reference angular velocity vector. The attitude error between
the current body and reference frames is chosen to be expressed through the
MRP vector σ. Other attitude parameterizations could have been used here
instead too. To provide a positive definite scalar measure of both the attitude
and angular velocity tracking error, we use Eqs. (7.33) and (7.67) to construct
our Lyapunov function V .

V (σ, δω) =
1

2
δωT [IRW ]δω + 2K ln

(
1 + σTσ

)
(7.163)

Note that the components of δω and [IRW ] are taken in the B frame. After
setting the derivative of V equal to the negative semi-definite function

V̇ = −δω[P ]δω (7.164)

the following closed loop dynamics are obtained.

[IRW ]
Bd
dt

(δω) = −Kσ − [P ]δω (7.165)

After substituting the equations of motion in Eq. (7.158) and making use of
Eqs. (7.35) and (7.162), the RW motor torque vector is defined through the
constraint

[Gs]us = Kσ + [P ]δω − [ω̃] ([IRW ]ω + [Gs]hs − ωr)

− [IRW ] (ω̇r − ω × ωr) + L (7.166)

Let us combine the terms of the right hand side of Eq. (7.166) to form the
required torque vector Lr that the RW cluster must produce. The control
constraint is then expressed compactly as

[Gs]us = Lr (7.167)

If at least three or more RWs are present and their spin axes ĝsi
span the entire

three-dimensional space, then the RW cluster will be able to produce in principle
any required torque vector Lr. For the special case where the spacecraft only
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contains three RWs, and each is aligned with one of the principal body axes,
then [Gs] = I3×3 and the RW motor torque vector is simply given by

us = Lr (7.168)

For the more general case where a redundant set of RW are present, the vectors
us and Lr will not have a one-to-one correspondence. Here there actually exists
an infinite number of usi

combinations that will produce the required torque
vector Lr. One common method used to solve for the actual RW motor torques
is to use a minimum norm inverse.

us = [Gs]
T
(
[Gs][Gs]

T
)−1

Lr (7.169)

This method provides at any instance of time the smallest set of RW motor
torques that combined produce Lr. Even though V̇ is only negative semi-
definite, it was shown in Eq. (7.87) that this control law is indeed asymptotic
stabilizing. A major advantage of this RW control law when compared to those
of other moment exchange devices is that it is relatively simple in nature and
easy to implement. The limitation of RWs include the relatively small torque
produced by the device and the problems of having RW saturate. Each RW
has an upper limit on how fast its rotor can be safely spun up. This rotor rate
range constrains the torque that can be produced. Further, the faster a RW
is spinning, the more power is consumed to produce a required torque. The
kinetic work rate for a spacecraft with a system of RW can be deduced from the
more general work rate in Eq. (4.119).

Ṫ = ωTL +

N∑

i=1

Ωiusi
(7.170)

This work rate expression shows clearly that the larger Ωi is, the larger the work
rate of the RW motor torque usi

will be.

7.7 Variable Speed Control Moment Gyroscopes

Control moment gyroscopes contain a rotor whose spin rate Ω is held constant.
By rotating (also referred to as gimbaling) this rotor about some axis other
than the spin axis, a gyroscopic torque is produced onto the spacecraft (see
Figure 7.10. Single-gimbal CMGs only contain one body fixed gimbal axis.
Their major advantage is that for a small torque input about the gimbal axis, a
large torque output is produced about the transverse axis. This phenomena is
called the torque ampli�cation e�ect. Their drawback is that the corresponding
steering law is more complicated than that of the RWs and that singular gimbal
angle configurations exist where the required torque is only partially produced,
if at all. Dual-gimbal CMGs have a second gimbal axis. These devices don’t
have as large of a torque amplification effect, but their steering law is less prone
to encounter singularities.
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gain.17

V (δω,σ) =
1

2
δωT [I ]δω + 2K log

(
1 + σTσ

)
(7.171)

The total spacecraft inertia matrix for this dynamical system was developed in
Eq. (4.115) and is expressed as

[I ] = [Is] +

N∑

i=1

[
Jsi

ĝsi
ĝTsi

+ Jti ĝti ĝ
T
ti + Jgi

ĝgi
ĝTgi

]
(7.172)

Note that all the body angular velocity vectors and inertia matrices have com-
ponents taken in the B frame in Eq. (7.171). Using Eq. (7.68), the Lyapunov
function rate V̇ is then given by

V̇ = δωT

(

[I ]
Bd
dt

(δω) +
1

2

Bd
dt

[I ]δω +Kσ

)

(7.173)

Note that the spacecraft inertia matrix [I ] must now be treated as time varying
as seen by the B frame because of the CMG gimbaling. Since the Lyapunov
function V is a scalar quantity, taking its derivative simply involves taking
the derivatives of its scalar components. Since the inertia matrix [I ] and δω
have components taken in the B frame, their derivatives are taken as seen by
the B frame. Using the inertia matrix definition in Eq. (7.172) and the B frame
derivatives of the gimbal frame unit vectors in Eq. (4.98), the B frame derivative
of [I ] is

Bd
dt

[I ] =

N∑

i=1

γi (Jsi
− Jti)

(
ĝsi

ĝTti + ĝTti ĝ
T
si

)
(7.174)

To guarantee stability of the closed-loop system, the Lyapunov rate function is
set equal to the negative semi-definite function V̇ = −δωT [P ]δω, which, when
combined with Eq. (7.173), leads to the stability constraint:

[I ]δω̇ = −Kσ − [P ]δω − 1

2

Bd
dt

[I ]δω (7.175)

After substituting Eqs. (4.117) and (7.174) into Eq. (7.175), the following sta-
bility constraint is obtained.

N∑

i=1

Jsi
Ω̇iĝsi

+

N∑

i=1

Jgi
γ̈iĝgi

+

N∑

i=1

γ̇i

(

Jsi
Ωiĝti +

1

2
(Jsi

− Jti) (ωti ĝsi
+ ωsi

ĝti)

+ Jgi
(ωti ĝsi

− ωsi
ĝti) +

1

2
(Jsi

− Jti)
(
ĝsi

ĝTtiωr + ĝti ĝ
T
si

ωr
)
)

= Kσ + [P ]δω + L − [ω̃][I ]ω − [I ] (ω̇r − [ω̃]ωr)

−
N∑

i=1

Jsi
(Ωiωgi

ĝti − Ωiωti ĝgi
) (7.176)
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To express this condition in a more compact and useable form, let us define the
following 3xN matrices, where all components are taken in the B frame:

[D0] = [· · · ĝsi
Jsi

· · · ] (7.177a)

[D1] = [· · · Jsi

((

Ωi +
1

2
ωsi

)

ĝti +
1

2
ωti ĝsi

)

· · · ] (7.177b)

[D2] = [· · · 1

2
Jti (ωti ĝsi

+ ωsi
ĝti) · · · ] (7.177c)

[D3] = [· · · Jgi
(ωti ĝsi

− ωsi
ĝti) · · · ] (7.177d)

[D4] = [· · · 1

2
(Jsi

− Jti)
(
ĝsi

ĝTtiωr + ĝti ĝ
T
si

ωr
)
· · · ] (7.177e)

[B] = [· · · ĝgi
Jgi

· · · ] (7.177f)

Let Ω̇, γ̈ and γ̇ be Nx1 vectors whose i-th element contains the respective
VSCMG angular velocity or acceleration or RW spin rate. The stability con-
straint in Eq. (7.176) then is expressed as12

[D0]Ω̇ + [B]γ̈ + [D]γ̇ = Lr (7.178)

where [D] = ([D1] − [D2] + [D3] + [D4]) and the required torque vector Lr is
defined to be

Lr = Kσ + [P ]δω + L − [ω̃][I ]ω − [I ] (ω̇r − [ω̃]ωr)

−
N∑

i=1

Jsi
(Ωiωgi

ĝti − Ωiωti ĝgi
) (7.179)

Dropping the [D0]Ω̇ term in Eq. (7.178), the standard single-gimbal CMG sta-
bility constraint is retrieved as it is developed in Ref. 26. Note that the for-
mulation presented here does not require any matrix multiplications of sparse
matrices and the effects of the individual VSCMG inertia terms are immedi-
ately evident. The condition in Eq. (7.178) only guarantees global stability in
the sense of Lyapunov for the states δω and σ, since V̇ was only set to be neg-
ative semi-definite, not negative definite. However, the negative semi-definite
Lyapunov rate expression does show that δω → 0 as time goes to infinity. To
prove that the stability constraint in Eq. (7.178) guarantees asymptotic stability
of all states including σ, once again the higher time derivatives of V must be
investigated. For this dynamical system V̇ is zero whenever δω is zero. Using
Eq. (7.175) and setting δω = 0, the third derivative of the Lyapunov function
V is found to be the first, non-zero higher order derivative and is expressed as

d3

d3t
V = −K2σT

(
[I ]−1

)T
[P ][I ]−1σ (7.180)

which is a negative definite quantity since both [I ] and [P ] are positive definite
matrices. Therefore the stability constraint in Eq. (7.178) does guarantee global
asymptotic stability.
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If the desired spacecraft trajectory is a stationary attitude, then the reference
body angular velocity vector ωr is zero. For these rest-to-rest or motion-to-
rest type maneuvers, the feedback control law in Eq. (7.178) can be greatly
simplified. After substituting Eqs. (4.117) and (7.174) into Eq. (7.173) and
rearranging some terms, the Lyapunov rate function V̇ is expressed as

V̇ = −ωT

(

[ω̃][I ]ω +

N∑

i=1

Jsi
Ω̇iĝsi

+

N∑

i=1

Jgi
γ̈iĝgi

+

N∑

i=1

Jsi
γ̇i

(

Ωi +
1

2
(ωti ĝsi

+ ωsi
ĝti)

)

−Kσ − L +

N∑

i=1

Jsi
Ω (ωgi

ĝti − ωti ĝgi
)

−
N∑

i=1

Jti γ̇i
1

2
(ωsi

ĝti + ωti ĝsi
) +

N∑

i=1

Jgi
γ̇i (ωti ĝgi

− ωgi
ĝti)

)

(7.181)

For this regulator problem, several terms in Eq. (7.181) can be shown to be
nonworking and are neglected in the resulting feedback control law. Setting
V̇ = −ωT [P ]ω and performing further algebraic manipulations, the simplified
stability constraint for the regulator problem is found to be

N∑

i=1

Jsi
Ω̇iĝsi

+
N∑

i=1

Jgi
γ̈iĝgi

+
N∑

i=1

Jsi
γ̇i (Ωi + ωsi

) ĝti −
N∑

i=1

Jtiωsi
γ̇iĝti

= Kσ + [P ]ω + L = Lr (7.182)

Note that Lr defined in Eq. (7.182) is a simplified version of the one defined in
Eq. (7.179). Making use of the 3 ×N matrices

[D0] = [· · · ĝsi
Jsi

· · · ] (7.183a)

[D1] = [· · · ĝtiJsi
(Ωi + ωsi

) · · · ] (7.183b)

[D2] = [· · · ĝtiJtiωsi
· · · ] (7.183c)

[B] = [· · · ĝgi
Jgi

· · · ] (7.183d)

the stability constraint is written in the following compact form12, 27

[D0]Ω̇ + [B]γ̈ + [D]γ̇ = Lr (7.184)

where [D] = ([D1] − [D2]). Note that the matrices [D0] and [B] are the same as
with the general feedback law. The matrices [D1] and [D2] are simplified and
have columns which solely depend on the ĝti directions. The matrices [D3] and
[D4] do not appear at all in this control law. Since this regulator control law
is a specialization of the more general trajectory tracking control law, it too is
globally asymptotically stabilizing.

7.7.2 Velocity Based Steering Law

Note that the stability constraints in Eqs. (7.178) and (7.184) do not contain
the physical control torques usi

and ugi
explicitly. Instead, only gimbal rates
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and accelerations and RW accelerations appear. This will lead to a steering
law that determines the required time history of γ and Ω such that Eq. (7.178)
is satisfied. The reason for this is two fold. First, currently available CMGs
typically require the gimbal rate vector γ̇ as the input, not the actual physical
torque vector ug. Secondly, writing Eqs. (7.178) and (7.184) in terms of the
torque vectors us and ug and then solving for these would lead to a control
law that is equivalent to solving Eq. (7.178) directly for the gimbal acceleration
vector γ̈. As has been pointed out in Ref. 26, this has been found to give a very
undesirable control law with excessive gimbal rates. A physical reason for this
is that such control laws provide the required control torque mainly through
the [B]γ̈ term. In this setup the CMGs are essentially being used as RWs and
the potential torque amplification effect in not being exploited. Because CMG
gimbal inertias Jg are typically small compared to their spin inertia Js, the
corresponding [B] will also be very small which leads to very large γ̈ vectors.

To take advantage of the potential torque amplification effect, most of the
required control torque vector Lr should be produced by the larger gyroscopic
coupling [D]γ̇ term. This is why classical CMG steering laws control primarily
the γ̇ vector and not γ̈. For the VSCMGs it is desirable to have the required
torque Lr be produced by a combination of the Ω̇ and γ̇ terms in Eqs. (7.178)
and (7.184). To simplify the further development, we assume that the final
angular velocity is zero Therefore the stability constraint in Eq. (7.184) is used.
However, the results are equally valid for the trajectory tracking control law.
To force the required torque to be produced by the gimbal rates, the terms
containing the transverse and gimbal VSCMG inertias are ignored at this level.
Eq. (7.184) then becomes

[D0]Ω̇ + [D1]γ̇ = Lr (7.185)

Comparing the [D1] matrix to that of conventional CMG steering laws of the
form

[D1]γ̇ = Lr (7.186)

such as ones found in Ref. 26, it is evident that an extra ĝtJsωs term is present
in the definition of the [D1] matrix in the VSCMG formulation. This term is
neglected in the standard CMG formulation since it can be assumed that ωs
will typically be much smaller than Ω. However, since for a VSCMG the RW
spin speed Ω is variable, this assumption is no longer justified for the more
general VSCMG case and this term is retained in this formulation. To solve
the conventional CMG feedback control constraint in Eq. (7.186) for the gimbal
rates, a minimum norm inverse is typically used. However, if the rank of the [D1]
matrix drops below 3, then a steering law singularity where the minimum norm
inverse may not be possible mathematically. To operate mathematically in the
neighborhood of these singular gimbal configurations, Nakamura and Hanafusa
introduce in Ref. 28 a modified minimum norm inverse

γ̇ = [D1]
T
(
[D1][D1]

T + αI3×3

)−1
Lr (7.187)
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The scalar parameter is only non-zero in the neighborhood of a singularity and is
typically very small in magnitude. This allows the CMG steering law to produce
gimbal rates even in the mathematically ill-conditioned singular neighborhoods.
The draw-back of this method is that the resulting torque produced by the CMG
cluster is not precisely equal to the required torque vector Lr. This will cause
path deviations of the spacecraft from the prescribed trajectories. Also, the
modified minimum norm inverse does not avoid the problem of having a gimbal
lock. If the Lr is perpendicular to the range of [D1], then a zero gimbal rate
vector is produced. The gimbal effectively remain locked in this configuration,
producing no effective torque, until the required torque vector Lr is changed
somehow.

By finding a steering law for the VSCMG case, we avoid many of the con-
ventional CMG singularities by taking into account that the RW rotor speeds
are allowed to be time varying. For notational convenience, we introduce the
2Nx1 state vector η

η =

[
Ω
γ

]

(7.188)

and the 3x2N matrix [Q]

[Q] =
[

D0

... D1

]

(7.189)

Eq. (7.185) is then written compactly as

[Q]η̇ = Lr (7.190)

Note that each column of the [D0] matrix is a scalar multiple of the ĝsi
vectors,

while each column of [D1] is a scalar multiple of the ĝti vectors. In the classical
4 single-gimbal CMG cluster, singular gimbal configurations are encountered
whenever the rank of [D1] is less than 3. This occurs whenever the ĝti axes
no longer span the three-dimensional space, but form a plane or a line. Any
required torque which does not lie perfectly in this plane or line cannot be
generated exactly by the CMG cluster and the spacecraft would deviate from
the desired trajectory. If the required control torque is perpendicular to this
plane, then the CMG cluster produces no effective torque on the spacecraft.
This singular behavior is illustrated in Figure 7.11 with two CMGs gimbaling
to produce a constant torque vector Lr. Since each CMG produces a torque
about its transverse axis, the two wheels must be gimbaled symmetrically and
at the same rate to produce the indicated required torque vector Lr. As both
transverse axes rotate toward perpendicular orientations relative to Lr, the
associated gimbal rates become exceedingly large to produce the required torque.
This is referred to as operating in the neighborhood of a singular configuration.
If both transverse axes are perpendicular to Lr, then no torque is produced
(referred to as gimbal lock).

These singular configurations can never occur with a VSCMG steering since
the rank of the [Q] matrix will never be less than 3. Since the ĝsi

vectors are
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Figure 7.11: Dual CMG System Encountering a Singularity

perpendicular to the ĝti vectors, even when all the transverse axes are coplanar,
there will always be at least one spin axis that is not in this plane. Therefore
the columns of [Q] will always span the entire three-dimensional space as long
as at least 2 or more VSCMGs are used with distinct ĝgi

vectors. We mention,
however, that while a singularity does not occur, this does not imply that other
difficulties, such as wheel saturation, will not be encountered occasionally.

Since the [Q] matrix will never be rank deficient, a minimum norm solution
for η̇ can be obtained using the standard Moore-Penrose inverse of Eq. (7.190).
However, since ideally the VSCMGs are to act like classical CMGs away from
single-gimbal CMG singular configurations, a weighted pseudo inverse is recom-
mended instead.29 Let [W ] be a 2Nx2N diagonal matrix

[W ] = diag{Ws1 , . . . ,WsN
,Wg1 , . . . ,WgN

} (7.191)

where Wsi
and Wgi

are the weights associated with how active each of the RW
and CMG modes are. Setting a weight to zero effectively turns that particu-
lar mode off. The larger the weight, the more important that mode is in the
VSCMG steering law. The desired η̇ is then found through27

η̇ =

[

Ω̇
γ̇

]

= [W ][Q]T
(
[Q][W ][Q]T

)−1
Lr (7.192)

Note that there is no need here to introduce a modified pseudo-inverse as Naka-
mura and Hanafusa did in developing the singularity robustness steering law in
Ref. 28. To achieve the desired VSCMG behavior, the weights are made de-
pendent on the proximity to a single-gimbal CMG singularity. One method to
measure the proximity to a singularity is to compute the non-dimensional scalar
factor δ defined as

δ = det
1

h̄2

(
[D1][D1]

T
)

(7.193)
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where h̄ is a nominal RW angular momentum. With classical CMG configura-
tions, typically each CMG has the same spin axis angular momentum magnitude
h. This quantity can easily be factored out of [D1] to render δ non-dimensional.
However, since VSCMGs have potentially time varying spin axis angular mo-
mentum magnitudes, one has to divide [D1] by a nominal spin axis angular
momentum magnitude h̄ to render δ non-dimensional. As the gimbals approach
a singular CMG configuration, this parameter δ goes to zero. The weights Wsi

can be defined to as the functions

Wsi
= W 0

si
e(−µδ) (7.194)

where W 0
si

and µ are positive scalars to be chosen by the control designer. The
gains Wgi

are simply held constant. Away from CMG singularities, this steering
law will have very small weights on the RW mode and essentially perform like
a classical single-gimbal CMG. As a singularity is approached, the steering law
will start to use the RW mode to ensure that the gimbal rates do not become
excessive and that the required control torque Lr is actually produced by the
VSCMG cluster.

Two types of CMG singularities are commonly discussed. The simpler type
of singularity is when the rank of the [D1] matrix drops below 3 which is indi-
cated by δ, defined in Eq. (7.193), approaching or becoming zero. The VSCMG
velocity steering law in Eq. (7.192) handles temporary rank deficiencies very
well. The required control torque is always produced correctly by making use
of the addition control authority provided by the RW modes. Another type
of singularity is when the required control torque is exactly perpendicular to
the span of the transverse VSCMG axis (i.e. Lr is in the nullspace of [D1]).
Naturally, this is only possible whenever δ is zero. To measure how close the
required torque Lr is to lying in the nullspace of [D1], the scalar orthogonality
index O is used.26

O =
1

h̄2

LT
r [D1]

T [D1]Lr

||Lr||2
(7.195)

Whenever Lr becomes part of the nullspace of [D1], then O will tend towards
zero. A classical single-gimbal CMG steering law demands a zero γ̇ vector
with this type of singularity which “locks up” the gimbals produces no effective
torque on the spacecraft. The VSCMG steering does not prevent the gimbals
from being locked up in these singular orientations; however, the Lr vector
is still being produced thanks to the RW mode of the VSCMGs. If a gimbal
lock is actually achieved, then without any further changes, such as a change
in the required Lr, the VSCMG will simply continue the maneuvers acting
like pure RWs. Running numerical simulations it was found that unless one
starts the simulation in a pure gimbal lock situation, it was very unlikely for the
VSCMG steering law to lock up the gimbals. Once a singularity is approached,
the RWs are automatically spun up or down which also in return affects the
gimbal orientation and lowers the likelihood of having the orthogonality index
O go to zero. However, the the current form this VSCMG steering law makes
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no explicit effort to avoid these singular configurations during a maneuver. In
essence, once the momentum symmetry (associated with CMG geometry and
constant wheel speeds) is destroyed; by virtue of variable wheel speeds, the
corresponding singular geometries are also eliminated.

7.7.3 VSCMG Null Motion

To perform a given spacecraft maneuver, there are an infinity of possible CMG
configurations that would produce the required torque vector Lr. Depending on
the torque direction and a given CMG momentum, some of these initial gimbal
configurations will encounter CMG singularities during the resulting maneuver
while others will not. Vadali et al. show in Ref. 30 a method to compute a
preferred set of initial gimbal angles γ(t0) with which the resulting maneuver
will not encounter any CMG singularities. The method computes γ(t0) off-
line before the maneuver is performed. To reorient the CMG cluster to these
preferred gimbal angles, the null motion of the steering law [D1]γ̇ = Lr is used.
This null motion allows for the gimbals to be reconfigured without applying
any torque on the spacecraft. However, the set of gimbal angles between which
one can reorient the classical CMGs is very limited, since the internal CMG
cluster momentum vector must remain constant during this maneuver. Also,
the null motion involves the inverse of the [D1][D1]

T matrix which has to be
approximated with the singularity robustness inverse whenever the determinant
goes to zero. This approximation results in a small torque being applied to the
spacecraft itself.

Rearranging VSCMGs instead of CMGs however, there are now twice as
many degrees of control available. A common four-CMG pyramid configu-
ration would have eight degrees of control instead of four, and more impor-
tantly, instead of having a one dimensional nullspace, we have a five dimensional
nullspace. In particular, the CMG angles can be rearranged in a more general
manner by also varying the RW spin speed vector Ω. The null motion of the
control law in Eq. (7.190) is given by

η̇ =

[

[Ŵ ][Q]T
(

[Q][Ŵ ][Q]T
)−1

[Q] − [I2N×2N ]

]

d = [τ ]d (7.196)

where [Ŵ ] is another diagonal weight matrix which controls how heavily either
the CMG or RW mode is used in this null motion. The vector d provides a
direction to which to drive the state vector η.

Note that the matrix [τ ] is a projection matrix and has the useful property
that [τ ][τ ] = [τ ]. Let the constant vector ηf be a preferred set of Ωf and γf .
The difference between the current and the preferred VSCMG states is expressed
as

∆η = η − ηf =

(
Ω −Ωf

γ − γf

)

=

(
∆Ω
∆γ

)

(7.197)



270 NONLINEAR SPACECRAFT STABILITY AND CONTROL CHAPTER 7

The state error vector e is defined as

e = [A]∆η (7.198)

where [A] is the diagonal matrix

[A] =

[
aRW [IN×N ] [0N×N ]

[0N×N ] aCMG[IN×N ]

]

(7.199)

The parameters aRW and aCMG are either 1 or 0. If one is set to zero, this
means that the resulting null motion will be performed with no preferred set of
either Ωf or γf . The derivative of e is

ė = [A]η̇ (7.200)

The total error between preferred and actual CMG angular speed states is given
through the Lyapunov function

Ve(e) =
1

2
eTe (7.201)

Using Eqs. (7.196) and (7.200), the derivative of the Lyapunov function is

V̇e = eT ė = eT [A][τ ]d (7.202)

After setting d = −kee, where the scalar ke is a positive gain, and making use
of the properties [A]e = e and [τ ][τ ] = [τ ], V̇e is rewritten as

V̇e = −keeT [τ ][τ ]e ≤ 0 (7.203)

If the weight matrix [Ŵ ] is written as

[Ŵ ] = W [I2N×2N ] (7.204)

then the matrix [τ ] becomes symmetric and [τ ] = [τ ]T . Using this property, the
Lyapunov rate is expressed as

V̇e = −keeT [τT [τ ]e = −ke ([τ ]e)
T

[τ ]e ≤ 0 (7.205)

which is negative semi-definite. Therefore the corresponding VSCMG null mo-
tion

η̇ = ke

[

[Q]T
(
[Q][Q]T

)−1
[Q] − [IN×N ]

]

[A]

(
∆Ω
∆γ

)

(7.206)

is a globally stable motion. Numerical simulations show that the weight ma-
trix [Ŵ ] does not have to be restricted to the form in Eq. (7.204). Different
weights can be applied to the individual CMG and RW modes with the resulting
VSCMG null motion

η̇ = ke

[

[Ŵ ][Q]T
(

[Q][Ŵ ][Q]T
)−1

[Q] − [IN×N ]

]

[A]

(
∆Ω
∆γ

)

(7.207)
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remaining stable. Note however, that no guarantee as to asymptotic stability
can be made. As was the case with the classical single-gimbal CMG null motion,
it is still not possible to reorient between any two arbitrary sets of η vectors,
since the internal momentum vector must be conserved. If the momentum is
not conserved, then some torque acts on the spacecraft.

Example 7.15: A rigid spacecraft is equipped with four identical VSCMGs ar-
ranged in the standard pyramid configuration as shown in Figure 7.12. While
maintaining a constant spacecraft attitude, it is desired to rearrange the cur-
rent set of asymmetric gimbal angles to a new set of preferred symmetric
angles γf .

θ12 3
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andthe
VSCMG null motion,eventhoughw

e

knowinadvancethat

theCMGnull
motion

willnotbe

able

to

completethistasksuccessfullywithoutexerting
a

to

rque

onthespacecraft.TheVSCMGnull motion

in Eq. (7 206)isused
inthisstudy whereequalw

eights areapplied

to

theRWandCMGmodes.
Theparameter aRW

issetto

zero,

indicatingthat

theRWwheelspeeds

Ωi

can be

changed b

y

theVSCMGnull motion

asnecessarytodrive

thegimbalanglesto

w

ardstheirp

referred

values.

Thesimulationparametersareshown in Table7.5. Thespacecraftisatrestandthefeedbackcontrol

la

wisturned

off.Bothofthefollowingnull motions

reconfiguredthegimbal

angleswithoutchangingthespacecraftattitude.TheCMG andRW

statesfo

rboththeCMGandVSCMG

null motionare

illustrated

inFigure

7 13. ThestatesoftheCMGnull motion

are

indicatedwithadashed

line,while

thestatesof theVSCMG

null motion

are

depictedwitha

solid

line.

Asp

redicted,bothsimulationsremainedstable.They

differed

ho

w

everintheirability

to

completethegiventask.

Figure

7 13(i)compares thegimbalanglesofeithernull motion.

As

expected,

theCMGnull motion

do

es a

po

o

rjob indrivingtheinitialgimbal

anglesγ(

t0

)to

w

ardsthecomputedsetofsymmetricp

referred anglesγf .

While

t

w

o

gimbalangles

do approachthe±

45

degreema

rks,theothert

w

o remain

fa

r

aw

ay

.

How

ever,theVSCMGnull motion

is

able

to

drivethegimbal

angles fairlyclosetothep

referred

gimbal

angles.Thecorrespondinggimbal

ratesfo

reithernull

motion

areshown inFigure

7 13(ii)andaresmallfo

r

bothcases.



272 NONLINEAR SPACECRAFT STABILITY AND CONTROL CHAPTER 7

Table 7.5: VSCMG Simulation Parameters

Parameter Value Units

Is1
86.215 kg-m2

Is2
85.070 kg-m2

Is3
113.565 kg-m2

θ 54.75 degrees
Js 0.13 kg-m2

Jt 0.04 kg-m2

Jg 0.03 kg-m2

γi(t0) [0 0 0 20] deg
γ̇i(t0) [0 0 0 0] rad
Ω(t0) 14.4 rad/sec
ke 0.1

If the required gimbal rates were too high, then they could be reduced by
lowering the gain ke and therefore slowing down the null motion maneuver.

The VSCMG null motion comes much closer to achieving the task by being
able to vary the RW spin speeds as shown in Figure 7.13(iii). During the first
40 seconds of the maneuver the Ωi are changed steadily to counter the torque
produced by rearranging the gimbal angles into a more symmetric configura-
tion. From then on the Ωi remain relatively constant. The corresponding RW
motor torques are shown in Figure 7.13(iv). Again the most active region is
during the initial 40 seconds of the maneuver. What is important to note is
that the magnitudes of the required RW motor torques are very small. In fact,
they are small enough to be feasible with existing RW motors on conventional
CMGs. Using this type of null motion therefore only requires a change in the
RW feedback control law, and not a change in the hardware design of the
CMG itself. Changing the RW feedback law however allows for the gimbals
to be rearranged in a much more general manner than is possible with the
conventional CMG null motion.

Another use of the VSCMG/CMG null motion to avoid singularities is to
use the redundant degrees of freedom to continuously rearrange the gimbals
such that a singularity index is minimized. If a singular gimbal configuration
is approached during a maneuver, then the gimbal angles are automatically
rearranged using the VSCMG null motion to reduce the singularity index. This
method has the advantage that no preferred Ω and γ state vectors need to
be computed prior to the maneuver. Since it is still theoretically possible to
encounter a CMG singularity, this method is very useful when combined with the
VSCMG steering law. While the VSCMG steering law may require very large
RW motor torques to drive through a CMG singularity, using the VSCMG null
motion early on to rearrange the gimbal angles to less singular configurations
can lead to drastic reductions in the required RW motor torques.

In order to drive the gimbal configuration towards a “less singular” config-
uration, a measure of singularity proximity is needed. A gradient type method
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Figure 7.13: CMG and VSCMG Null Motion Simulation

is developed below that provides the necessary state error vectors ∆Ω and ∆γ

for the VSCMG null motion in Eq. (7.207). The non-dimensional singularity
indicator δ could be used here as the singularity measure of the VSCMG null
motion steering law. However, since using the gradient method requires taking
analytical partial derivatives of the singularity measure with respect to the gim-
bal angles, this would lead to very complex equations which have to be derived
specifically for each physical system.

Instead, the condition number κ of the matrix [D1] is used as the singularity
measure. Using a singular value decomposition (SVD), the 3 ×N matrix [D1]
is decomposed as

[D1] = [U ][Σ][V ]T =



u1u2u3









σ1 0 0 0
0 σ2 0 · · · 0
0 0 σ3 0







v1 · · · vN





T

(7.208)

where [U ] is a 3 × 3, [Σ] is a 3 × N and [V ] is a N × N matrix. Assume
that the singular values have been arranged such that σ1 ≥ σ2 ≥ σ3. The
non-dimensional condition number κ is then defined as

κ =
σ1

σ3
(7.209)
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As the gimbal angles approaches a singular CMG configuration, the index κ
would grow very large since σ3 → 0. The theoretically best possible matrix
conditioning would be with σ1 = σ3 where κ = 1. The goal of the VSCMG
null motion would be to minimize the singularity index κ during a maneuver.
Let κ(t) be the singularity index at the current time and let κ(t+) be the index
after a discrete gimbal angle adjustment has been made. Using a Taylor series
expansion of κ in terms of the gimbal angles γi yields

κ(t+) = κ(t) +
∂κ

∂γ

T

∆γ (7.210)

Since ideally κ(t+) = 1, using a minimum norm inverse, the desired gimbal
angle correction is given by

∆γ = α
(1 − κ(t))

| ∂κ∂γ
|2

∂κ

∂γ
(7.211)

where the positive scalar α scales the gradient step. As will be shown with
numerical examples, Eq. (7.211) works well when the gimbal configuration is
to be rearranged while the spacecraft attitude is held stationary. However, if
Eq. (7.211) is used to drive the gimbal angles away from singular configurations
during a maneuver, then the VSCMG null motion corrections become too “soft”
as a singular configuration is rapidly approached. The |∂κ/∂γ|2 term in the
denominator drives ∆γ to zero as ∂κ/∂γ becomes very large in the neighborhood
of a singularity. To counter this softening effect, the following stiffer gimbal
correction algorithm is proposed.

∆γ = α(1 − κ(t))
∂κ

∂γ
(7.212)

Numerical studies show that the VSCMG null motion driven by this ∆γ during
a maneuver is more successful in keeping the gimbal angles away from singular
configurations.

If [D1] is reasonably well conditioned, it is not desirable to have the VSCMG
be active at this point and drive the gimbal angles to an even better conditioned
configuration. Doing so would only unnecessarily waste fuel and energy. To
stop the VSCMG null motion at some pre-determined singularity index κdb, a
deadband is introduced. Whenever κ ≤ κdb > 1, then we set α = 0.

Using Eq. (7.209), the partial derivatives of κ with respect to the gimbal
angles are found to be

∂κ

∂γi
=

1

σ3

∂σ1

∂γi
− σ1

σ3

∂σ3

∂γi
(7.213)

The partial derivatives of the singular values with respect to the gimbal angles
are given by8

∂σj
∂γi

= uTj
∂[D1]

∂γi
vj (7.214)
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The result in Eq. (7.214) may have to be modified if σ1 = σ3. However, this
event will never be encountered if κdb > 1 is adopted. Using Eq. (7.183b), the
partial derivative of [D1] with respect to γi is readily found to be

∂[D1]

∂γi
= [0 · · ·0 χi 0 · · ·0] (7.215)

where the i-th column vector χi is defined to be

χi =
∂ĝti
∂γi

Jsi
(Ωi + ωsi

) + ĝtiJsi

(

Ωi +
∂ĝsi

∂γi

T

ω

)

(7.216)

Since the partial derivatives of the gimbal frame axes are given by

∂ĝsi

∂γi
= ĝti (7.217a)

∂ĝti
∂γi

= −ĝsi
(7.217b)

the vector χi is expressed compactly as

χi = −ĝsi
Jsi

(Ωi + ωsi
) + ĝtiJsi

(Ωi + ωti) (7.218)

Substituting Eqs. (7.215) and (7.218) into Eq. (7.214) and carrying out the
vector algebra, the partial derivatives of the singular values with respect to the
gimbal angles are given by

∂σj
∂γi

=
(
uTj χi

)
[Vij ] (7.219)

Note that these singular value sensitivities can be computed very quickly given
the vectors ui and vi obtained from a numerical SVD of the local matrix [D1].
Therefore the ∆γ vector can be easily computed and fed to the VSCMG null
motion in Eq. (7.207). As the following numerical simulation shows, the end
result is convenient method to drive the gimbal angles away from singular neigh-
borhood and maintain a well-conditioned control influence matrix [D1].

Example 7.16: The following numerical simulation illustrates both the use
of the VSCMG steering law in Eq. (7.192) to produce the required torque
even in singular CMG configurations, and the use of the VSCMG null motion
steering law to drive the gimbal angles continuously away from singular CMG
configurations. The simpler VSCMG null motion in Eq. (7.206) is used here
which weighs the RW and CMG modes equally. A rigid spacecraft is reoriented
from large initial displacements to coincide with the target attitude through
the use of four VSCMGs. The VSCMGs are arranged in the standard CMG
pyramid configuration shown in Figure 7.12. The spacecraft and VSCMG
properties are given in Table 7.6.

Two simulations are performed. One simulation uses only the VSCMG steer-
ing law in Eq. (7.192). The second simulation superimposes onto this steering
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Table 7.6: Spacecraft and VSCMG Properties

Parameter Value Units
Is1 15053 kg-m2/sec
Is2 6510 kg-m2/sec
Is3 11122 kg-m2/sec
N 4
θ 54.75 degrees
Js 0.70 kg-m2

Jt 0.35 kg-m2

Jg 0.35 kg-m2

σ(t0) [0.4 0.3 − 0.3]
ω(t0) [0.0 0.0 0.0] rad/sec
γ(t0) [45 − 45 45 − 45] deg
γ̇(t0) [0 0 0 0] rad
Ωi(t0) 628 rad/sec

Ωf 628 rad/sec
[P ] [725 477 623] kg-m2/sec
K 35 kg-m2/sec2

Kγ̇ 1.0 sec−1

W 0
si

40
Wgi

1.0
µ 100
κdb 3

law the VSCMG null motion given Eq. (7.206) with the stiff gradient multi-
plier in Eq. (7.212) to continuously reconfigure the gimbal angles away from
singular configurations. The vector Ωf is chosen to be the same as the initial
Ω(t0) vector, which results in the null motion trying to keep the RW spin
speeds as close to their original values as possible. The values of the diag-
onal angular velocity feedback gain matrix [P ] were chosen such that each
mode of the linearized closed loop dynamics is critically damped.12, 27 The
null motion weights Ŵsi

and Ŵgi
are set equal in this simulation. Setting

Ŵsi
equal to zero would have yielded a pure CMG null motion. This is typi-

cally the preferred setting. By having Ŵsi
= Ŵgi

in this simulation, the null
motion utilizes the RW mode very little. However, setting Ŵsi

equal to zero
would restrict the types of null motion (therefore what types of gimbal angle
reconfigurations) are possible.12, 27

The resulting numerical simulations are illustrated in Figure 7.14. Results
obtained from the simulation that only utilized the steering law in Eq. (7.192)
are indicated by a dashed line, results obtained from the simulation with
VSCMG null motion added are indicated with a solid line. Figures 7.14(i)
and 7.14(ii) are valid for both simulations and show that the closed loop
dynamics is indeed asymptotically stable for both simulations.

Figures 7.14(iii) and 7.14(iv) shows the singularity indices κ and δ for both
simulations. Without the singularity-avoiding null motion added, the gimbal
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Null Motion
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angles approach a singularity twice. During the second approach the non-
dimensional determinant δ actually reaches zero and remains zero for a finite
duration. Therefore it would be impossible to precisely perform this maneuver
with the conventional CMG steering law. Some modifications would have to
be used to produce and approximate required torque in the neighborhood
of this singular configuration. However, the VSCMG steering law is easily
able to handle this singularity by temporarily using its RW modes. During
both periods where δ → 0, the condition number κ grows very large as seen
in Figure 7.14(iii). If the same maneuver is performed with the singularity
avoiding VSCMG null motion added, the condition number κ is reduced from
the outset and remains relatively low throughout the maneuver. Note that this
index could have been reduced even more, but it remains essentially around
the given condition number deadband value of 3. The trade off of lowering
this deadband value is that the VSCMG null motion ends up reconfiguring
the gimbals more often (i.e. using more energy).

One drawback of the VSCMG steering law as proposed in Ref. 27 is that for
it to be able to drive through singular configurations, a relatively change in Ω

(i.e. large RW motor torque) is required. For this maneuver the associated Ω

changes are illustrated in Figure 7.14(v). Note that the time scale in this and
some other Figures is changed to better illustrate the “interesting” regions.
Using the VSCMG null motion to reconfigure the CMG cluster to preferred
gimbal angles as was done in Example 7.15, it was found that the associated
RW Ω changes were rather small. The same is observed here where the null
motion is performed during the maneuver itself as seen in Figure 7.14(vi).

The equivalent RW motor torque vector magnitudes |us| are plotted in Fig-
ure 7.14(vii). Note that classical CMGs already have an active RW control
motor that simply maintains a constant wheel speed. The additional effort
required by the VSCMG null motion is visible as small “humps” of the solid
like at the beginning of the maneuver and before 100 seconds. What is very
encouraging is that the magnitude of these humps is very small and still easily
feasible with the standard existing RW torque motors. Conversely, the stan-
dard VSCMG steering law requires periodically RW torques that are much
larger and would require some reengineering of the RW control motors.

The associated gimbal rates for both simulations are shown in Figure 7.14(viii).
While the added VSCMG null motion does require periodically higher gimbal
rates to reconfigure the gimbals, the overall control effort for the CMG mode
is about the same. Again, the biggest difference in control effort between
adding the VSCMG null motion or not to the VSCMG steering law manifests
itself in the required RW control effort.

Problems

7.1 Given Euler’s rotational equation of motion in Eq. (4.32) and (4.33).

a) Linearize them about ω(t) = 0.

b) Linearize them about ω(t) = ωr(t).
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7.2 Examine the following functions V (x) where x = (x1, x2)
T . Find if they are pos-

itive (negative) definite or semi-definite functions. Also state the neighborhood
Bδ(xr) about which this holds.

a) V (x) = 1
2

(
x2

1 + x2
2

)

b) V (x) = 1
2

(
x2

1 − x2
2

)

c) V (x) = log
(
1 + x2

1 + x2
2

)

d) V (x) = 1
2

(
x2

1 + 4x2
2

)

e) V (x) =
(
x2

1 + 4x2
2

)
e−(x2

1
+4x2

2)

f) V (x) = x2
1 − 2x1 + x2

2 − 4x2 + 5

7.3 Verify Eqs. (7.68) starting from the Lyapunov function definition in Eq. (7.67).

7.4 ♣ Several more HW problems and projects will be added to this chapter.
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Chapter Eight

Classical Two-Body
Problem

Amongst the most important historical development in the history of the sci-
entific method is Newton’s analytical solution of the two-body problem. In
Astronomia Nova (1609), Kepler published the first essentially correct solution
for the motion of planets around the Sun, where the solution was obtained by
solving the inverse problem of ”given the observed (measured) right ascension
and declination history of a planet, determine a mathematical model which
captures the behavior with sufficient rigor that predictions as accurate as the
measurements can be made.” Kepler was seeking to modify the historical work
of Copernicus who modeled the planet paths as circular orbits about the Sun.
Kepler was intrigued by Tycho Brahe’s observations of the orbit of Mars which
appeared to deviate significantly from the Copernican circular model, and in
the course of developing a model which fit the data for Mars and all the other
more circular planetary orbits, he conjectured that the motion was actually an
ellipse with the Sun at a focus. Kepler’s elegant geometric analysis amounted
to an insightful, sophisticated curve-fitting operation, but was found to be in
such excellent agreement with the measurements of the day, that his laws of
planetary motion were considered exact.

Newton, in his quest to develop calculus, differential equations, and his fa-
mous laws of motion, was fascinated by the beauty and precision of Kepler’s laws
and set about the task of discovering what force law must be existing between
bodies in the solar system to be consistent with Newton’s laws of motion and
Kepler’s experimentally verified laws of planetary motion. From this analysis
came Newton’s discovery of the law of universal gravitation, and the ensuing
analytical solution of the two-body problem. Because Newton’s analytical so-
lution for Keplerian motion was an immediate and convincing demonstration
of the validity of Newton’s calculus, differential equations, and laws of motion,
the acceptance of Newton’s many allied advancements were immediate. The
acceleration of the evolution of science and mathematics and the consequences

285
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since are simply immeasurable.
This chapter is essentially a modern rendition of Newton’s analytical solu-

tion of the two-body problem, however, we make extensive use of matrices and
other modern mathematical constructions not available to Newton. Because the
subject relies heavily on geometry of conic sections, we will begin with a brief
summary of this subject.

8.1 Geometry of Conic Sections

Kepler discovered that the orbit of one body about another is an ellipse, which
is a special case of the intersection curve between a cone and a plane. More
generally, we will see how Newton proved all of the conic sections are feasible
orbits. Depending on the slope of the plane relative to the cone’s axis of sym-
metry, the resulting curves of these conic intersections are either of an elliptical,
parabolic or hyperbolic nature as illustrated in Figure 8.1. If the relative slope
of the plane is less than that of the cone symmetry axis, then the resulting inter-
sections form a closed, elliptic curve. An open (infinite ellipse) parabolic curve
is the result of the limiting case where both plane and cone symmetry axis slope
are equal. The hyperbolic curve occurs for plane slopes larger than the relative
cone symmetry axis slope. Mastering the basic geometry of conic sections is
of fundamental importance to understanding orbital mechanics. This section
provides a terse review of some of the more important aspect of the geometry
of elliptic, parabolic and hyperbolic orbits.

Elliptic Intersection Hyperbolic IntersectionParabolic Intersection

Figure 8.1: Illustration of Conic Intersections

A sample elliptical orbit is illustrated in Figure 8.2. The shape of an ellipse
is defined through its semi-major axis a and semi-minor axis b where a ≥ b. Let
(X,Y ) be the coordinates of a body performing an elliptical motion with the
coordinate system origin chosen to be in the center of the ellipse. The standard
rectangular coordinate description of an ellipse is given by

X2

a2
+
Y 2

b2
= 1 (8.1)
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Figure 8.2: Geometry of an Elliptic Conic Section

Similarly, the rectangular coordinate description of a hyperbola is given by

X2

a2
− Y 2

b2
= 1 (8.2)

Instead of describing a location on the ellipse relative to the ellipse geometric
center, this section develops a description which defines the conic section relative
to a focal point.

Every ellipse has two focal points F1 and F2. For the special situation where
the ellipse collapses to the circular case (i.e. a = b), the two focal points occupy
the same point; this clearly corresponds to a planar section normal to the cone
symmetry axis if Figure 8.1. A well known useful property of an ellipse is that
the sum of the two radial distances from any point on the ellipse to each focal
point is constant and equal to 2a.

An important parameter that describes the shape of conic intersections is the
non-dimensional constant e called the eccentricity. It indicates whether the conic
intersection is elliptic, parabolic or hyperbolic. For ellipses the eccentricities
range between 0 ≤ e ≤ 1. Parabolas always have e = 1 and hyperbolas always
have eccentricities great than 1.

With reference to Figure 8.2, we introduce the “directrix definition of a
conic section.” Begin with constructing two perpendicular lines. On the first
line locate a point F . Designate the first line as major axis and the second
perpendicular line as the directrix. The conic section is defined as the curve
whose radial distance r from F to a typical point P on the curve has a constant
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Table 8.1: Naming Convention of Periapses and Apoapses for Orbits
about Various Celestial Bodies

Celestial Body Periapses Apoapses

Sun Perihelion Apohelion
Mercury
Venus
Earth Perigee Apogee
Moon Periselenium Aposelenium
Mars

Jupiter Perijove Apojove
Saturn
Uranus
Neptune
Pluto

ratio c to the perpendicular distance from P to the directrix. While the directrix
itself typically doesn’t appear in the description of orbital motion, it plays a key
role below in deriving several important conic intersection properties.

First, we derive another mathematical description of a conic section. While
Eq. (8.1) and (8.2) each were only valid for one type of orbit, we now develop a
description valid for any type of orbit. Let the vector r point from the focus F
to the current orbit position with r being its magnitude. The distance p is the
perpendicular distance (to the major axis) between the focus and the orbit and
is called the semilatus rectum or simply the parameter.1 The angle f measures
the heading of the position vector r relative to the semi-major axis and is called
the true anomaly. The cartesian r vector components (x, y) are expressed as

x = r cos f (8.3)

y = r sin f (8.4)

Using the property of the directrix, we can see from the geometry of Fig. 8.2
that the following statement must be true.

p

e
= x+

r

e
(8.5)

Using Eq. (8.3), this statement is rewritten to express the radial distance r in
terms of the true anomaly f .

r =
p

1 + e cos f
(8.6)

Note that Eq. (8.3) not only holds for the elliptical case, but also describes
parabolic and hyperbolic trajectories. Thus it forms a universal description of
conic intersections.

The closest point on the ellipse to the focus is called periapses or perifocus,
while the furthest point is called apoapses or apofocus. When orbiting about
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certain celestial bodies, these terms are refined to reflect the fact that the orbit
is about a particular body. For example, for an orbit about Earth the closed
and farthest points are called perigee and apogee. Other naming conventions are
found in Table 8.1. Note the closest point to the focus F occurs at f = 0, this
gives the perifocus radius

rp =
p

1 + e
(8.7)

For the case of closed orbits, investigate the point at f = π, this give the
apofocus radius

ra =
p

1 − e
(8.8)

It is clear that

2a = ra + rp =
p

1 − e
+

p

1 + e

from which

2a = p

(
1 + e+ 1 − e

1 − e2

)

or

p = a(1 − e2) (8.9)

So we now see that

rp = a(1 − e) (8.10)

ra = a(1 + e) (8.11)

Further, since (from Fig. 8.2) a = OF + rp, then OF = a − rp = ae is the
distance from the ellipse center O to the focus F .

The semi-minor axis b can be expressed in terms of a and e as

b = a
√

1 − e2 (8.12)

Therefore, if e → 0, then the orbit becomes circular and b = a. Having
e → 1 could indicate either one of two situations. The first case is that the
conic section is becoming parabolic, in which case both a and b would grow
infinitely large. However, it is also possible for e to approach 1 without the
orbit becoming an open-pathed parabola. As Eq. (8.12) indicates, if the semi-
minor axis b shrinks to zero for a fixed and finite semi-major axis a, then the
corresponding eccentricity e would have to approach 1. At the limit where e = 1,
the elliptic motion collapses down to a cyclic motion on a finite line segment.
This case is referred to as the rectilinear motion case. Examples of orbits where
e→ 1 without the flight path becoming parabolic are comets that typically are
on a “skinny”, near-parabolic orbit about the sun. As will be shown later on in
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this chapter, the deciding factor whether an object is on an elliptic, parabolic
or hyperbolic orbit is the object’s energy.

For the rectilinear motion case where e = 1 and a is finite, the corresponding
rp is obviously zero. From this it is evident that a completely rectilinear orbit is
not possible in reality. The celestial body about which the object is orbiting in
this manner would have to have an infinitesimally small diameter. However, true
rectilinear fractional-orbits are possible. To illustrate, throw a rock straight up
in the air on a non-rotating earth. The resulting flight path before the objects
impacts with the ground (or yourself if you do not step aside) is a true rectilinear
ellipse. Using Eq. (8.10), the semi-minor axis b in Eq. (8.12) can be written in
terms of rp and e.

b = rp

√

1 + e

1 − e
(8.13)

While the true anomaly f has a convenient direct geometric interpretation, it
is not always mathematically convenient to express the current location through
this angle. Instead, the eccentric anomaly E is often used. Imagine the ellipse
being “stretched” along the semi-minor axis into the shape of a perfect reference
circle. The angular position of the new orbit location relative to the ellipse center
is the true anomaly E as shown in Figure 8.2. The following developments
express various elliptic elements in terms on this eccentric anomaly E. While
Eqs.(8.3), (8.4) and (8.6) are universally valid, the following expressions using
the eccentric anomaly E are only valid for the elliptic special case. To write the
radial distance r in terms of E instead of using the universally valid f , we use
the directrix property to state that

ae+
p

e
= a cosE +

r

e
(8.14)

Substituting Eq. (8.9), the radial distance r is expressed as

r = a(1 − e cosE) (8.15)

Studying Figure 8.2, the semi-major axis component x is written as

x = a(cosE − e) (8.16)

The semi-minor axis component y is found by making use of y =
√
r2 − x2 and

performing some trigonometric simplifications.

y = a
√

1 − e2 sinE (8.17)

Finding a direct relationship between the true anomaly f and the eccentric
anomaly E is less straight forward than the previous developments. In particu-
lar, it involves using half angle trigonometric identities whose use is initially not
very intuitive. Using Eqs. (8.16) and (8.17), the sin and cos of f are written as

sin f = 2 cos
f

2
sin

f

2
=
y

r
=

√
1 − e2 sinE

1 − e cosE
(8.18)

cos f = cos2
f

2
− sin2 f

2
=
x

r
=

cosE − e

1 − e cosE
(8.19)
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where the first transformation was performed using standard half angle trigono-
metric identities. Making use of sin2 f

2 = 1 − cos2 f
2 , Eq. (8.19) is rewritten

as

2 cos2
f

2
=

(1 − e)(1 + cosE)

1 − e cosE
(8.20)

After dividing Eq. (8.18) by Eq. (8.20) and performing some simplifications, we
find that

tan
f

2
=

√

1 + e

1 − e

sinE

1 + cosE
(8.21)

The right hand side of Eq. (8.21) can be further simplified by again making use of
the previous half angle trigonometric identities. The final result is a remarkably
simple transformation between the true anomaly f and the eccentric anomaly
E.

tan
f

2
=

√

1 + e

1 − e
tan

E

2
(8.22)

Note that quadrants are not an issue in the above anomaly transformation. With
this mapping we will be able to exploit the simpler mathematical expressions in
terms of E and then translate this angle into the geometrically more meaningful
angle f for visualization purposes.

rp rp

p pr

xirtcerid

F1

Figure 8.3: Geometry of a Parabolic Orbit

As the eccentricity e approaches 1 and the semi-major axis a grows to infinity,
the orbit no longer remains a closed path. At the critical transition, the conic
intersection shape is that of a parabola with the second focus point F2 having
moved off to infinity. Figure 8.3 illustrates such a parabolic orbit. Since e = 1,
note that the distance from any point on the parabola to the focus F1 is the
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same as to the directrix. Since the distance rp is finite, Eq. (8.13) indicates
that the semi-minor axis b is infinitely large. Eq. (8.7) shows that the semilatus
rectum for a parabola is simply

p = 2rp (8.23)

However, actual orbits are rarely parabolic since the eccentricity must be
precisely equal to 1. Theoretical analysis therefore typically focuses on the
more common cases of having either elliptical or hyperbolic orbits.

Figure 8.4 illustrates the geometry of a hyperbola. While a parabola has
moved the second focus F2 off to infinity, with hyperbolas this focus reappears
on the other side of F1. A common practice in celestial mechanics is to denote

F2F1

a

b

( )=e 2

f H φ

ea

xirtcerid

alobrepyhecnerefer xirtcerid

X

Y
HaX −= cosh

HaY = sinh

r

−ae −a

−b

X =

Y = −b sinh H

φ

Figure 8.4: Geometry of a Hyperbolic Orbit

the semi-axes a and b as being negative quantities for a hyperbola. This results
in many expressions for hyperbolic parameters being algebraically equivalent to
their elliptic cousins. Also, this convention will allow us to express the orbit
energy equation in one algebraic form that pertains to all three possible conic
section cases. The distance between foci is −2ae > 0, similar as with an ellipse.
However, the semi-axes a and b now have different geometric meanings. The
distance between the two hyperbola periapses is −2a. Apoapses points don’t
make sense in this setting since the curve isn’t closed. A hyperbolic curve will
asymptotically approach a straight line motion as the true anomaly f grows
sufficiently large. Unlike with ellipses and parabolas, the hyperbola is essentially
only curved in the proximity of its focus. Let’s assume a cartesian coordinate
system is aligned with the semi-axes and has its center between the two foci.
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The slope φ that the hyperbola will asymptotically approach is given by

φ = cos−1 1

e
(8.24)

The box of dimension (−2b) × (−2a) between the two perigee points has a
diagonal of length −2ae. Therefore, the semi-minor axis b for a hyperbola can
be expressed as

b = a
√

e2 − 1 (8.25)

Substituting Eq. (8.24), the parameters a and b can be related through the slope
angle φ as

b2 = a2 tan2 φ (8.26)

From the geometry of Figure 8.4, it is evident that

rp = (−a)(e− 1) = a(1 − e) (8.27)

Note that this expression is algebraically equivalent to the elliptic rp expression
in Eq. (8.10). Using Eqs. (8.6) and (8.27) and setting f = 0, the semilatus
rectum p for a hyperbola is given by

p = (−a)(e2 − 1) = a(1 − e2) (8.28)

or alternatively through

p = rp(1 + e) (8.29)

As is the case with elliptic orbits, it is convenient to express the location
within the orbit through another anomaly angle. For hyperbolas the hyper-
bolic anomaly H is used. In this case the reference hyperbola is created using
an eccentricity of e =

√
2 which corresponds to having an asymptotic slope

of 45 degrees. Following
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After following the same steps as were done in developing the relationship be-
tween f and E, the hyperbolic anomaly H is related to the true anomaly f
through

tan
f

2
=

√

e+ 1

e− 1
tanh

H

2
(8.36)

8.2 Relative Two-Body Equations of Motion

In celestial mechanics, bodies are often treated as particles with their rigid body
motion neglected. The reason for this naturally being the typical spherical shape
of massive heavenly bodies and the large relative distances involved. Also, we’ll
see mass elements of finite bodies can be considered particles and integration
over the mass distribution gives various derived results for finite bodies. As-
sume two particles of mass m1 and m2 are moving generally in space. The only
forces acting on them is the mutual gravitational attraction and some distur-
bance forces fd1 and fd2 as illustrated in Figure 8.5. The magnitude of the
gravitational attraction is given by Newton’s Law of Universal Gravitation in
Eq. (2.4). The position vectors R1 and R2 are measured relative to an inertial
reference frame N .

m1
m2

r

f d1
f d2

r
mmG

2
21

N

R1
R2

Figure 8.5: Gravity and Disturbance Forces Between Two Bodies

The disturbance forces fdi
could be present for various reasons. In a Low

Earth Orbit (LEO) the aerodynamic drag of the rarified atmosphere could affect
the motion. Considering the Earth and its moon to be a two particle system,
then both would experience another gravitational attraction with the sun which
could be expressed as a disturbance force on the two-body Earth-Moon system.
In the present discussion the inertial motion of each mass is of lesser importance.
Instead, we would like to focus on the relative motion between the two bodies.
The position of mass m2 relative to mass m1 is given through the vector

r = R2 − R1 = rı̂r (8.37)
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where r = |r| and ı̂r = r/r. Using Newton’s equations of motion in Eq. (2.2),
the inertial equations of motion for each body are written as

m1R̈1 =
Gm1m2

r3
r + fd1 (8.38)

m2R̈2 = −Gm1m2

r3
r + fd2 (8.39)

where G is the universal gravity constant. The gravitational coe�cient µ is
defined as

µ = G(m1 +m2) (8.40)

Note that for many systems m1 � m2 and µ can therefore be approximated as

µ ≈ Gm1 (8.41)

An example of this situation would be a satellite in Earth’s orbit. The mass
m2 of the satellite would be negligible compared to the massive Earth. The
practical reason for choosing to work with µ instead of G is that µ is more
accurately understood for various systems than is the universal gravitational
constant G. The product Gm1 can be extracted from LEO satellite tracking
data with a relatively high degree of accuracy. However, measuring G directly
is much more challenging. More on this later. Taking the difference between
Eq. (8.39) and (8.38), the equations of motion of m2 relative to m1 are found
to be2

r̈ = − µ

r3
r + ad (8.42)

where the disturbance acceleration vector ad is defined as

ad =
1

m2
fd2 −

1

m1
fd1 (8.43)

This vector differential equation in Eq. (8.42) is easily the most important re-
sult in celestial mechanics. It forms the basis for various developments. Note
that the two disturbance accelerations in Eq. (8.43) are often a near cancella-
tion. Again we consider the Earth-Moon system with the sun’s gravitational
attraction modeled as the external influence. Labeling the sun’s mass as m3,
we express the disturbance acceleration ad as

ad =
1

m2

Gm2m3

|r23|3
r23 −

1

m1

Gm1m3

|r13|3
r13 ≈ 0 (8.44)

since r23 ≈ r13. Thus, even though the sun’s gravitational force itself is very
large, it effect on the relative two-body motion is often negligible. Therefore the
relative disturbance acceleration vector ad is typically considered to be small or
actually set equal to zero to obtain a good approximate solution. In this case,
the relative equations of motion are written as

r̈ = − µ

r3
r (8.45)
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By defining the relative gravitational potential energy function V as

V (r) = −µ
r

(8.46)

the relative equations of motion can also be written using the ∇r operator as

r̈ = −∇rV (r) (8.47)

If the relative position vector r is expressed through the cartesian vector com-
ponents (x, y, z), then the relative equations of motion are given by

ẍ = − µ

r3
x (8.48)

ÿ = − µ

r3
y (8.49)

z̈ = − µ

r3
z (8.50)

which form a set of three coupled , nonlinear, scalar differential equations. The
differential equations only decouple for the special cases of having a circular
orbit where the radius r remains constant, or having a straight line orbit (y =
z = 0 ⇒ ẍ = − µ

x2 ).

8.3 Fundamental Integrals

Even though the relative equations of motion in Eq. (8.42) are nonlinear differ-
ential equation, it is remarkable that an exact analytical solution to them exists.
This section will show several manipulations which each lead to perfect differ-
entials. Integrating these differentials then leads to the fundamental integrals of
an orbit. In the absence of disturbances, these parameters remain constant and
provide an important, geometrically elegant way to describe an orbit. Further,
from these fundamental integrals we are also able to verify analytically Kepler’s
three laws of planetary motion.

8.3.1 Conservation of Angular Momentum

In this section we study a variation of the standard angular momentum vector.
The massless angular momentum vector h is defined as

h = r × ṙ = hı̂h (8.51)

A rotating coordinate system M is placed on the massm1 with the unit direction
vectors {ı̂r, ı̂θ, ı̂h} as shown in Figure 8.6. To see what type of relative motion is
possible with Eq. (8.42), we differentiate the massless angular momentum vector
h. Using the chain rule and the relative equations of motion in Eq. (8.42), the
vector ḣ is written as

ḣ = ṙ × ṙ + r × r̈ = r ×
(

− µ

r3
r + ad

)

= r × ad (8.52)
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ṙ

rθ̇

ṙ

Figure 8.6: Planar Orbit Motion

Note that for the case where ad ≈ 0, the angular momentum vector h remains
inertially fixed since ḣ = 0. This fundamental result is important since it states
that all possible relative motions will lie in an inertially fixed plane perpendic-
ular to ı̂h. Since all relative motion will occur in a plane, we introduce polar
coordinates for the radial and transverse components of r and ṙ in this orbit
plane. The velocity vector ṙ is then given by

ṙ = ṙı̂r + rθ̇ı̂θ (8.53)

where θ̇ is the planar rotation rate of the position vector. Using Eqs. (8.37) and
(8.53), the angular momentum vector h is written as

h = r × ṙ = (rı̂r) × (ṙı̂r + rθ̇ı̂θ) = r2θ̇ı̂h (8.54)

Comparing this result with Eq. (8.51) we find

h = r2θ̇ (8.55)

Since h is constant, we find Kepler’s second law of planetary motion which
states that the relative position vector r sweeps equal areas in equal equal
times. Thus Kepler’s second law is a geometric property of the conservation of
angular momentum.

8.3.2 The Eccentricity Vector Integral

The following development will introduce the notion of eccentricity into the
relative equations of motion. Also, it will be apparent that all relative motions
between two bodies indeed either describe elliptic, parabolic or hyperbolic paths.
Since the angular momentum h is perpendicular to both r and ṙ, the vector
ṙ × h lies in the orbit plane. Assuming ad = 0, then ḣ = 0 and

d

dt
(ṙ × h) = r̈ × h (8.56)

After substituting Eqs. (8.45) and (8.51), the derivative of ṙ × h is written as

d

dt
(ṙ × h) = − µ

r3
r × (r × ṙ) (8.57)
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Making use of the trigonometric identity

a × (b × c) ≡ (a · c)b − (a · b)c (8.58)

and substituting the polar coordinate expressions in Eqs. (8.37) and (8.53), this
derivative is rewritten as

d

dt
(ṙ × h) =

µ

r2
(rṙ − ṙr) (8.59)

The key step in this development is being able to rewrite Eq. (8.59) in the form
of a perfect differential:

d

dt
(ṙ × h) = µ

d

dt

(r

r

)

(8.60)

This allows us to trivially integrate this expression by introducing the constant
vector c. The relative motion between two bodies must therefore satisfy the
following constraint.

c = ṙ × h − µ
(r

r

)

= constant (8.61)

To gain further insight into the geometric meaning of the constant c vector, we
perform the dot product between it and the position vector r to find

r · c = r ·
(

ṙ × h − µ
(r

r

))

= h2 − µr (8.62)

where the trigonometric identity a · (b × c) ≡ c · (a× b) was used. Making use
of the dot product definition

r · c = r|c| cos( 6 r, c) (8.63)

the scalar orbit radius r is expressed as

r =
h2/µ

1 + |c|
µ cos( 6 r, c)

(8.64)

with the expression ( 6 r, c) being the angle between the two vectors r and c.
Studying Eq. (8.6), it is evident that Eq. (8.64) geometrically describes a conic
intersection. Thus we have proven Kepler’s �rst law of planetary motion which
states that all relative motions between two bodies are either elliptic, parabolic
or hyperbolic in nature. Further, we can also express the semilatus rectum p in
terms of the angular momentum magnitude h as

h2 = µp (8.65)

The angle ( 6 r, c) is now exposed as being the true anomaly f . This implies
that the constant vector c is aligned with the semi-major axis and points toward
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Figure 8.7: (3-1-3) Euler Angle Description of the Orbit Plane

periapses, since f is measured from this axis. Comparing Eqs. (8.6) and (8.64),
we finally write the eccentricity vector c as

c = µeı̂e (8.66)

Given current position and velocity vectors of massm2 relative tom1, Eq. (8.61)
can be used to compute the periapses direction of the conic path.

The eccentricity and momentum unit direction vectors ı̂e and ı̂h respectively
are illustrated in Figure 8.7. The orientation of the orbit plane O : {ı̂e, ı̂p, ı̂h}
relative an inertial reference frame N : {ı̂x, ı̂y, ı̂z} is typically given in terms
of the (3-1-3) Euler angles Ω (longitude of the ascending node), i (inclination
angle) and ω (argument of the perihelion). If the orbit inclination i goes to
zero, then this orbit plane orientation description is non-unique. Figure 8.7 also
illustrates well the angle θ, which is defined as

θ = ω + f (8.67)

Therefore, if the orbit plane orientation is inertially fixed, then ω̇ = 0 and ḟ = θ̇.
Another useful reference frame is the one that tracks the position of the mass
m itself and is given by M : {ı̂r, ı̂θ, ı̂h}.

Example 8.1: The orbit period P can be found through a direct application
of Kepler’s second law. Separating variables in Eq. (8.55) we find

hdt = r2dθ

After integrating both sides of the above equation over one orbit, and rec-
ognizing that the right hand side computes the area A of an ellipse, we find
that

hP = A = 2πab
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Using Eqs. (8.12), (8.9) and (8.65), the orbit period P is then expressed in
terms of the semi-major axis a and the gravitational coefficient µ as

P = 2π

√

a3

µ
(8.68)

Eq. (8.68) verifies Kepler’s third law of planetary motion which states that
the term P/a3 is a constant.

8.3.3 Conservation of Energy

For a dynamical system containing two masses and gravity being the only force
present, it is clear that the sum of the system kinetic and potential energy will
remain constant (i.e. the system is conservative). We would like to investigate
whether a similar “conservation of energy principle” holds for the relative motion
description we have adopted. The following analysis is performed assuming
ad = 0. The inertial kinetic energy of m1 is

T1 =
1

2
m1ṙ1 · ṙ1 (8.69)

with the kinetic rate expressed as

Ṫ1 = m1r̈1 · ṙ1 (8.70)

This motivates us to examine the scalar energy rate like quantity r̈ · ṙ for the
relative motion description. The relative equations of motion in Eq. (8.47) can
be written as

r̈ = −∂V
∂r

= −∂V
∂r

∂r

∂r
= −∂V

∂r

1

r
r (8.71)

where the relative potential energy function V is defined in Eq. (8.46). Using
Eqs. (8.37) and (8.53), the quantity r̈ · ṙ is written as

r̈ · ṙ = −∂V
∂r

1

r
(rı̂r) · (ṙı̂r + rθ̇ı̂θ) = −∂V

∂r

1

r
ṙ (8.72)

Both sides of this equation are then written as the prefect differentials

d

dt

(
1

2
ṙ · ṙ

)

= −dV
dt

(8.73)

After integrating both sides we conclude that the total relative energy for Kep-
lerian motion is conserved.

1

2
ṙ · ṙ + V = constant (8.74)
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Introducing the scalar constant α/2, we obtain the famous energy integral:

1

2
ṙ · ṙ =

µ

r
+
α

2
(8.75)

The expression 1
2 ṙ · ṙ is defined to be the relative kinetic energy per unit mass

of m2 relative to m1. The expression µ/r represents a gravity potential like
function per unit mass. For the special case were m2 � m1, this expression is
related to the standard gravity potential function V (r) through

−µ
r

= −G(m1 +m2)

r
≈ −Gm1

r
=
V (r)

m2
(8.76)

The approximation made when we assume that m2 � m1 implies that the mass
m1 is inertially fixed. The motion of m2 about m1 causes negligible acceleration
of m1. To visualize such a situation, consider the space shuttle in Earth’s orbit.
While the shuttle motion will in theory perturb the Earth’s motion, for practical
purposes this effect can be neglected. However, if the we study the Earth-Moon
system, then m2 6� m1 and the approximation in Eq. (8.76) would not be valid.
Setting v2 = ṙ · ṙ, the energy integral of the relative motion is written in its
most popular form called the vis-viva equation.

v2 = µ

(
2

r
− α

)

(8.77)

In essence, this equation relates the instantaneous scalar position and velocity
of a body at any point on the orbit through the energy constant α. To express
α in terms of conic intersection parameters, we examine the orbit radius r and
velocity v at periapses. First, we develop α for the elliptic case. The periapses
radius rp is given in Eq. (8.10). The periapses velocity vp is found by making
use of Eqs. (8.10), (8.7) and (8.55).

v2
p = r2p θ̇

2
p =

r4p θ̇
4
p

r2p
=
h2

r2p
=
µa(1 − e2)

a2(1 − e)2
=
µ(1 + e)

a(1 − e)
(8.78)

Using Eq. (8.77), the energy constant α is expressed as

αelliptic =
2

r
− v2

µ
=

2

a(1 − e)
− 1 + e

a(1 − e)
=

(1 − e)

a(1 − e)
=

1

a
(8.79)

Therefore, for the elliptic case, the energy constant α is simply the inverse of
the semi-major axis a. Since a → ∞ for the parabolic case, the corresponding
energy constant α goes to zero.

αparabolic = 0 (8.80)

Example 8.2: The energy equations in Eq. (8.77) can be used to readily
compute various critical velocities. The minimum velocity necessary to escape
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Table 8.2: Approximate Astrometric Data for the Planets

Body Symbol Average Radius [km] µ [km3/sec2]

Sun
�

696 103 1.326 1011

Mercury � 2.43 103 2.208 104

Venus � 6.07 103 3.248 105

Earth � 6.37 103 3.986 105

Moon � 1.74 103 4.902 103

Mars � 3.40 103 4.282 104

Jupiter � 71.3 103 1.267 108

Saturn � 60.1 103 3.795 107

Uranus � 24.5 103 5.796 106

Neptune 	 25.1 103 6.870 106

Pluto 
 2.90 103 4.402 104

the gravitational pull of a celestial body is called the escape velocity, which
corresponds to the object being on a parabolic orbit.

Various astrometric data is given for our solar system in Table 8.2. Ignoring
the atmospheric drag, the critical escape velocity magnitude v for a body on
the Earth’s surface would be

v =

√
2µext �
r � = 11.06 km/sec

On the Moon, how fast would one have to propel an object horizontally
such that it would never hit the Moon? This would correspond to a circular
orbit just above the Moon surface (we are ignoring the lunar craters and
mountains here). For a circular orbit the semi-major axis a is equal to r � .
The corresponding velocity magnitude v is then given by

v =

√
µ �
r � = 1.68 km/sec

which corresponds to propelling an object at roughly 1 mile per second.

For the hyperbolic case, the energy constant is rewritten using the same steps
as with the elliptic case. Using Eqs. (8.27) and (8.28) along with Eq. (8.55), the
constant alpha is expressed for the hyperbolic case as

αhyperbolic =
1

a
(8.81)

Note that by adopting the convention that a < 0 for hyperbolic orbits, the
algebraic expression for α is the same for a hyperbola as it is for an ellipse. The
consequence of this sign convention is that we are able to write a universally
valid vis-viva equation in terms of a for the three conic section cases.

v2 = µ

(
2

r
− 1

a

)

(8.82)
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The various energy levels in Eq. (8.82) clearly illustrate if the orbit trajectories
of an object form a closed path or not. Note that the quantities v2 and a are
always positive quantities for the elliptic case. Therefore it is impossible for
the elliptic orbit radius r to go to infinity. As the energy level increases and a
grows to infinity, at the limiting parabolic case it is possible for the object to
fly infinitely far away. However, it will only barely be able to reach infinity and
have no remaining velocity when it gets there. An object on an hyperbolic orbit
(a < 0) is able to “fly to infinity and beyond” since as r grows infinitely large,
the object retains a positive escape velocity v2 = −µ/a.

Sometimes it is convenient to write the velocity vector v in terms of its radial
and tangential components vr = ṙ and vθ = rθ̇2 respectively. Using Eqs. (8.55)
and (8.65), vθ is written as

v2
θ =

µp

r2
(8.83)

Using the energy equation in Eq. (8.82), the corresponding radial velocity com-
ponents is given by

v2
r = v2 − v2

θ = µ

(
2r − p

r2
− 1

a

)

(8.84)

Example 8.3: We would like to study the ballistic missile problem of launching
an unpowered object and hitting a specific spot somewhere else on Earth.
For this, we revisit Example 2.2 where a mass is launched under a constant
gravity field. There, for a given initial velocity v0, there were typically two
corresponding initial firing angles that would match the target condition.
When there was only one possible initial angle γ0, then the minimum initial
velocity (energy) was being used.

γ 0

v0

r0

ϕS f

Figure 8.8: Ballistic Missile Trajectory

Similar results are found when a mass is subjected to an inverse-squared
gravity field such as is the case with sub-orbital flights. Figure 8.8 illustrates
one suborbital trajectory. Ignoring Earth’s rotation, we can assume Keplerian
motion. Clearly the initial missile velocity v0 would need to be less than
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the corresponding Earth’s escape velocity, otherwise the missile would never
return back to Earth. Since the missile mass is much less than Earth’s mass,
the resulting elliptic motion will have its focus at Earth’s center which can also
serve as an inertial origin. The desired range S is related to the semi-range
angle ϕ through3

ϕ =
1

2

S

R �
For the following analysis, it is easier to work with the semi-range angle ϕ
than with the true anomaly f . First we have to relate ϕ with the initial
launch states r0 and v0. We do this using the orbit elements a and e. Since
ϕ = π − f , we can use Eq. (8.6) and launch conditions to find

cosϕ = − cos f =
1

e

(

1 − p

R �
)

The initial position and velocity vector are written in O frame components as

r0 = R � ı̂r
v0 = v0 sin γ0 ı̂r + v0 cos γ0ı̂θ

Using h = r × v, we express the constant scalar angular momentum h as

h = R � v0 cos γ0

The semi-latus rectum is then found to be

p =
h2

µ
= R � v2

0

µ/R � cos2 γ0 = R � ν2
0 cos2 γ0

where ν0 is the initial velocity normalized by Earth’s circular orbit speed.
Having ν2

0 = 1 means the object has enough energy to be able to achieve a
circular orbit. Having ν2

0 ≥ 2 means the the object has exceeded the escape
velocity and is leaving Earth on either a parabolic or hyperbolic trajectory.
Using the energy equation at launch conditions and the definition for ν0, the
elliptic semi-major axis a is expressed as

a =
R �

2 − ν2
0

Finally, using Eq. (8.9), the eccentricity e is expressed in terms of initial launch
conditions as

e =
√

1 − ν2
0 (2 − ν2

0 ) cos2 γ0

Using these orbit elements we are able to express cosϕ as

cosϕ =
1 − ν2

0 cos2 γ0
√

1 − ν2
0 (2 − ν2

0 ) cos2 γ0

Using standard p
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Either of these expressions relate initial launch conditions γ0 and ν0 to the
desired semi-range angle ϕ. Note however that while ν2

0 ≥ 2 still math-
ematically provide corresponding semi-range angles, since escape velocity is
achieved, this situation corresponds to having the object fly through the Earth
as is illustrated in the dashed line in Figure 8.8. Having a clear flight path
is not enforced in these equations and must be checked separately. Combin-
ing the sin and cos expressions of ϕ, we are able to obtain a very compact
expression for the semi-range angle.4

tanϕ =
ν2
0 tan γ0

1 − ν2
0 + tan2 γ0

(8.85)

Assume that the initial velocity ν0 is fixed and we intend to maximize the
range ϕ. After taking the derivative of Eq. (8.85) with respect to γ0 and
setting it to zero, we find that the corresponding optimal initial launch angle
is given through

γ0opt = cos−1

(

±
√

1

2 − ν2
0

)

(8.86)

Note that Eq. (8.86) only provides real answers for 0 ≤ ν2
0 ≤ 1. The reason

for this is that once a circularizing orbit speed is achieved, any location on
Earth could be reached. Maximizing the range for velocities beyond this has
no meaning. For very small initial velocities we can assume that ν2

0 ≈ 0.
This simplifies Eq. (8.86) to the constant gravity field case and yields the
well-known optimal launch angles 45 and 135 degrees, depending on which
direction one is launching the projectile. As ν2

0 reaches 1 and the projectile
achieves Earth’s circularizing orbit speed, any point on Earth can be reached.
The optimal launch angles for this case are γ0 being either 0 or 180 degrees.
The corresponding maximum semi-range angle for a given ν2

0 is is found by
back substituting γ0opt into Eq. (8.85).

tanϕmax =
ν2
0

2
√

1 − ν2
0

(8.87)

For a given feasible ν0 and ϕ there are generally two possible initial launch
angles γ0. Solving Eq. (8.85) for γ0 we find

tan γ0 =
ν2
0 ±

√

ν4
0 − 4(1 − ν2

0 ) tan2 ϕ

2 tanϕ
(8.88)

Only one launch angle exists if the discriminant in Eq. (8.88) is zero. This con-
dition represents a minimum energy trajectory to achieve the desired range.
Setting the discriminant equal to zero we are able to retrieve Eq. (8.87).
Solving this equation for ν2

0 we find an expression for the minimum velocity
necessary to achieve a given ϕ.

ν2
0min

= 2 tan2 ϕ

(
1

| sinϕ| − 1

)

(8.89)

For given initial velocities ν2
0 and desired semi-range angles ϕ, Figure 8.9

illustrates the various corresponding initial launch angles γ0. As ν2
0 increases
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Figure 8.9: Comparison of Initial Velocities and Corresponding Launch
Angles for Various Ranges

up to an value of 1, the corresponding launch angles for maximum range
decrease from 45 degrees to zero degrees. For ν2

0 ≤ 1 there are always two
possible trajectories for a given velocity, a “high” and a “low” path. However,
once ν2

0 ≥ 1 the two possible trajectories each lie on opposite sides of the
Earth.

The total relative energy of a body is universally expressed from the vis-viva
equation in Eq. (8.82) as

v2

2
− µ

r
= −2µ

a
(8.90)

where −2µ/a is referred to as the total energy constant. Observe that elliptic
orbits with a > 0 have a negative total energy. Parabolic orbits have zero total
energy since a → ∞ and hyperbolic orbits with a < 0 have positive orbits. To
minimize the total energy of an elliptic orbit, the semi-major axis a would need
to made as small as possible.

8.4 Classical Solutions

The previous fundamental integrals are all used to describe the instantaneous
state of an orbit. What is lacking is a method to determine the location of an ob-
ject within the orbit itself at any instance of time. This section presents various
classical solutions to the problem of solving the nonlinear relative differential
equations of motion in Eq. (8.45).
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8.4.1 Kepler’s Equation

To determine the angular orbit position at any instance of time, we rewrite the
angular momentum expression into a form that can easily be integrated. First,
a frontal assault to this problem is presented that illustrates why using the true
anomaly f is not attractive for this task. For the case where no disturbance
acceleration ad is present, the orbit angular momentum magnitude h is constant
and ḟ = θ̇. Using Eq. (8.55) we find

h = r2θ̇ = r2ḟ (8.91)

which is rearranged into the form

hdt = r2df (8.92)

Substituting Eqs. (8.6) and (8.65) into the above expression, we find the differ-
ential equation

√
µ

p3
dt =

df

(1 + e cosf)2
(8.93)

which is integrated from the initial time t0 to another time t1.

√
µ

p2
(t1 − t0) =

∫ f1

f0

df

(1 + e cos f)2
(8.94)

The left hand side of Eq. (8.93) is easily be integrated. However, analytically
solving the right hand side involves finding a solution to a non-standard elliptic
integral; clearly not a very attractive proposition. By describing the angular
position within the orbit through the eccentric anomaly E instead of the true
anomaly f , we are able to replace the differential equation in Eq. (8.93) with an
equivalent expression which can then be easily integrated. Once again we start
with the massless angular momentum vector expression

h = r × ṙ (8.95)

which is inertially fixed for ad = 0. The position vector r and velocity vector ṙ

are written in O frame components as

r = xı̂e + yı̂p (8.96)

ṙ = ẋı̂e + ẏı̂p (8.97)

since the O frame unit vectors are inertially fixed. Substituting Eqs. (8.96) and
(8.97) into Eq. (8.95) yields

h = (xẏ − yẋ)ı̂h = hı̂h (8.98)

Substituting the x(E) and y(E) expressions in Eq. (8.16) and (8.17) along with
their derivatives into the h expression in Eq. (8.98), we find that

h = a2
√

1 − e2
(
cos2E + sin2E − e cosE

) dE

dt
(8.99)
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Using the standard trigonometric identity cos2E+sin2E = 1 and Eqs. (8.9) and
(8.65), we are now able to replace Eq. (8.93) with the more attractive differential
equation

√
µ

a3
dt = (1 − e cosE)dE (8.100)

This differential equation can be rewritten to provide a convenient expression
for Ė.

dE

dt
= Ė =

√
µ

a3

1

(1 − e cosE)
=

1

r

√
µ

a
(8.101)

Integrating Eq. (8.100) we obtain the famous Kepler’s equation.

√
µ

a3
(t1 − t0) = (E − e sinE)|E1

E0
(8.102)

Given some initial time t0, eccentric anomaly E0 and a current time t1, Kepler’s
equation is solved for the current eccentric anomaly E using a numerical method
such as Newton’s method. Setting E0 = 0 and E1 = 2π we are able to verify
the orbit period equation in Eq. (8.68). Let us introduce the mean anomaly M
as

M = M0 + n(t− t0) (8.103)

with 0 ≤M ≤ 2π and the mean angular motion n as

n =

√
µ

a3
=

2π

P
(8.104)

where P is the orbit period, then Kepler’s equation of Eq. (8.102) is written in
its classical form as

M = M0 + n(t1 − t0) = E − e sinE (8.105)

Clearly it is more convenient to use the eccentric or mean anomaly instead of
the true anomaly to describe a position within the orbit. Using Eq. (8.22) and
the eccentricity e, the eccentric anomaly E can always be translated back into
the true anomaly f if necessary.

Example 8.4: The following example illustrates how well Newton’s method
is suited to numerically solve Kepler’s equation for the eccentric anomaly E
that corresponds to a given mean anomaly M . Once a mean anomaly M is
computed using Eq. (8.105) for a given mean angular motion n and time t1,
we must solve the nonlinear equation

f(E) = M − (E − e sinE) = 0
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for the corresponding eccentric anomaly E. Given an initial guess Ê for the
true E, Newton’s method computes the step correction ∆E through

∆E = − f(Ê)

f ′(Ê)

where f ′(Ê) is given by

f ′(Ê) =
df

dE

∣
∣
∣
∣
Ê

= −(1 − e cos Ê) = −r(Ê)

a

Typically, setting the initial value of Ê equal to M provides a good starting
point for the numerical iteration and results in a fast convergence rate. The
reason for this is evident in Figure 8.10 which compares the mean versus
the eccentric anomaly for eccentricities ranging from e = 0 (circular case) to
e = 1 (parabolic case). For circular or near-circular orbits, assuming M ≈ E
is clearly a very good initial guess. However, even for the limiting parabolic
case do the eccentric anomalies remain relatively close to the mean anomalies.
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Figure 8.10: Mean Anomaly versus Eccentric Anomaly for Various Ec-
centricities

To demonstrate the good convergence characteristics of Newton’s method,
we numerically solve for the eccentric anomaly E corresponding to a mean
anomaly M of 1.5. The eccentricity e is set to 0.8, a rather large, near-
parabolic value. For near-circular cases with small values of e, Figure 8.10
already illustrates that M ≈ E.

Table 8.3 shows the convergence for each iteration step. Even though the
eccentricity e is rather large, after only three integration steps the eccentric
anomaly estimate Ê is already accurate up to 5 significant digits. After
just two more iteration steps, the estimate is sufficiently accurate for double
precision arithmetic.
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Table 8.3: Iteration Steps of Applying Newton’s Method to Numerically
Solve Kepler’s Equation

Iteration Step ∆E Ê

0 1.500000000000000
1 8.45863 10−1 2.345863185046372
2 -1.75896 10−1 2.169967661788265
3 -6.42592 10−3 2.163541744525667
4 -9.44057 10−6 2.163532303960638
5 -2.04353 10−11 2.163532303940202
6 -1.53462 10−16 2.163532303940202

To find Kepler’s equation for a hyperbolic orbit, we substitute the x and y
definitions in terms of the hyperbolic anomaly H in Eqs. (8.31) and (8.32) along
with their derivatives

ẋ = −a sinhHḢ (8.106)

ẏ = a
√

e2 − 1 coshHḢ (8.107)

into the angular momentum expression in Eq. (8.98). After making use of
Eqs. (8.28) and (8.65), the hyperbolic anomaly derivative is given by

dH

dt
=

n

e coshH − 1
=

1

r

√
µ

a
(8.108)

Kepler’s equation is then found after separating variables in Eq. (8.108) and
integrating both sides to be

n(t− t0) = (e sinhH −H)|H1

H0
= N(t1) −N(t0) (8.109)

where N = e sinhH − H is the hyperbolic equivalent of the elliptic mean
anomaly.

8.4.2 Orbit Elements

Given some initial conditions r(t0) and ṙ(t0) and a current time t1, the second
order relative differential equation of motion in Eq. (8.45) can be solved for any
current r(t1) and ṙ(t1) vectors. Note that the six scalar vector components
of the initial conditions are invariants of the solution, similar to the constant
fundamental integrals introduced in the previous section. These orbit constants
determine the size and shape of the orbit trajectory. The time t1 indicates where
an object is within the orbit.

This behavior is universally true. Any two-body orbit geometry can be
described through six scalar constants with the body position within the orbit
described through a time-like variable. Therefore, instead of having six degrees
of freedom in (8.45), there is really only one degree of freedom in a fixed orbit. By
choosing other system invariants than r(t0) and ṙ(t0), the differential equations
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of motion in Eq. (8.45) can be replaced with simpler expressions For example,
given the orbit semi-major axis a and eccentricity e, Kepler’s equation replaces
the second order relative differential equation of motion with a scalar (i.e. one
degree of freedom), algebraic relationship between the time t1 and the mean
anomaly M .

The six orbit invariants are called the orbit elements. Any six orbit constants
can be used for this purpose. A commonly used set of orbit elements are

{a, e, i,Ω, ω,M0} (8.110)

The first two invariants a and e determine the orbit size and shape. The follow-
ing three scalars Ω, i and ω are the (3-1-3) Euler angles which define the orbit
plane orientation. Finally, the mean anomaly M0 specifies where the object is
within the orbit trajectory at time t0. To translate r(t0) and ṙ(t0) into the orbit
elements in Eq. (8.110), the following steps are taken. The semi-major axis a is
found by first finding

r0 =
√

r(t0) · r(t0) (8.111)

v2
0 = ṙ(t0) · ṙ(t0) (8.112)

and then using the energy equation:

1

a
=

2

r0
− v2

0

µ
(8.113)

The eccentricity e is found by first computing the constant vector c

c = ṙ0 × h − µ
r0

r0
(8.114)

and then calculating

e =
|c|
µ

(8.115)

Let the direction cosine matrix [C] map inertial N frame vectors into orbit
frame O vectors. Using Eq. (3.5), the O frame unit vectors are found through

ı̂e = c/µe = C11ı̂x + C12 ı̂y + C13 ı̂z (8.116)

ı̂p = ı̂h × ı̂e = C21ı̂x + C22 ı̂y + C23 ı̂z (8.117)

ı̂h = h/h = C31ı̂x + C32 ı̂y + C33 ı̂z (8.118)

Given the direction cosine matrix elements, the corresponding (3-1-3) Euler
angles are found using Eq. (3.36).

Ω = tan−1

(
C31

−C32

)

(8.119)

i = cos−1(C33) (8.120)

ω = tan−1

(
C13

C23

)

(8.121)
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To find the initial mean anomaly M0, we define
√
µσ = r · ṙ, so the constant

σ0 is

σ0 ≡ r0 · ṙ0√
µ

=
r0ṙ0√
µ

(8.122)

Using Eqs. (8.15) and (8.101), σ0 can also be written as

σ0 =
√
ae sinE0 (8.123)

However, if Eq. (8.123) were solved directly for E0, then we would have to deal
with the quadrant issues of the sin−1 function. Instead, we use Eqs. (8.15) and
(8.101)to express the initial eccentric anomaly E0 in terms of σ0 and r0 through

E0 = tan−1

(
σ0/

√
a

1 − r0/a

)

− π ≤ E0 ≤ π (8.124)

By making use of the numerical function tan2(x, y), no quadrant problems arise
with this formula. The initial mean anomaly is then found through

M0 = E0 − e sinE0 (8.125)

The reverse process of this orbit element transformation is posed as an exercise
problem at the end of this chapter.

Example 8.5: The scalar parameter σ(t) is defined through

σ(t) =
r(t) · ṙ(t)√

µ
(8.126)

and provides a measure of orthogonality between the instantaneous position
and velocity vector. Note that σ(t) is zero at apoapses and periapses of
elliptic orbits and at any point of a circular orbit. The second derivative of σ
assumes a very familiar form. Differentiating σ we find

σ̇ =
ṙ · ṙ√
µ

+
r · r̈√
µ

After substituting Eqs. (8.45) and (8.113), the σ rate expression reduces to

σ̇ =
√
µ

(
v2

µ
− 1

r

)

=
√
µ

(
1

r
− 1

a

)

Differentiating σ̇ we find

σ̈ = −√
µ
ṙ

r2
= − µ

r3
rṙ√
µ

= − µ

r3
r · ṙ√
µ

which, after using Eq. (8.126), leads to the familiar algebraic expression

σ̈ = − µ

r3
σ (8.127)
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Therefore the scalar σ̈ differential equation has the same algebraic form as the
relative equations of motion in Eq. (8.45). Any scalar differential equation
of the algebraic form given in Eq. (8.127) automatically has a corresponding
invariant vector. The vector c2, defined through

c2 = σ̇r − σṙ

is inertially fixed since

ċ2 = σ̇ṙ + σ̈r − σ̇ṙ − σr̈ = 0

This fixed vector c2 can be found for any scalar parameter which satisfies
Eq. (8.127). To geometrically interpret this vector, we perform the dot prod-
uct of c2 with the position vector r.

r · c2 = r · (σ̇r − σṙ) =

(√
µ

(
v2

µ
− 1

r

)

r2 − (rṙ)2√
µ

)

Evaluating the expression r · (ṙ × h) it can be shown that

(rṙ)2 = v2r2 − h2

Using this identity and the fact that r ·c2 = r|c2| cos( 6 r, c2), the orbit radius
r is expressed as

r =
h2/µ

1 + |c2|√
µ

cos( 6 r, c2)

Comparing this expression to Eq. (8.6), it is evident that c2 must be given by

c2 = e
√
µ ı̂e

It is related to the eccentricity vector c in Eq. (8.66) in that it also points
towards periapses, but has a different vector magnitude.

Besides the set presented in Eq. (8.110), many other orbit element sets are
possible. For example, another feasible orbit element set could be given by

{h, e,Ω, i, ω, f} (8.128)

with the true anomaly f acting as the time-like parameter. The orbit shape
is determined through the parameters h and e. The orbit plane orientation is
again determined through the (3-1-3) Euler angle set {Ω, i, ω}. Note that there
is no sixth parameter explicitly specifying the initial position within the orbit.
Since f forms in essence our time variable, implicitly when f = 0 then we have
M0 = E0 = 0. Let the frame M = {ı̂r, ı̂θ, ı̂h} have its first direction unit vector
ı̂r track the position of the body m as shown in Figure 8.7. The relative position
vector r is expressed in M frame components as

r =

M



r
0
0



 (8.129)
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The orientation of the M frame relative to the inertial N frame is given through
the (3-1-3) Euler angle set {Ω, i, θ} with θ = ω + f . Using the (3-1-3) Euler
angle parameterization of the direction cosine matrix in Eq. (3.35), the inertial
vector components of the position vector r are given by

r = r

N



cosΩ cos θ − sinΩ sin θ cos i
sin Ω cos θ + cosΩ sin θ cos i

sin θ sin i



 (8.130)

Therefore, given the five constant orbit elements in Eq. (8.128) and a true
anomaly f , Eq. (8.130) provides the current inertial position vector components
directly without having to perform any numerical iterations. Kepler’s equa-
tion is used later to correlate the current f with a corresponding time. Using
Eqs. (8.6) and (8.65), the derivative of Eq. (8.130) is written in the relatively
simple form

ṙ = −µ
h

N



cosΩ(sin θ + e sinω) + sin Ω(cos θ + e cosω) cos i
sin Ω(sin θ + e sinω) − cosΩ(cos θ + e cosω) cos i

−(cos θ + e cosω) sin i



 (8.131)

Again, given a true anomaly f , the corresponding inertial velocity vector is
readily computed.

Given the Eqs. (8.3) and (8.4), the position vector can r is written as a
direct function of the true anomaly f as

r = r cos f ı̂e + r sin f ı̂p (8.132)

where the unit vectors ı̂e and ı̂p are illustrated in Figure 8.7. Using Eqs. (8.55)
and (8.65), the velocity vector v is then expressed as a direct function of the
true anomaly f as

v = −µ
h

sin f ı̂e +
µ

h
(e+ cos f)ı̂p (8.133)

Another popular set of orbit elements is the Delaunay variable set given by

{l, g, h, L,G,H} (8.134)

where small letters indicate orientation-type quantities and the capital letters
represent the corresponding generalized momentas. In terms of the previous
orbit elements, they are defined as5

l ≡ Mean Anomaly M

g (Tjh
7.Tf
76.08ψ1.560
qψ10ψ0ψ0ψ10ψ0ψ0ψcmψ6264ψTf
8.39021ψ0ψTd
(/)Tj
17.1483ψ0ψTd
(direction)Tj
41.4865ψ0ψTd
Pn

The
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These variables are popular because they are canonical variables that abide by
the differential equations

dL

dt
=
∂H
∂l

dl

dt
= −∂H

∂L
(8.135a)

dG

dt
=
∂H
∂g

dg

dt
= −∂H

∂G
(8.135b)

dH

dt
=
∂H
∂h

dh

dt
= −∂H

∂H
(8.135c)

Where the scalar H is the system Hamiltonian. For a perfectly spherical planet,
the Hamiltonian of a small satellite orbiting this body is given by

H =
µ

2a
=

µ2

2L2
(8.136)

The beauty of these variables is that their simple differential equations in
Eq. (8.135) can easily be modified to encompass situations other than orbits
about spherical bodies. For example, it is possible to extend the Hamiltonian
H to incorporate Earth oblateness effects.

To verify the differential equations of Eq. (8.135), let us verify that all the
orbit elements except for the mean anomaly l are constant for the case of a
spherical Earth. Since the Hamiltonian in Eq. (8.136) only depends on L, then
L̇, Ġ, Ḣ , ġ and ḣ are zero. The only non-zero quantity is l̇ given by

l̇ = −∂H
∂L

=
µ2

L3
=

√
µ

a3
= n (8.137)

which agrees with Kepler’s equation. If oblateness effects were included in the
Hamiltonian expression, than we would find that other variables would be time
varying too.

While the physical interpretations of the classical orbit elements shown in
Eq. (8.110) are easy to visualize, this set of orbit elements often lead to singular
equations as the eccentricity to the orbit inclination angle tend to zero. Prof.
Roger A. Broucke developed a set of orbit elements called the equinoctial vari-
ables which are non-singular and don’t lead to any mathematical singularities
for any eccentricity or orbit inclination angle. To do so, we define the longitude
of pericenter as

$ = ω + Ω (8.138)

Instead of using the mean or true anomaly as the time dependent quantity, the
mean longitude ϑ is used instead. The mean longitude is defined here as the
sum of the argument of perigee, ascending node and the mean anomaly.

ϑ = ω + Ω +M = $ +M (8.139)

The equinoctial element set is given by the parameters

{a, P1, P2, Q1, Q2, ϑ} (8.140)
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where the elements Pi and Qi are defined in terms of the classical orbit elements
as

P1 = e sin$ P2 = e cos$ (8.141)

Q1 = tan
i

2
sin Ω Q2 = tan

i

2
cosΩ (8.142)

The inverse transformation is given by

e =
√

P 2
1 + P 2

2 (8.143)

i = 2 tan−1
(
Q2

1 +Q2
2

)
(8.144)

$ = tan−1

(
P1

P2

)

(8.145)

Ω = tan−1

(
Q1

Q2

)

(8.146)

M = ϑ− tan−1

(
P1

P2

)

(8.147)

8.4.3 Lagrange/Gibbs F and G Solution

The orbit plane is defined through the two initial condition vectors r(t0) and
ṙ(t0) as shown in Figure 8.11. Since any orbit position vector r(t) and ve-
locity vector ṙ(t) will lie in the orbit plane, they can be expressed as a linear
combination of the initial condition vectors as

r(t) = Fr(t0) +Gṙ(t0) (8.148)

ṙ(t) = Ḟr(t0) + Ġṙ(t0) (8.149)

where F and G are yet to be determined functions. Substituting Eqs. (8.148)
and (8.149) into the relative differential equations of motion in Eq. (8.45) and
making use of the fact
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r( t0 )

ṙ( t0 )

ṙ( t)

r( t)

Figure 8.11: Orbit Plane Illustration

A brute force approach to solving for the F and G functions would be to
attempt a power series solution of the form

r(t) = r(t0) +

∞∑

n=1

(t− t0)
n

n!

dnr

dtn

∣
∣
∣
∣
t0

(8.154)

Battin shows in Ref. 2 that it is indeed possible to find an algebraic recursive
solution for the power series coefficients. While the development of this method
yields many interesting insights, the power series solution has the drawback of
having a slow convergence rate and has therefore less practical value. Instead,
the following method provides exact analytic expressions for both F and G
for arbitrary (t − t0). Using the O frame position vector components (x, y) in
Eq. (8.96), we can write Eq. (8.148) as

(
x
y

)

=

[
x0 ẋ0

y0 ẏ0

](
F
G

)

(8.155)

Solving Eq. (8.155) for F and G we find

(
F
G

)

=
1

(x0ẏ0 − y0ẋ0)

[
ẏ0 −ẋ0

−y0 x0

](
x
y

)

(8.156)

Using Eqs. (8.65) and (8.98), the determinant is rewritten as

x0ẏ0 − y0ẋ0 = h =
√
µp (8.157)

Therefore the F and G functions are given explicitly through

F =
1√
µp

(xẏ0 − yẋ0) (8.158)

G =
1√
µp

(yx0 − xy0) (8.159)
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In Eqs. (8.16) and (8.17) we have already found expressions of position vector
orbit plane components x and y in terms of the orbit elements a, e and the
eccentric anomaly E. This allows us to find analytical expressions of F and G
in terms of E. Using the Ė expression in Eq. (8.101), the velocity components
ẋ and ẏ are found to be

ẋ = −
√
µa

r
sinE (8.160)

ẏ =

√

µa(1 − e2)

r
cosE (8.161)

Upon substituting Eqs. (8.16), (8.17), (8.160) and (8.161) into Eq. (8.156) we
find the desired exact, analytical solution of the function F to be

F = 1 − a

r0
(1 − cos Ê) (8.162)

where Ê ≡ E −E0 is defined as the change in eccentric anomaly. Using similar
steps, the function G is expressed at first as

G =

√

a3

µ

[

sin Ê − e(sinE − sinE0)
]

(8.163)

To write the second part of the above expression in terms of Ê instead of E and
E0, Kepler’s equation is written at time t and t0 as

M = M0 +

√
µ

a3
(t− t0) = E − e sinE (8.164)

M0 = E0 − e sinE0 (8.165)

Subtracting one equation from the other leads to the expression

−e(sinE − sinE0) =

√
µ

a3
(t− t0) − Ê (8.166)

which allows G to be written in the final form

G = (t− t0) +

√

a3

µ

(

sin Ê − Ê
)

(8.167)

The next step is to find analytical expressions for Ḟ and Ġ. Using the Ė
expression in Eq. (8.101), Eqs. (8.162) and (8.167) are differentiated to yield

Ḟ = −
√
µa

rr0
sin Ê (8.168)

Ġ = 1 − a

r
(1 − cos Ê) (8.169)
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Since and F and G functions along with their derivatives are written in terms
of Ê, we would like to write the current orbit radius r, which appears in
Eqs. (8.168) and (8.169), also in terms of Ê. Substituting the trigonometric
identity

cosE = cosE0 cos Ê − sinE0 sin Ê (8.170)

into Eq. (8.15) we find

r = a
(

1 − e cosE0 cos Ê + e sinE0 sin Ê
)

(8.171)

Using Eqs. (8.15) and (8.122), r = r(Ê) is written as

r = a+ (r0 − a) cos Ê +
√
aσ0 sin Ê (8.172)

To find a “modified” Kepler’s equation in terms of Ê, we recognize first that

dÊ

dt
= Ė =

1

r

√
µ

a
(8.173)

After separating variables, this leads to

√
µ

a
dt = rdÊ (8.174)

Substituting Eq. (8.172) and diving both sides by a leads to the perfect differ-
ential equation

√
µ

a3
dt =

(

1 − (1 − r0
a

) cos Ê +
σ0√
a

sin Ê

)

dÊ (8.175)

Integrating this equation leads to the desired “modified” Kepler’s equation

M̂ ≡
√

µ

a3
(t− t0) = Ê − (1 − r0

a
) sin Ê − σ0√

a
(cos Ê − 1) (8.176)

The F and G solution provided in Eqs. (8.148) and (8.149) provide a direct
mapping of the initial position and velocity vectors into corresponding vectors
at the current time t. Note that the inverse transformation is provided by the
remarkably simple expression:

r(t0) = Ġr(t) −Gṙ(t) (8.177)

ṙ(t0) = −Ḟr(t) + F ṙ(t) (8.178)

This inverse mapping is achieved using the F and G solution property

FĠ−GḞ = 0 (8.179)
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This property can be verified by back substituting the expressions found for F
and G, along with their derivatives.

Another useful form of the F and G solution is to express the solution in
terms of a true anomaly difference f̂ = f−f0. To make use of the expressions for
F and G in Eqs. (8.158) and (8.159), we write the position vector r(t) velocity
vector ṙ(t) as

r = r cos f
︸ ︷︷ ︸

x

ı̂e + r sin f
︸ ︷︷ ︸

y

ı̂p (8.180)

ṙ = −h sin f

p
︸ ︷︷ ︸

ẋ

ı̂e +
h

p
(e+ cos f)

︸ ︷︷ ︸

ẏ

ı̂p (8.181)

with the orbit radius rate ṙ being given by

ṙ =
he sin f

p
(8.182)

Substituting Eq. (8.180) and (8.181) into Eqs. (8.158) and (8.159) and simpli-
fying using trigonometric identities yields2

F = 1 − r

p

(

1− cos f̂
)

(8.183)

G =
rr0
h

sin f̂ (8.184)

Substituting Eqs. (8.180) and (8.181) into Eq. (8.122), the parameter σ is given
by

σ =
r · ṙ√
µ

=
hre sin f√

µp
=
re sin f√

p
(8.185)

Differentiating the F and G expressions in Eqs. (8.183) and (8.184) with respect
to time and making use of the σ expression, the Ḟ and Ġ are found to be

Ḟ = −
√
µ

pr

(

σ
(

1 − cos f̂
)

+
√
p sin f̂

)

(8.186)

Ġ = 1 − r0
p

(

1 − cos f̂
)

(8.187)

The orbit radius is expressed in terms of f̂ through the orbit equation

r =
p

1 + e cos(f0 + f̂)
(8.188)

Expanding the cos term and making use of the σ definition and the fact that
r0 = p/(1 + e cosf0), the orbit radius can also be written in the form2

r =
pr0

r0 + (p− r0) cos f̂ −√
pσ0 sin f̂

(8.189)
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Using Eq. (8.185) we can relative the σ parameters at time t0 and t through

σ

r
=
σ0

r0
cos f̂ +

sin f̂

r0
√
p

(p− r0) (8.190)

Substituting Eqs. (8.189) and (8.190) into Eq. (8.186), we are able to express
the Ḟ rate expression in terms of initial states states only.2

Ḟ =
µ

r0p

(

σ0(1 − cos f̂) −√
p sin f̂

)

(8.191)

Problems

8.1 Integrate Kepler’s second law in Example 8.1 directly without using the geomet-
rical insight that the right hand side computes the area of an ellipse.

8.2 Starting with Eqs. (8.18) and (8.19), derive the partial derivative expression of
f with respect to E given by

∂f

∂E
=
b

r
(8.192)

8.3 Specify the steps necessary to translate the six orbit elements in Eq. (8.110) given
at time t1 into the corresponding inertial position and velocity vectors r(t1) and
ṙ(t1).

8.4 Verify that Eq. (8.131) is indeed the derivative of Eq. (8.130).

A
B

a
θ

re

interior chase
orbit

(i) Interior Chase Orbit

A
B

a
θ

re

exterior chase
orbit

(ii) Exterior Chase Orbit

Figure 8.12: Illustration of Two Rendezvous Chase Orbit Options.
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8.5 Consider two spacecraft (A and B) in the same circular orbit of radius a. Space-
craft B is initially θ radians of true anomaly ahead of A. It is desired that the
spacecraft A ”catch up” (or rendezvous) with B by transferring temporarily onto
a ”chase” orbit, then transferring back onto the original circular orbit. Referring
to Figure 8.12, two options are being considered:
Option 1: Use an Interior Orbit Spacecraft A decreases its velocity (by
amount ∆v1), so that it transfers at apogee onto a judicious chase orbit. Upon
return to apogee, it increases its velocity by ∆v1 to rendezvous with spacecraft
B and maintain again a circular orbit of radius a.
Option 2: Use an Exterior Orbit Spacecraft A increases its velocity (by
an amount ∆v2), so that it transfers at perigee onto a judicious chase orbit.
Upon returning to perigee, it decreases its velocity by ∆v2 to rendezvous with
spacecraft B.
Assume all velocity changes are instantaneous and tangential to the orbit. As-
sume rendezvous occurs, for both options, after one orbit of A on the chase
orbit.

a) Determine the required velocity increments (∆v1 and ∆v2) as functions
of a, θ and µ

b) Discuss the relative advantages of these two options, and also discuss any
circumstances which would make the solutions unfeasible.

8.6 Write subroutines that map between Cartesian orbit position coordinates and the
orbit element set shown in Eq. (8.110) using the following steps.

a) Write a subroutine that maps the Cartesian position and velocity coor-
dinates of a spacecraft to the corresponding orbit elements and current
mean anomaly.

b) Write a subroutine that maps current orbit elements and time since last
perigee passage to corresponding Cartesian position and velocity coordi-
nates. Verify that this numerical mapping is the precise inverse of task
a).

c) Write a numerical simulation that integrates the differential equations of
motion in Eq. (8.45) using a 4-th order Runge Kutta integration scheme.
Using the subroutine of task b), compare the answer of the numerical
integration to the analytical two-body solution.

8.7 Program the F and G solution to the two-body problem. Verify the answer by
comparing it to a numerical integration of the differential equations of motion in
Eq. (8.45).

8.8 Consider the two-body equations of motion in Eq. (8.45) and the F and G
solution in Eqs. (8.148) and (8.149).

a) Prove that F and G satisfy F̈ = −µ/r3F and G̈ = −µ/r3G.

b) Prove that H = FĠ−GḞ is a constant of the solution. Evaluate H as a
function of the initial conditions.
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Chapter Nine

Restricted Three-Body
Problem

WHILE the Keplerian two-body problem has a very elegant analytical solu-
tion, the general three-body problem increases the level of complexity to

such a degree to make an analytical solution intractable. While no general solu-
tions exist for this 18-th order system, ten exact analytical integrals are possible
for the general case, corresponding to conservation of angular momentum (3 in-
tegrals), energy (1 integral), and motion of the system mass center (6 integrals).
These ten integrals, together with imposing other special case conditions, per-
mit considerable additional analytical progress to be made. Virtually all of this
progress stems from the work of the brilliant French astronomer and mathemati-
cian, Lagrange. A familiar three-body problem is the Sun-Earth-Moon system.
While the moon does orbit the Earth in a near-elliptical manner, to account
for some of the deviations of its orbit relative to Earth, the gravitational effect
of the sun must also be taken into account. This is one reason why a precise
description of the lunar orbit is very complicated.

While Newton was the first to study the combined motion of several celestial
objects accounting for their mutual gravitational attraction, it was Lagrange in
1772 who submitted his memoir Essai sur le Probl�eme des Trois Corps to the
Paris Academy that demonstrated analytical solutions do exist for the three-
body problem if certain restrictions are imposed. These restrictions force the
three bodies to remain in an equilateral triangle or collinear formation. This
chapter studies these motions and shows their properties. Of particular interest
is the circular restricted three-body problem. Here two larger, spherical bodies
are restricted to follow a circular, Keplerian motion, while a third body of
relatively infinitesimal mass is moving among them in a general fashion. A
good way to visualize this is to think of the Apollo program where a small
space vehicle is flying under the gravitational influence of the uniformly rotating
Earth-Moon system.

325
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Figure 9.1: Illustration of Three-Body Problem

9.1 Lagrange’s Three-Body Solution

Lagrange showed that it is possible to find solutions of the three-body problem
where the shape of the three-body formation does not change in time. First,
the more general case is studied where the size or orientation of the fixed three-
body formation is free to vary with time. Then, the special case is studied where
all three bodies are assumed to rotate about their center of mass at a common
angular rate. In both studies the mass of each body is assumed to be sufficiently
large to affect the motion of the remaining two bodies.

9.1.1 General Conic Solutions

Assume the position of the three masses m1, m2 and m3 are located relative to
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Since r̈c = 0, we adopt the center of mass as an inertial origin, then the three
equations of motion are given by

mir̈i = G
3∑

j=1

mimj

r3ij
rij = Fi for i = 1, 2, 3 i 6= j (9.3)

where G is the universal gravitational constant, Fi is the net resultant force
acting on each mass mi, rij is the relative position vector defined as

rij = rj − ri (9.4)

and the scalar distances rij are computed as

rij = rji =
√

rij · rij (9.5)

Since the position vectors ri are defined relative to the center of mass, then
according to Eq. (2.43)

m1r1 +m2r2 +m3r3 = 0 (9.6)

must be true. Using Eq. (9.2) and adding and subtracting appropriate terms,
Eq. (9.6) is written in three different forms:

Mr1 = −m2r12 −m3r13 (9.7a)

Mr2 = m1r12 −m3r23 (9.7b)

Mr3 = m1r13 +m2r23 (9.7c)

Squaring these equations we find the following useful scalar relationships

M2r21 = m2
2r

2
12 +m2

3r
2
13 + 2m2m3r12 · r13 (9.8a)

M2r22 = m2
1r

2
12 +m2

3r
2
23 − 2m1m3r12 · r23 (9.8b)

M2r23 = m2
1r

2
13 +m2

2r
2
23 + 2m1m2r13 · r23 (9.8c)

Following Lagrange’s historic conjectures, the key assumption in this develop-
ment is that we are seeking solutions to the three-body problem which retain the
shape of the original three-body configuration. For this to be true, the three
relative distances r12, r23 and r13 must all evolve in the same manner. Let
f(t) be some generic time varying function with f(0) = 1. Then the relative
distances rij must satisfy

r12
r120

=
r13
r130

=
r23
r230

= f(t) (9.9)

where rij0 is the initial relative distance. Since the formation shape is fixed,
the angles αi between the relative distance vectors are constant. Substituting
Eq. (9.9) into (9.8a) we find

M2r21 = f(t)2
(
m2

2r
2
120

+m2
3r

2
130

+ 2m2m3r120
r130

cosα1

)
(9.10)
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Since f(0) = 1, we are able to express r10
as

r10
=

√

m2
2r

2
120

+m2
3r

2
130

+ 2m2m3r120
r130

cosα1

M
(9.11)

Eq. (9.11) is alternatively derived immediately from Eq. (9.8a) by applying
initial conditions. Using this definition in Eq. (9.10), we are able to express
r1(t) as

r1(t) = r10
f(t) (9.12)

This states that the radial distance of the mass to the center of mass will evolve
in the same manner as the relative distances. Similarly, we can express the other
two radial distances as

r2(t) = r20
f(t) (9.13)

r3(t) = r30
f(t) (9.14)

Since the three-body configuration shape must remain invariant, all three an-
gular velocity vectors must be equal (but not necessarily constant):

ω1 = ω2 = ω3 = ω = ωê3 (9.15)

The angular momentum vector H of the general three-body system about
the center of mass is constant for this zero-external force system and is defined
as

H =

3∑

i=1

ri ×miṙi = constant (9.16)

It is convenient to simplify the discussion by introducing a fundamental invariant
plane whose normal is the constant angular momentum vector H . If we further
restrict attention to the case that all three sets of position and velocity vectors
lie in this invariant plane at some initial instant, then the motion of (m1, m2,
m2) will remain co-planar forever, because all of the forces can be shown to lie in
this same plane. Therefore we are able to treat this shape invariant three-body
problem as a planar motion problem. Expressing the position vectors ri and
velocity vectors ṙi components in rotating reference frames Ei = {êri

, êθi
, ê3i

}
shown in Figure 9.1, we find

ri = riêri
(9.17)

ṙi = ṙiêri
+ riωêθi

(9.18)

r̈i = (r̈i − riω
2)êri

+ (2ṙiω + riω̇)êθi
(9.19)

Using Eqs. (9.12) through (9.15), we write the angular momentum vector as

H =

3∑

i=1

(
mir

2
i0

)
f2ωê3 (9.20)
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Because H is constant, Eq. (9.20) implies that the product f 2(t)ω(t) must also
be constant. Since the angular momentum vector of each particle is given by

Hi = ri ×miṙi = mir
2
i0f

2ωê3 (9.21)

this implies that the angular momentum of each mass mi is also constant. Tak-
ing the derivative of the constant vector Hi we find

Ḣi = ri ×mir̈i = ri × Fi = 0 (9.22)

The resulting condition ri × r̈i dictates that the acceleration vector r̈i, and
therefore also the i-th net force vector Fi, must be parallel at all times to the
radial position vector ri. The conclusion is one condition for the three-body
configuration shape to remain fixed is that the resultant force vector Fi on each
mass must be a radial force passing through the system center of mass, and can
be written as

Fi = Fiêri
(9.23)

Substituting Eq. (9.19) and (9.23) into the equations motion in Eq. (9.3) we
find

Fi = mi(r̈i − riω
2) (9.24)

Using Eqs. (9.12)-(9.14) this is rewritten as

Fi
mi

= f̈ri0 − riω
2 = ri

(

f̈

f
− ω2

)

(9.25)

Rearranging Eq. (9.25) we find

Fi
miri

=
f̈

f
− ω2 = A(t) (9.26)

which states that the ratio of the net resultant force over the radial distance to
the center of mass and body mass mi will remain the same for all three masses.
Therefore

Fi(t) = A(t)ri(t)mi (9.27)

The condition in Eq. (9.22) requires that ri × r̈i = 0. As we will show next,
this is only possible for our restricted three-body system for two types of con-
figurations. Setting i = 1 in Eq. (9.3) and taking its cross product with r1 leads
to

r1 ×
(

m2
r2

r312
+m3

r3

r313

)

= 0 (9.28)
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The center of mass definition in Eq. (9.6) is rewritten as

m3r3 = −m1r1 −m2r2 (9.29)

Substituting Eq. (9.29) into (9.28) leads to the condition

m2r1 × r2

(
1

r312
− 1

r313

)

= 0 (9.30)

Similarly, for the other two cases we find the necessary conditions

m1r2 × r3

(
1

r323
− 1

r312

)

= 0 (9.31)

m3r3 × r1

(
1

r313
− 1

r323

)

= 0 (9.32)

There are only two geometric configurations that satisfy Eqs. (9.30)-(9.32). The
first configuration found by Lagrange is that of an equilateral triangle since

r12 = r23 = r13 = ρ (9.33)

The second possible configuration has all three bodies on a straight line in a
collinear formation:

r1 × r2 = r2 × r3 = r3 × r1 = 0 (9.34)

It is remarkable to note that these are the only two possible three-body config-
urations which will maintain constant formation shapes. The necessary initial
conditions for the three-body motion to be shape-invariant are summarized as:1

1. The net resultant force Fi on each mass must pass through the system
center of mass.

2. The net resultant force Fi is along the radial vector locating each mass
relative to the system center of mass.

3. The initial velocity vectors are proportional in magnitude to the respective
distances of the masses to the system center of mass.

4. The initial velocity vectors make equal angles with the radial position
vectors to the system center of mass

Equilateral Triangle Solution

Again, following the insights of Lagrange, we investigate the special case in
which the masses lie at the vertices of a rotating equilateral triangle. For this
case, the equations of motion of each individual mass take on a surprisingly sim-
ple and familiar form. We note for the most general class of equilateral motions,
the triangle is rotating at some variable angular velocity (to be determined) and



SECTION 9.1 LAGRANGE’S THREE-BODY SOLUTION 331

the size of the equilateral triangle may be time varying. Substituting Eq. (9.33)
into the three-body equations of motion in Eq. (9.3) we find the general form

m1r̈1 =
Gm1

ρ3
(m2r12 +m3r13) (9.35a)

m2r̈2 =
Gm2

ρ3
(−m1r12 +m3r23) (9.35b)

m3r̈3 = −Gm3

ρ3
(m1r13 +m2r23) (9.35c)

Substituting the center of mass conditions in Eq. (9.7), these equations of motion
are written compactly as

r̈i +
GM

ρ3
ri = 0 for i = 1, 2, 3 (9.36)

Specializing these general equations in Eq. (9.35), we make use of the fact that
for the equilateral triangle special class of motions α1 = α3 = 60o and α2 = 120o

and substitute Eqs. (9.8), the three equations of motion can be written in the
decoupled form as

r̈i +
GMi

r3i
ri = r̈i +

µi
r3i

ri = 0 for i = 1, 2, 3 (9.37)

with the equivalent effective masses Mi defined as

M1 =
1

M2
(m2

2 +m2
3 +m2m3)

3/2 (9.38)

M2 =
1

M2
(m2

1 +m2
3 +m1m3)

3/2 (9.39)

M3 =
1

M2
(m2

1 +m2
2 +m1m2)

3/2 (9.40)

and µi = GMi. Note that the equations of motion in Eq. (9.37) are of the iden-
tical form as the relative, two-body equations of motion derived in Eq. (8.45).
This implies that for the equilateral triangle three-body solution, each mass
body behaves as if it were only attracted by a mass Mi placed at the center of
mass of the system. Whether these orbits are elliptical, parabolic or hyperbolic
depends on the energy of the system.

Example 9.1: To illustrate the general equilateral solution of the three-body
problem, the motion of the following three-body system is numerically solved
using Eq. (9.37). The masses are m1 = 5.967 1023kg (1/10th of Earth’s
mass), m2 = 7.35 1022kg (Moon’s mass) and m3 = 3.675 1022kg (half of
Moon’s mass). Each side of the equilateral triangle has an initial length of
109m. The initial velocity vector of each mass forms a 40o angle with the
respective radial position vector and has the magnitudes |ṙ1| = 29.8659m/s,
|ṙ2| = 189.181m/s and |ṙ3| = 195.552m/s. The resulting motion is shown
in Figure 9.2 has seen by a non-rotating frame.
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Figure 9.2: Illustration of General Equilateral Triangle Solution of the
Three-Body Problem

The triangular configuration is highlighted at the initial time and at another
time during the motion. Clearly the shape of the equilateral triangle is invari-
ant, while its size and orientation changes with time. With the given initial
energy, each mass follows an elliptic orbit with the system center of mass
located on one of its foci.

Collinear Solution

The second invariant shape of the three-body problem is that of a straight line.
Here the ratio of the distances between the bodies remains constant. Assuming
the three bodies are aligned along a rotating straight line, then the rotating êri

vectors will be collinear. The three position vectors ri are now given by

ri = xiêr for i = 1, 2, 3 (9.41)

Substituting these specific position vectors into the equations of motion, Eq. (9.3)
and making use of Eqs. (9.23) and (9.27), the scalar force components Fi are
expressed as

F1 = Ax1m1 = m1m2
x2 − x1

x3
12

+m1m3
x3 − x1

x3
13

(9.42)
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F2 = Ax2m2 = m2m3
x3 − x2

x3
23

−m1m2
x2 − x1

x3
12

(9.43)

F3 = Ax3m3 = −m1m3
x3 − x1

x3
13

−m2m3
x3 − x2

x3
23

(9.44)

where A was previously found to be a scalar quantity common to all three
bodies. Note that since ri(t) = ri0f(t), then

Fi =
constant

f2
(9.45)

Since f is proportional to the radial distance to the center of mass, each mass
is subject to an inverse-square-law attraction and therefore describes elliptic,
parabolic or hyperbolic trajectories.1 These three equations in (9.42) through
(9.44) must be solved for the relative distances x12, x13 and x23. The order
of the particles within the line is arbitrary and three configurations 123, 132
and 312 are possible. We will solve for the relative distances for the first case
which is illustrated in Figure 9.3. The second and third case solutions can be
found by appropriately rearranging the indices, since the choice of these labels
is obviously arbitrary.

Center of Mass

x1
x2 x3

m3m2
m1

Figure 9.3: Collinear Three-Body Sequence Illustration

To simplify solving for the relative distances, the scalar quantity χ is intro-
duced as

χ =
x3 − x2

x2 − x1
=
x23

x12
(9.46)

Note that

x13

x12
= 1 + χ (9.47)

Observe, if any of the distances (x12, x13, x23) are known, then finding χ de-
termines the system configuration. Subtracting Eq. (9.43) from (9.42) and
Eq. (9.44) from (9.43) yields

Ax12 = −m1 +m2

x2
12

+m3

(
1

x2
23

− 1

x2
13

)

(9.48)

Ax23 = −m2 +m3

x2
23

+m1

(
1

x2
12

− 1

x2
13

)

(9.49)
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Substituting the definition of χ we are able to rearrange these two equations
into the forms

Ax3
12 = −(m1 +m2) +m3

(
1

χ2
− 1

(1 + χ)2

)

(9.50)

Ax3
12 = −(m2 +m3)

1

χ3
+m1

(
1

χ
− 1

χ(1 + χ)2

)

(9.51)

Equating Eqs. (9.50) and (9.51), Lagrange’s famous quintic equation for the
admissible configuration is found:

(m1 +m2)χ
5 + (3m1 + 2m2)χ

4 + (3m1 +m2)χ
3

− (m2 + 3m3)χ
2 − (2m2 + 3m3)χ− (m2 +m3) = 0 (9.52)

Since the polynomial coefficients only change sign once, so there is only one
positive real root to this fifth-order polynomial equation. Therefore Eq. (9.52)
uniquely defines the relative distances of the three bodies. Given χ and one of
the relative distances between two bodies, the remaining two relative distances
can be computed using Eqs. (9.46) and (9.47).

Example 9.2: To illustrate the general invariant collinear three-body solu-
tion, the three-body system from Example 9.1 is used with a different initial
configuration. With the specified masses, solving Lagrange’s quintic equation
for scalar parameter χ we find

χ = 0.451027

The scalar distance x12 is chosen to be 109m. Using Eqs. (9.46) and (9.47),
the other two relative distances are

x23 = 4.510273 108m

x13 = 1.451027 109m

Each velocity vector initially forms a 40o angle with the respective radial
position vector from the system center of mass. The initial speeds are |ṙ1| =
32.9901m/s, |ṙ2| = 150.903m/s and |ṙ3| = 233.844m/s. The resulting
motion is shown in Figure 9.4 as seen by a non-rotating reference frame.

The collinear three-body configuration is highlighted at three distinct times.
As predicted, the ratios of the relative distances remain the same, while the
size and orientation of the configuration varies with time. With the given
initial energy, all three orbits are elliptical. Again the system center of mass
lies in the common foci of each ellipse. The geometric size of each orbit
in these three-body problems is always an indication of the mass of that
particular object. In this setting, the first mass m1 is the most massive
object. Therefore the center of mass point is located close to it and its
trajectory describes the smallest ellipse about this point. On the other end
of the spectrum, the mass m3 is the lightest of the three and is therefore the
furthest removed from the center of mass and with the largest elliptic orbit.
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Figure 9.4: Illustration of General Invariant Collinear Solution of the
Three-Body Problem

9.1.2 Circular Orbits

Instead of allowing the three orbits to be either elliptical, parabolic or hyper-
bolic, we now constrain them to be circular. For the three-body configuration
shape to remain invariant under this condition, all three orbits must have the
same constant angular velocity vector ω. The three bodies will now move in
coplanar orbits with the orbit center being the system center of mass. Since this
is a special case of the general conic orbit solutions, the invariant three-body
configuration shapes will again be the equilateral triangle and collinear forma-
tions. Because the orbit radius ri is now fixed, Eq. (9.24) shows that the scalar
gravitational force Fi must equal the mass times the centrifugal acceleration.

Fi = −miriω
2 (9.53)

We now derive specific conditions that must be met for such shape-invariant,
circular three-body orbits to exist. Note that since the three-body formation
shape will not grow with circular orbits, the masses mi will appear to remain
�xed when viewed from a frame rotating with an angular velocity ω. These
specific mass locations are also referred to as stationary points of Lagrange’s
restricted three-body problem. As is seen later, examining these points is very
useful when studying spacecraft orbits in the vicinity of two massive celestial
bodies.

The three differential equations in Eq. (9.3) define the motion of any three-
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body system. We are able to eliminate one second order differential equation by
making use of the center of mass condition in Eq. (9.6). Substituting Eq. (9.53)
into Eq. (9.3) we find the following three algebraic equations which must hold
when all three orbits are circular.







(
ω2

G − m2

r3
12

− m3

r3
13

)
m2

r3
12

m3

r3
13

m1

r3
12

(
ω2

G − m1

r3
12

− m3

r3
23

)
m3

r3
23

m1 m2 m3







︸ ︷︷ ︸

[B]





r1

r2

r3



 =





0
0
0



 (9.54)

For non-trivial solutions to exist, the determinant of [B] must be equal to zero.
Setting r12 = r13 = r23 = ρ for the equilateral triangle case, the determinant of
[B] is found to be of the remarkably simple form

det([B]) = m3

(
ω2

G
− m

ρ3

)

(9.55)

Setting this determinant equal to zero, the following necessary condition is found
for the equilateral triangle shaped three-body configuration to maintain circular
orbits about the system mass center:

ρ3ω2 = GM (9.56)

This equation is a close cousin to Kepler’s third law of planetary motion. In
fact, if we set m3 equal to zero, then we obtain the same circular orbit angular
velocity as is found studying Keplerian motion. Computing the orbit Period P
for any of our three bodies we find

P = 2π

√

ρ3

GM
(9.57)

By substituting Eq. (9.53) into (9.36) the same circular orbit condition is ob-
tained from the more general conic formulation. This illustrates that the current
development is a special case of the more general conic development, and that
both are closely related to the corresponding Keplerian motion results.

Example 9.3: The numerical simulation in Example 9.1 is repeated with
almost identical initial conditions. The only difference is that the angle of
the initial velocity vector to the radial position vectors to the center of mass
is now uniformly 90o. The velocities chosen in Example 9.1 were such that
the necessary condition in Eq. (9.56) is satisfied. By having all initial velocity
vectors be normal to the position vectors, circular orbits are achieved instead
of elliptical orbits. The resulting motion is shown in Figure 9.5 as seen by a
non-rotating coordinate frame.

With these initial conditions, the equilateral triangle shape of the three-body
configuration rotates with a constant angular rate ω, but remains fixed in size.
If the motion were shown as seen by a frame rotating with an angular rate
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in Eq. (9.58) into Eq. (9.54), the following three scalar equations are found:

ω2

G
x1 +

m2

x2
12

+
m3

(x12 + x23)2
= 0 (9.59a)

ω2

G
(x12 + x1) −

m1

x2
12

+
m3

x2
23

= 0 (9.59b)

Mx1 +m2x12 +m3(x12 + x23) = 0 (9.59c)

As is the case in solving the general collinear solution, it is convenient to rewrite
these equations in terms of the scalar quantity χ defined in Eq. (9.46). Making
use of this definition, the three scalar equations are written as

ω2

G
x2

12x1 +m2 +
m3

(1 + χ)2
= 0 (9.60a)

ω2

G
x2

12(x12 + x1) −m1 +
m3

χ2
= 0 (9.60b)

M

x12
x1 +m2 + (1 + χ)m3 = 0 (9.60c)

Recall that the relative distance x12 is assumed to be a fixed parameter. There-
fore Eq. (9.60a) can be solved directly for the necessary angular velocity mag-
nitude ω in terms of χ.

ω2 =
GM

x3
12(1 + χ)2

m2(1 + χ)2 +m3

m2 + (1 + χ)m3
(9.61)

Note that if m3 is set to zero, then the standard two-body circular orbit speed
condition is retrieved. The orbit Period P for this configuration is given by

P = 2π

√

x3
12(1 + χ)2

GM

m2 + (1 + χ)m3

m2(1 + χ)2 +m3
(9.62)

Eq. (9.60a) provides an expression for the radial distance x1 of the mass m1

relative to the system center of mass in terms of χ.

x1 = −x12

M
(m2 + (1 + χ)m3) (9.63)

Substituting Eqs. (9.61) and (9.63) into Eq. (9.60b) leads us back to Lagrange’s
quintic polynomial equation provided Eq. (9.52). Given the three masses m1,
m2 and m3, this polynomial is solved numerically for its one real root. Given
χ, we are then able to compute the remaining x1 and x23 quantities.

Example 9.4: The numerical simulation in Example 9.2 is repeated with
slightly different initial conditions. The angle of the initial velocity vector
relative to the radial position vectors from the center of mass is now uniformly
90o. The velocities chosen in Example 9.2 were such that the necessary
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Figure 9.6: Illustration of Collinear Solutions of the Three-Body Prob-
lem with Circular Orbits

condition in Eq. (9.61) is satisfied. The resulting motion is shown Figure 9.6
as seen by a non-rotating coordinate frame.

Clearly the initially collinear three-body formation remains collinear with these
initial conditions. As seen by a reference frame rotating with an angular
velocity ω, all three masses would appear to remain stationary along a straight
line. Figure 9.6(ii) shows a similar configuration where m3 is placed on the
far side of m1. Since m1 is much larger than both m2 and m3, its orbits is
a tight circle about the center of mass point.

9.2 Circular Restricted Three-Body Problem

In the circular restricted three-body problem we assume that both m1 and m2

are very massive objects compared to the third mass m3. In this restricted
problem, the Keplerian motion of the first two masses is determined through
their respective inverse-square gravitational attraction by neglecting the effect
of the relatively small third mass on the first two masses. From here on, we will
drop the letter “3” subscript on the small mass and simply call it m. Therefore
the masses m1 and m2 affect the motion of m, without in return being affected
by m themselves. The bodies m1 and m2 are assumed be in circular orbits
about their mutual center of mass. This is a good approximation for several
celestial couples like Earth-Moon, Sun-Earth, Sun-Jupiter, . . . The small mass
m could then be the Apollo spacecraft flying between Earth and Moon or some
asteroids moving under the influence of the sun and some planet.

For bodies in circular orbits about the system center of mass, Lagrange
found five distinct three-body formations which are invariant when viewed from
the rotating reference frame. We will verify these elegant results below. With
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Figure 9.7: Stationary Lagrange Points

the motion of m1 and m2 being restricted to a circular orbit, the five possible
locations for m for which its location appears invariant or stationary as seen by
the rotating frame are called the Lagrange libration points L1, L2, L3, L4 and
L5 illustrated in Figure 9.7. We can see that the “straight line” points L1, L2

and L3 are evident from the above analysis (Figure 9.6), whereas the points L4

and L5 are evident from the equilateral triangle solution shown in Figure 9.5.
Their existence was thought to be of purely academic interest when Lagrange
first presented these results. However, the Trojan asteroids were subsequently
(1906) discovered which oscillate about the L4, L5 Sun-Jupiter Lagrange li-
bration points. Also, the Earth-Moon Lagrange points have been studied as
possible locations for large “space colony” space stations. Motions near L4 and
L5 are neutrally stable; these stationary points have become popularly known
as “Lunar Libration Points,” for the case of the Earth-Moon system.

Please note that the labeling of the collinear libration points is not consistent
across different text books. The notation adopted here labels the libration point
on the far side ofm1 as L1, the point betweenm1 andm2 as L2 and the libration
point on the far side of m2 as L3 as is illustrated in Figure 9.7. This notation
makes geometric sense since the straight line points are labeled in ascending
order from one end of the line to the other. While there is no consensus, a
second popular alternative is to label the L2 point as L1, L3 as L2, and L1 as
L3. The reasoning for this choice is based on relative energy state arguments of
bodies at these libration points. However, the L4 and L5 are uniformly labeled
in the literature as shown here.
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Figure 9.8: Illustration of Circular Restricted Three-Body Problem

9.2.1 Jacobi Integral

To develop the equations of motion of mass m near the circularly orbiting m1

and m2, we express the inertial position vector r of m with components taking
in a rotating reference frame F : {êr, êθ, ê3}. The origin of F is at the system
center of mass as shown in Figure 9.8. Since m3 � m1,m2, from Eqs. (9.56) or
(9.61) the constant angular velocity magnitude of the m1-m2 system is given by

ω2 =
G(m1 +m2)

r312
(9.64)

The angular velocity vector of the F frame relative to some inertial frame is
ω = ωk̂. The position vector r is expressed with F frame components as

r = rxêr + ry r̂θ + rzê3 (9.65)

Note that while both m1 and m2 perform planar, circular motions, the mass
m is able to move both within the orbit plane and perpendicular to it. Taking
two inertial derivatives of r while keeping in mind that F is a rotating reference
frame, the inertial acceleration vector of r is expressed as

r̈ = (r̈x − 2ṙyω − rxω
2)êr + (r̈y + 2ṙxω − ryω

2)êθ + r̈z ê3 (9.66)

The gravitational force F acting on m due to m1 and m2 is expressed in F
frame components as

F = −G







m1

ξ3
1

(rx − r1) + m2

ξ3
2

(rx − r2)
(
m1

ξ3
1

+ m2

ξ3
2

)

ry
(
m1

ξ3
1

+ m2

ξ3
2

)

rz







(9.67)

where the relative distances ξi of m to mi are given by
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ξi =
√

(rx − ri)2 + r2y + r2z (9.68)

Combining Eqs. (9.66) and (9.67), the equations of motion of m can be written
as three scalar, coupled differential equations.

r̈x − 2ωṙy − ω2rx +G

(
m1

ξ31
(rx − r1) +

m2

ξ32
(rx − r2)

)

= 0 (9.69a)

r̈y + 2ωṙx − ω2ry +G

(
m1

ξ31
+
m2

ξ32

)

ry = 0 (9.69b)

r̈z +G

(
m1

ξ31
+
m2

ξ32

)

rz = 0 (9.69c)

Let the potential function U(rx, ry, rz) be defined as

U(rx, ry, rz) =
ω2

2
(r2x + r2y) +

Gm1

ξ1
+
Gm2

ξ2
(9.70)

Let the time derivative as seen by the F frame be labeled as

Fd
dt

x = x′ (9.71)

Then the velocity and acceleration vectors of m as seen by F are given by

r′ =





ṙx
ṙy
ṙz



 r′′ =





r̈x
r̈y
r̈z



 (9.72)

Using the potential function U and the local velocity and acceleration vectors,
we are able to write the equations of motion of m in a compact vector form.

r′′ + 2ω × r′ =






∂U
∂rx

∂U
∂ry

∂U
∂rz




 = ∇rU (9.73)

By performing the vector dot product of Eq. (9.73) with r′ we find the following
perfect differential equation:

(r′′ + 2ω × r′) · r′ = r′′ · r′ =
1

2

d

dt
(r′ · r′) =

∂U

∂r
· r′ =

dU

dt
(9.74)

Integrating this equation with respect to time yields a perfect integral of the
relative equations of motion.

v2 = r′ · r′ = 2U − C (9.75)

Substituting the definition of U we find Jacobi’s Integral for the circular re-
stricted three-body problem.

v2 = ω2(r2x + r2y) + 2
Gm1

ξ1
+ 2

Gm2

ξ2
− C (9.76)
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where the scalar constant C is determined through the initial conditions. Think
of C as a negative, relative energy measure. The larger C is, the less relative
energy the mass m has. This perfect integral of the relative equations of motion
is used to study what trajectories of m are feasible given some initial energy
state and as a means to verify the accuracy of a numerical integration. At
any point in time of the motion governed by Eqs. (9.73), the Jacobi integral in
Eq. (9.76) must be satisfied. We mention that Jacobi’s Integral is simply the
classical energy integral (T + V = constant), expressed in rotating coordinates.

The equations of motion in Eq. (9.69) can be written in a convenient non-
dimensional form. To do so, we introduce the non-dimensional time variable τ
as

τ = ωt (9.77)

Time derivatives with respect to this new time variable are denoted with the
“o” symbol as

o
x=

dx

dτ
(9.78)

The non-dimensional time derivative
o
x is related to the previous time derivative

ẋ through

ẋ =
dx

dt
=
dx

dτ

dτ

dt
=

o
x ω (9.79)

Any scalar distances are non-dimensionalized by dividing them with the constant
relative m1-m2 distance r12 as

x =
rx
r12

y =
ry
r12

z =
rz
r12

x1 =
r1
r12

x2 =
r2
r12

(9.80)

Note that with the new non-dimensional coordinates the masses m1 and m2 are
a unit distance apart and that therefore

x2 − x1 = 1 (9.81)

The mass quantities are non-dimensionalized by introducing the scalar param-
eter µ as

µ =
m2

m1 +m2
=

1
m1

m2
+ 1

(9.82)

Since the designation of m1 and m2 is typically chosen such that m2 ≤ m1, we
note that µ ≤ 0.5. Using these non-dimensional quantities, the center of mass
condition in Eq. (9.6) is rewritten for the current setting as

(1 − µ)x1 + µx2 = 0 (9.83)



344 RESTRICTED THREE-BODY PROBLEM CHAPTER 9

Using Eqs. (9.81) and (9.29) we are able to express the non-dimensional coor-
dinates of m1 and m2 in terms of the mass ratio µ.

x1 = −µ (9.84)

x2 = 1 − µ (9.85)

Combining all these definitions, we now are able to rewrite the equations of
motion of m in Eq. (9.69) into the following non-dimensional form:

oo
x −2

o
y = x− (1 − µ)

x− x1

ρ3
1

− µ
x− x2

ρ3
2

= −∂U
∂x

(9.86a)

oo
y +2

o
x =

(

1 − 1 − µ

ρ3
1

− µ

ρ3
2

)

y = −∂U
∂y

(9.86b)

oo
z = −

(
1 − µ

ρ3
1

+
µ

ρ3
2

)

z = −∂U
∂z

(9.86c)

where the non-dimensional relative distance ρi is defined as

ρi =
√

(x− xi)2 + y2 + z2 (9.87)

and the corresponding non-dimensional potential function U(x, y, z) is given by
the expression

U(x, y, z) =
1

2
(x2 + y2) +

1 − µ

ρ1
+

µ

ρ2
(9.88)

Following similar steps as were done with the dimensional equations of motion,
the non-dimensional Jacobi integral takes on the form

v2 = (
o
x 2+

o
y 2) = (x2 + y2) + 2

1 − µ

ρ1
+ 2

µ

ρ2
− C (9.89)

Setting the relative velocities and accelerations in Eq. (9.86) equal to zero
we find conditions which are satisfied by the stationary points of the circular
restricted three-body problem. As will soon be evident, these stationary points
are precisely the five Lagrange Libration points, Li, specialized to the case at
had. Studying Eq. (9.86c) we see that all stationary points have z = 0 and
therefore must lie in the rotating m1-m2 plane. Eq. (9.86b) is only equal to zero
for the two known geometric configurations. Either y = 0 which corresponds
to the collinear solution with all bodies aligned with the rotating êr axis, or
ρ1 = ρ2 which corresponds to the equilateral triangle solution. To solve for the
scalar coordinate x for the collinear L1, L2 and L3 libration points, Eq. (9.86a)
is set equal to zero. Notice in Eq. (9.86a) the final two terms, for y = z = 0,
simplify to

−(1 − µ)
(x− x1

|x− x1|3
− µ

(x− x2

|x− x2|3
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while one is tempted to merely cancel in these fractions, care must be taken to
obtain the correct signs because obviously

(x− xi) = −|x− xi| if (x − xi) < 0

(x− xi) = +|x− xi| if (x − xi) > 0

Using the libration point labeling shown in Figure 9.7, for the L1 point it is
clear that x− x1 < 0 and x− x2 < 0. Using these facts and Eqs. (9.84), (9.85)
and (9.87) we find from Eq. (9.86a) an explicit condition for the L1 position
coordinate in terms of the mass ratio µ.

L1 : x+
1 − µ

(µ+ x)2
+

µ

(x− 1 + µ)2
= 0 (9.90)

This equation in essence replaces Lagrange’s quintic equation for the circular
restricted cases where m3 � m1,m2. Examining the L2 Lagrange libration
point we find that x − x1 > 0 and x − x2 < 0. This leads to the necessary
condition

L2 : x− 1 − µ

(µ+ x)2
+

µ

(x− 1 + µ)2
= 0 (9.91)

For L3 we find that x− x1 > 0 and x− x2 > 0 and therefore

L3 : x− 1 − µ

(µ+ x)2
− µ

(x− 1 + µ)2
= 0 (9.92)

Eqs. (9.90) through (9.92) provide three simplified, explicit relationships to solve
for the three collinear Lagrange Libration point x coordinates. The advantage
of these compared to solving the Lagrange quintic equation is that there is no
need to reorder the indices to obtain the three possible solutions. By making
use of the known sign of the x−xi terms for each libration point we are able to
find these simplified expressions.

Example 9.5: For the Earth-Moon system assuming the approximation that
their paths both describe circular orbits about the common center of mass,
we can make use of the circular restricted three-body problem to compute
the straight line libration points. For this system the mass ratio µ is given by

µ =
1

81.3 + 1

Solving Eqs. (9.90) through (9.92) for the non-dimensional x coordinates we
find

L1 : x = −1.00506 L2: x = 0.836915 L3 : x = 1.15568

Remember that the radial Earth-Moon distance is equal to 1 with these non-
dimensional coordinates. As expected, the L2 point is between the Earth-
Moon system, the L1 is on the “back-side” of Earth and L3 is on the “back-
side” of the Moon.
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9.2.2 Zero Relative Velocity Surfaces

Jacobi’s integral in Eq. (9.76) or (9.89) provides a very interesting exact integral
of the relative equations of motion of m. The accuracy of a numerical simula-
tion can be verified by checking that the constant C indeed remains invariant
during a simulation. Another popular use of the Jacobi integral is to establish
regions around m1 and m2 within which m may travel given its initial states.
For unpowered flight, the initial position and velocity determine the resulting
trajectory. Through the Jacobi integral, the initial states also determine the
value of the constant C. Recall that C provides a negative relative energy mea-
sure of the body m. Extreme points on a trajectory are encountered whenever
the velocity magnitude v goes to zero. Therefore, setting v = 0 in the Jacobi
integral for a given energy constant C provides an algebraic expression of all
such feasible (x, y, z) “apogee-like” locations.

(x2 + y2) + 2
1− µ

ρ1
+ 2

µ

ρ2
= C (9.93)

The surfaces described by Eq. (9.93) determine the geometric extremes possible

L1

L2

L3

L4

L5

x

y

x1

x2

Figure 9.9: Zero Relative Velocity Surface Contours of the Earth-Moon

System in the x− y Plane

for a given relative energy state. For example, studying these surfaces allows us
to quickly determine if it is possible for a body to travel from Earth to Moon or
beyond. Note that when a mass m is located on this surface, this only implies

that its velocity relative to the rotating F frame is zero, not that its inertial
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velocity is zero. However, studying the motion of m as seen by the rotating
reference frame is very convenient when exploring possible trajectories near two
orbiting celestial bodies. Selected zero relative velocity surface contours for
the Earth (mass m1) and Moon (mass m2) system are shown in Figure 9.9.
The darker the coloring, the more energy (relative to the rotating frame) is
required to enter these areas. When an object has a low relative energy state
(i.e. the constant C is large), it may be in one of three areas. The areas are
the immediate vicinity around either Earth or Moon, or far removed from the
Earth-Moon system. Studying Eq. (9.93) it is evident that if (x, y) and C are
large, then ρ1 and ρ2 are also large and the zero velocity surface expression is
dominated by the quadratic terms in Eq. (9.93) and can be approximated as

x2 + y2 = C (9.94)

This implies that away from the circularly orbiting two body system, the zero
velocity surface becomes a circular cylinder with the symmetry axis aligned
with the rotation axis ê3. In the planar cross section shown in Figure 9.9, this
is visible as circular constant energy contours. If the body m is close to either
m1 or m2 while C is large, then ρ1 or ρ2 respectively will become small and the
dominance of either the second or third term in Eq. (9.93) will result in the zero
velocity surface being approximated either by

ρ2
1 = (x− x1)

2 + y2 + z2 =
4(1− µ)2

C2
(9.95)

for ρ1 being small or by

ρ2
2 = (x− x2)

2 + y2 + z2 =
4µ2

C2
(9.96)

for ρ2 being small. For this limiting case the zero relative velocity surfaces
shapes converge to perfect spheres about either the locations of either m1 or
m2. Figure 9.9 illustrates this behavior through the white circular contours
around both Earth and Moon. As the energy of m increases, more volume
becomes accessible and the closed regions near the Earth or Moon ultimately
open such that motion is not confined to remain near either massive body; at
these energy stages “interchange” orbits are feasible. The last two excluded
regions correspond to the minimum C regions around the L4 and L5 Lagrange
libration points. Figure 9.10 shows individual zero velocity surface contours in
the x−y plane for various critical energy state. Regions that cannot be reached
by m with the current energy state are grayed out with the same darkness
as they have in Figure 9.9. The first critical state is where m has just enough
energy to reach the L2 point betweenm1 and m2. Increasing the energy state of
m infinitesimally beyond this state opens up a corridor between the two orbiting
bodies, making it theoretically possible for an object to pass from one body to
another. However, it is still impossible for an object near m1 or m2 to leave
the two body system. The next critical energy state is where the zero velocity
surface reaches the L3 point. Any additional energy now makes it possible for
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corresponding surface about Earth. Further, due to the centrifugal effect of
moving in an orbiting two body system, the possible motions of body m are
clearly more restricted along the two-body rotation axis than within the rota-
tion plane (x, y). This is manifested through the flattening effect of the oval
surface shapes about Earth and Moon. As is shown in Eqs. (9.95) and (9.96),
for lower energy states (larger C) about Earth and Moon these surfaces will
approach spherical shapes.

As the energy state of m increases, a corridor for feasible motion opens
between Earth and Moon as is shown in Figure 9.12. Note however that m
cannot escape the Earth-Moon system yet until the “bubble” around the Moon
just touches the outside cylindrical surface. Increasing the relative energy state
of m even more now opens up a corridor through to the open region on the
far side of the Moon. Note that m does not yet have enough energy to escape
Earth’s gravitational influence without the assistance of the moon at this point.
However, since the moon acts here as a gravitational boost, it is possible for the
body m to escape Earth’s influence.

Adding more energy, the bodym can escape the Earth-Moon system through
multiple directions. Only the regions around the L4 and L5 Lagrange stationary
points are still unreachable with zero relative velocity. The vertical cylinder is
now almost completely separated into a upper and lower sections. The two
surfaces only connect around L4 and L5. Note that the energy increase between
a surface touching the L4 and L5 points and a surface touching the L1 point is
relatively small. The energy increments between each surface are not uniform
in Figures 9.11 through 9.14. Rather, particular energy states were chosen to
illustrate interesting behaviors. Further, note that these surfaces only show the
limits to all feasible trajectories. Given only these surfaces, no statements can
be made about the various trajectories themselves however.

Example 9.6: Two Earth-Moon trajectories are illustrated as seen by the
rotating reference frame F . The first example illustrates an Apollo type
mission discussed in Reference 2. At periselenium (point of closest approach
to the moon), the mass m has the non-dimensional coordinates

(x, y) = (0.992761, 0)

which correspond to a miss distance from the Moon’s surface of about 150
km. The non-dimensional relative velocity magnitude v at periselenium is 2.47
or about 2.531 km/s. The corresponding Earth-Moon trajectory is shown as
seen in the rotating reference frame in Figure 9.15.

The famous hour-glass trajectory is thickened out in this figure since it drawn
in the rotating reference frame. The critical zero-velocity surface which
touches the L3 Lagrange Libration point is superimposed in this illustration.
Clearly this trajectory penetrates this surface. Thus the body m has enough
energy to escape the Earth-Moon system given the proper initial position and
velocity direction. This illustrates again that the zero velocity surface can
only predict which regions a body will not be able to enter with a given en-
ergy level. They do no predict what paths a body will take. More specifically,
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Earth
Moon

Apollo Trajectory
Zero-Velocity Contour
which touches L3

L3

x

y

Figure 9.15: Apollo Type Earth-Moon Trajectory as seen by a Rotating
Reference Frame

restricting energy below the value corresponding to a given closed zero ve-
locity surface, we are guarantee the body cannot exit that closed region; we
cannot guarantee a higher energy will escape that surface during any finite
time interval.

ry

rx

Initial Moon Position

Final Moon Position

Initial Earth Position

Final Earth Position

Figure 9.16: Apollo Type Earth-Moon Trajectory as seen by an Inertial
Reference Frame

The same trajectory is shown as seen by a non-rotating, inertial frame in Fig-
ure 9.16. This view illustrates well how the traveling Moon sharply bends the
spacecraft trajectory back towards Earth. Also, it is evident that the Moon
travels a large distance during this trajectory, thus constantly changing the
direction of its gravitational pull. While this figure provides a better illustra-
tion of the actual flight path shape, note that it is more difficult to assess
if the spacecraft will impact with either Earth or Moon. Both bodies have
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time varying positions and it isn’t clear that the spacecraft trajectory does
not intersect with either the Earth’s or the Moon’s surface. This analysis is
best performed in Earth- or Moon-centered coordinate systems which trans-
late with the Earth or Moon and study only the portion of the trajectory near
closest approach.

As a comparison, another Earth-Moon trajectory is shown in Figure 9.17. At
periselenium, the body m has a Moon surface miss distance of 884 km and
the critical L3 velocity of 1.872 km/s.

Earth
Moon

Zero-Velocity Contour
which touches L3

L3

x

y

ω

Unreachable
Region

Figure 9.17: Subcritical Earth-Moon Trajectory as seen by Rotating
Reference Frame

This trajectory has a close approach with the critical L3 surface, meaning
that at that point the relative velocity of m as seen by the rotating frame
is close to zero. Even though the energy state of this trajectory is less than
the previous one, it is clearly less desirable for mission planning. The closest
approach to the Moon and especially to Earth are much larger. This would
require additional maneuvers out of Earth and Moon parking orbits to reach
the this trajectory. A quick numerical study shows that it is impossible to
reach the Moon from a tight Earth parking orbit with a sub-critical L3 energy
state.

9.2.3 Lagrange Libration Point Stability

Of particular interest is whether motions near the Lagrange stationary points
Li are stable solutions of the relative equations of motion. The question is:
If a body starts out at rest near a Lagrange libration point, will it remain in
the vicinity or will it wander off over time? If the motions are stable, one
could expect that it would take less fuel for a spacecraft to maintain its relative
position there. Studying the zero velocity contours in Figures 9.9 and 9.10,
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initial guesses can be made as to the stability of the five libration points. Due
to the “saddle-point” nature of the zero-velocity contours touching L1, L2 and
L3, we can expect the first three Libration points to be unstable. Only the L4

and L5 Libration points of the equilateral triangle solution may by neutrally
stable. To study the stability of a particular Li point, we linearize the relative
equations of motion about Li and check whether any eigenvalues of the linearized
plant matrix have positive, real components. To simplify the development, the
non-dimensional equations of motion in Eq. (9.86) are written in vector form as

oo
r +[ã]

o
r +[ã]2r = −1− µ

ρ3
1

(r − r1) −
µ

ρ3
2

(r − r2) = f(r) (9.97)

where r = (x, y, z)T , r1 = (−µ, 0, 0)T , r2 = (1 − µ, 0, 0)T and Ω = (1, 0, 0)T

is a non-dimensionalized angular velocity vector. Let the departure motion δr
about a point r0 be defined as

δr = r − r0 (9.98)

Then the linearized departure motion about r0 is given by

δ
oo
r +[Ω̃]δ

o
r +[Ω̃]2δr =

∂f

∂r

∣
∣
∣
∣
r0

δr (9.99)

To evaluate the partial derivative of f with respect to r, the following partial
derivative is useful:

∂ρi
∂r

=
1

ρi
(r − ri)

T (9.100)

Linearizing the force vector f about r0 then yields

F =
∂f

∂r

∣
∣
∣
∣
r0

=
1 − µ

ρ5
1

(
3(r − r1)(r − r1)

T − ρ2
1[I3×3]

)

+
µ

ρ3
2

(
3(r − r2)(r − r2)

T − ρ2
2[I3×3]

)
(9.101)

By defining the state vector X as

X = (δr, δ
o
r)T (9.102)

we write the equations of motion in Eq. (9.99) in first order state space form

o

X= [M(r0)]X (9.103)

with the plant matrix [M ] defined as

[M(r0)] =

[
03×3 I3×3

F (r0) − [Ω̃]2 −2[Ω̃]

]

(9.104)
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By evaluating [M ] at the five Lagrange libration points and checking the corre-
sponding eigenvalues for positive real parts, we are able to make some statements
concerning the local stability of motion near these points.

Let us first investigate the stability of the collinear L1, L2 and L3 Lagrange
libration points. Let r0 = (x0, 0, 0)T be a position vector of one of these station-
ary points. Since for each of these y0 = z0 = 0, the terms ρ1 and ρ2 evaluated
at r0 are

ρ1(r0) = |x0 + µ| ρ2(r0) = |x0 − 1 + µ| (9.105)

Evaluating the matrix [F ] at r0 we then find

[F (r0)] =





2E 0 0
0 −E 0
0 0 −E



 (9.106)

with the constant positive scalar E defined as

E(r0) =
1 − µ

ρ3
1(r0)

+
µ

ρ3
2(r0)

(9.107)

Substituting Eq. (9.106) into Eq. (9.104) and computing the six eigenvalues of
[M ], we find

λ2
1,2,3,4 =

E − 2 ±
√

9E2 − 8E

2
(9.108)

λ2
5,6 = −1 (9.109)

The collinear stationary points are unstable if Eq. (9.108) is positive, since this
results in one of the eigenvalues having a positive real root. For Eq. (9.108) to
be positive, then

(2E + 1)(E − 1) > 0 (9.110)

must be true. Since E > 0, this condition can simplified to

E > 1 (9.111)

It has been shown that E > 1 holds for all possible values of µ between 0 and
0.5, for all collinear stationary points.1 Some of the first four eigenvalues in
Eq. (9.108) have positive real parts. Therefore all collinear Lagrange libration
points must be considered unstable.

To study the stability of the L4 and L5 Lagrange libration points, we note
that for the non-dimensional equilateral triangle the relative distances ρi are

ρ1 = ρ2 = 1 (9.112)

The position vector r0 of L4 and L5 is given by

r0 =





1
2 − µ

±
√

3
2

0



 (9.113)
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where the negative sign corresponds to the L5 case. Substituting Eqs. (9.112)
and (9.113) into Eq. (9.101), the [F ] matrix is computed for these Lagrange
points as

[F (r0)] =
1− µ

4





−1 ±3
√

3 0

±3
√

3 5 0
0 0 −4



+
µ

4





−1 ∓3
√

3 0

∓3
√

3 5 0
0 0 −4



 (9.114)

Using Eq. (9.114) in Eq. (9.104), we find that the eigenvalues of [M(r0)] are the
same for both L4 and L5.

λ2
1,2,3,4 =

−1 ±
√

1 − 27µ(1− µ)

2
(9.115)

λ2
5,6 = −1 (9.116)

For the eigenvalues in Eq. (9.115) to be purely imaginary, it is necessary that

1 > 1 − 27µ(1− µ) > 0 (9.117)

A quick numerical check shows that the upper bound is always satisfied. Since
0 < µ ≤ 0.5, the maximum permissible µ such that the right inequality of
Eq. (9.117) is still satisfied is

µmax =
1

2
− 1

6

√

23

3
≈ 0.0385209 (9.118)

Since for the Earth-Moon system µ ≈ 0.01230, motions near these L4 and L5

points are neutrally stable in their close vicinity. Using the definition of µ, the
condition in Eq. (9.117) can also be written as2

m1

m2
+
m2

m1
≥ 25 (9.119)

Defining α to be the direct ratio of m1 and m2, the minimum ratio necessary
for Eq. (9.119) to be true is

αmin =
25 + 3

√
69

2
≈ 24.9599 (9.120)

This implies for motion near the corresponding L4 and L5 Lagrange libration
points to be neutrally stable, the larger mass m1 must be at least roughly 25
times larger than m2.

Nature has provided us with proof that the equilateral triangle configuration
of the circular restricted three-body problem is indeed neutrally stable. In the
Sun-Jupiter system (µ ≈ 0.001) a group of asteroids called the Trojans have
been found in 1906 at the corresponding L4 and L5 libration points; a group of
five were detected at L4 and a group of ten at L5. Since then, over 1000 Trojan
asteroids have been found at L4 and L5, providing nature’s very significant
empirical statement regarding the stability of motion near L4 and L5. All of
these asteroids oscillate in an apparently neutrally stable manner in the vicinity
of these stationary points.



SECTION 9.3 PERIODIC STATIONARY ORBITS 357

Example 9.7: This example illustrates the neutral stability of the Earth-
Moon L4 Lagrange libration points. The initial position vector r(t0) touches
the zero relative velocity surface with C = 2.9884.

r(t0) = (0.4925060, .85, 0)T

The resulting motion is illustrated to scale with Earth and Moon in Fig-
ure 9.18.
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spent on trying to find periodic stationary orbits of this three-body problem.
These orbits form closed three-dimensional curves and remain fixed as seen by
the rotating reference frame F . Thousands such orbits have been found for
various values of µ, not all of them are necessarily of practical value. It turns
out that these stationary periodic orbits can be grouped into families of orbits
which help to explain the more general classes of orbits for this restricted three-
body problem. An excellent treatise on this topic is Victor Szebehely’s book
entitled Theory of Orbits, The Restricted Problem of Three Bodies.3 However,
presenting these very intriguing orbits is beyond the scope of this book.

To appreciate the flavor of these nonlinear periodic motions, an interesting
stationary periodic lunar orbit is shown in Figure 9.19. This type of orbit
is commonly referred to as a “halo” orbit for obvious reasons. As seen from
Earth, this orbit describes a ring or “halo” about the Moon. Where previously
we were typically illustrating planar trajectories between the Earth and Moon,
this lunar orbit illustrates a three-dimensional trajectory. As seen from Earth
(y−z plane view in Figure 9.19(ii)) the closed flight path has a shape similar to
an ellipse with the moon in what would be the focal point. In the side view in
Figure 9.19(iii) it is apparent that the space curve is essentially located on the
far side of the moon between the moon and L3. Also, the “orbit plane” is not flat
but curved away from the Earth and Moon toward L3. By always being in line
of sight with Earth and hovering behind the moon, this lunar halo trajectory
would be a great parking orbit for a lunar communications satellite. Currently, if
any spacecraft travels to the far side of the Moon all communications cease. For
future missions to the moon and establishing permanent bases and installations
there, having a continuous communication capability between Earth and Moon
would be essential. In particular, the far side of the moon is a superb location
to place a deep-space radio telescope. However, since the Moon doesn’t rotate
as seen by Earth, communicating with this installation would be impossible
without a communications satellite in lunar orbit.

For a periodic orbit to be practically useful, its stability must also be in-
vestigated. Since the two massive bodies never precisely have circular orbits
about their system mass center, and often there are other bodies such as plan-
ets or the sun which exert a small influence on the three-body system, it must
be assumed that small external influences are always present. Also, we observe
that launch errors result in imperfect initial conditions. Therefore placing a
spacecraft in a near-periodic orbit or near a libration point, a periodic orbit
correction must be expected to maintain the desired trajectory. The frequency
of these corrections would depend on stability of the stationary orbit. Roy1

outlines a systematic process for searching out periodic orbits in the three-body
problem, and Breakwell4 provides an approach for studying orbital stability.

9.4 The Disturbing Function

When one celestial body dominates the motion of other bodies, it is often conve-
nient to write the position vectors of these other bodies relative to the dominant
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In this section, the motion of each body is not restricted as was the case
with the previous cases. Also, we now consider a more general problem where
n bodies are present. However, we do assume that one of the bodies plays a
dominant role on the motion of a set of bodies. Without loss of generality, let
us take m1 to be the dominant body. From Eq. (9.3), its equations of motion
are given by

r̈1 = G

n∑

j=2

mj

r31j
r1j (9.121)

where ri are inertial position vectors of each body and the relative position
vectors rij are defined as

rij = rj − ri = r1j − r1i (9.122)

The equations of motion of each remaining body is given by

r̈i = G
n∑

j=1,j 6=i

mj

r3ij
rij for i = 2, . . . , n (9.123)

Subtracting Eq. (9.123) from (9.121), the relative equations of motion of the
n− 1 bodies relative to m1 are found to be

r̈1i = r̈i − r̈1 = G




m1

r3i1
ri1 +

n∑

j=2,j 6=i

mj

r3ij
rij −

n∑

j=2,j 6=i

mj

r31j
r1j −

mi

r31i
r1i



 (9.124)

Using Eq. (9.122) and rij = −rji these relative equations of motion are rewritten
as

r̈1i +
G(m1 +mi)

r31i
r1i = G

n∑

j=2,j 6=i
mj

(

r1j − r1i

r3ij
− r1j

r31j

)

(9.125)

If only two bodies are present, note that the standard Keplerian two-body equa-
tions of motion are retrieved. The gravitational effect of bodies other than m1

and mi appear a disturbance terms in this formulation.

Example 9.8: Consider the Earth-Moon-Sun three-body system with Earth
being mass m � , the moon m � being the mass moving in Earth’s proxim-
ity, and the sun m � being the external influence of this two-body system.
Eq. (9.125) in this case reduces to

r̈ � � +
G(m � +m � )

r3� � r � � = Gm �

(
r � � − r � �

r3��� − r � �

r3� �

)

At first glance it may seem like the sun’s gravitation influence would be very
large in these relative equations of motion since m � ,m � � m � . However,
due to the large relative distance involved between the sun and the Earth
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and Moon we can make the approximation r ��� ≈ r � � . Therefore, the lunar
relative equation of motion are approximated as

r̈ � � +
G(m � +m � )

r3� � r � � ≈ −Gm �
r � �
r3� �

For this Earth-Moon-Sun three-body system, the gravitational acceleration
magnitudes of the Earth-Moon attraction and the solar attraction are related
through

m � r � �
r3� �

≈ 0.00558
(m � +m � )

r2� �
Therefore the solar gravitational attraction on the moon is over two orders of
magnitude smaller than the relative Keplerian Earth-Moon motion attraction.

As is the case in Keplerian motion, it is possible to write the acceleration
expression as the gradient of a potential function. The gravitational potential
function Vi, which leads to a Keplerian m1 −mi motion, is given by

Vi(r1i) = −G(m1 +mi)

r1i
(9.126)

Note that Eq. (9.126) is identical to the potential function defined in Eq. (8.47).
Computing the gradient of Vi with respect to the position vector r1i we find

∇r1i
Vi =

G(m1 +mi)

r31i
r1i (9.127)

Eq. (9.127) provides the acceleration due to the gravitational attraction between
m1 and mi. To compute the disturbance acceleration due the the remaining
(n− 2) bodies, we define the scalar disturbance function Ri to be

Ri = G

n∑

j=2,j 6=i
mj

(

1

rij
− r1i · r1j

r31j

)

(9.128)

The gradient of the disturbance function Ri produces the acceleration due the
gravitational attraction with the remaining bodies.

∇r1i
Ri = G

n∑

j=2,j 6=i

(

r1j − r1i

r3ij
− r1j

r31j

)

(9.129)

Using Eqs. (9.127) and (9.129), the equations of motion of mi relative to m1

are written compactly as

r̈1i = −∇r1i
(Vi −Ri) (9.130)
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Example 9.9: The gravitational solar disturbance acceleration the relative
motion of the Moon experiences in orbit about the Earth was very small in
Example 9.8 because of the large distances involved between the sun and the
Earth-Moon system. In this example, we treat the sun (m � ) as the dominant
mass influencing the motion of the Earth (m � ). The gravitational effect of
the moon (m � ) on the relative motion of Earth about the sun is now treated
as a perturbation. The relative equations of motion of the Earth about the
sun are written as

r̈ � � +
G(m � +m � )

r3� �
r � � = Gm �

(
r � � − r � �

r3� �
− r � �
r3� �

)

The magnitude of the perturbative acceleration due to the moon has the
upper bound

Gm �
(
r � � − r � �

r3� �
− r � �
r3� �

)

≤ Gm �
(

2

r2� �
− 1

r2� �

)

≈ 2Gm �
r2� �

where the approximation is done since r � � � r � � . Note that this upper
bound on lunar influence is computed when the Moon lies perfectly between
the Sun and Earth or on the far side of the Earth. Therefore the acceleration
magnitudes of the two-body solution and the lunar gravitational attraction
relate through

2m �
r2� �

≈ 0.0112
(m � +m � )

r2� �
During periods of strongest influence, the gravitational lunar attraction of the
Earth only affects its orbit about the sun by about 1 percent.

Problems

9.1 Compute where the Moon would have to be located relative to the Earth for it
to continuously be in a “full Moon” state as seen from Earth, and ignoring the
Earth’s shadow. Treat the Sun-Earth-Moon as a three-body system.

9.2 Assume that the bodies m1 = 2m2 = 3m3 are in elliptic orbits about their
system center of mass where m1 has the mass of Earth.

a) Choose a coordinate system and compute the location of each mass if they
are either in a triangular or collinear configuration.

b) Assuming that the initial velocity magnitude of each body is given by
Eq. (9.56), numerically compute the resulting orbits if the initial velocity
vectors form a 30o angle with the respective radial position vectors.

c) Repeat the previous task with the initial velocity vectors forming 90o angles
with the corresponding radial position vectors.
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9.3 Set up the three masses m1 = 2m2 = 3m3 in an equilateral triangle configuration
with a zero angular velocity about the system mass center.

a) Verify that the net sum force Fi acting on each body mi indeed points
from each mass directly to the system mass center.

b) Verify that the force magnitude Fi of each mass is equal to GMi/r
2
i where

the equivalent masses Mi are defined in Eqs. (9.38) through (9.40).

9.4 For the Sun-Earth two-body system, compute the corresponding libration points
in both dimensional and non-dimensional units.

9.5 Derive the non-dimensional equations of motion in Eq. (9.86) from Eq. (9.69).
Show all algebra.

9.6 Treating the Sun-Earth-spacecraft system as a circular restricted three-body prob-
lem, what is the minimum relative energy v2 necessary that a spacecraft must
have to travel in theory from Earth to the sun?

9.7 For the Sun-Earth system, compute the corresponding zero-velocity surfaces that
touch the L1, L2 and L3 points.

9.8 ♣ Assume the Sun-Jupiter system two-body system is describing circular orbits
about their center of mass. The radial distance between Jupiter and the sun is
778 · 106 km. The mass of Jupiter is m � = 1.9 · 1027 kg and the mass of the
sun is m � = 1.989 · 1030 kg.

a) Compute the five stationary Lagrange points as seen by the rotating coor-
dinate system.

b) Investigate the stability of each point placing an object in the neighborhood
of each libration point and numerically solving for the resulting motion.
Make conclusions on the “level” of stability or instability.

9.9 Consider the Keplerian two-body problem where the inertially fixed mass m1 is
a very massive body as compared to the second mass m. The gravitational
potential of m is assumed to be too small to affect the motion of m1.

a) Write the energy (or vis-viva) equation in a form analogous to Eq. (9.76)
or (9.89).

b) Investigate the zero-velocity surfaces for this two-body problem. What
type of orbit must m have about m1 for it to reach this surface?

9.10 Consider the Earth-Moon system. Compute the three locations where the cen-
trifugal acceleration is canceled exactly by the combined gravitational attraction
of Earth and Moon. Verify that these three locations are indeed the three collinear
Lagrange stationary solutions of the circular restricted three-body problem.
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Chapter Ten

Gravitational Potential
Field Models

Keplerian motion is equivalent to the gravitational two body problem; i.e. the
situation where the motion of a particle of unit mass is determined by a point
mass gravitational field V0 = −Gm/r generated by a second body ( a point mass
or spherically symmetric finite body) of mass m. The scalar parameter r is the
relative distance between the two center of masses and G is the universal gravity
constant. This type of gravity field is also sometimes referred to as an inverse
square gravity field, since the gravitational force drops of with the square of the
relative distance. The study of the motion induced by such simple gravity fields
has led to the well known analytical solution of the two body problem. The
essential features of this solution were discovered empirically and geometrically
by Kepler who published these results in 1609. Newton subsequently derived an
analytical solution based upon calculus differential equations, and the universal
law of gravitation.

However, modern celestial mechanics applications often require orbit pre-
cision which exceeds that obtained by the simplified Keplerian motion. For
example, satellites in near Earth orbit are subject to a variety of gravitational
attractions besides the point mass attraction of Earth. Since the Earth’s shape
is not perfectly spherical, but rather more nearly that of an oblate ellipsoid,
there is more mass along the equator than there is along the polar regions. This
flattening out of the Earth is the cause of various orbit perturbations and pre-
cessions. However, orbit precession does not necessarily have to be a mission
design nuisance, it can act in our favor. It is possible to set up a satellite orbit
inclination angle such that the orbit precesses at the same rate as the Earth is
traveling about the Sun. These orbits are called Sun-synchronous orbits and
can, for example, allow the spacecraft to remain in continuous sunlight. Besides
the non-spherical shape of Earth, its non-homogeneous mass distribution fur-
ther leads to small irregular variations in the Earth’s gravity field. This chapter
develops methods to express the gravity potential field about an arbitrary finite

365
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body. A typical starting point is to write the actual gravity potential V as

V (r) = V0(r) −R(r) (10.1)

where V0(r) is the reference potential, typically the dominant point mass po-
tential and R(r) is the potential function due to all other variations from the
spherical homogenous idealization of the Earth’s mass distribution. More gen-
erally, R(r) could represent all conservative force potentials other then V0(r).
This could include, for example, attractions by other solar system bodies such
as the Sun, Moon, Jupiter, and so on, because it is also obviously possible for
the ideal Keplerian gravity field to be significantly perturbed by the presence of
additional celestial bodies. Which perturbations must be included depends on
many things, but most strongly upon: (i) where is the spacecraft relative to the
other solar bodies, (ii) what level of precision is sought. For example, satellites
in higher Earth orbit are obviously perturbed by the gravitational attraction
of the Moon and the Sun. The motion of Jupiter’s moons is affected by their
mutual presence. Beyond the two-body theory, unfortunately there exists no
general analytical theory to describe the orbits of a multi-body system. Some
special three-body solutions were discussed in the previous chapter. However,
clearly one can frequently treat the Moon or the Earth as a single body and
ignore the presence of other planets and moons in the solar system if one is
close enough to a particular body. The last section of this chapter outlines a
method to compute the gravitational sphere of in
uence of a celestial body. For
example, this theory provides measures of the regions in which satellite motion
is dominated by Earth’s gravity field, and alternatively, the regions in which
motion is dominated by either the gravity field of the Moon or the Sun.

10.1 Gravitational Potential of Finite Bodies

Assume that a celestial body has an arbitrary shape and composition as shown
in Figure 10.1. The coordinate system C : {ı̂ξ, ı̂η, ı̂ζ} is fixed with the body. Note
that its coordinate origin is not necessarily fixed to the center of mass at this
point. We would like to determine the gravitational potential that a one would
experience at an arbitrary point P outside the body. At its worst case, the true
body may be of arbitrary shape such as is the case when attempting to orbit
about a comet or asteroid. However, we will see that the mathematics greatly
simplifies when we can approximate the body as being axially symmetric.

Any finite body can be considered to be the sum of an infinite number of
infinitesimal mass components dm. Since each dm is infinitesimal, it produces
an elementary point differential mass gravitational field. The gravitation field
dV that is experienced at point P due to the differential mass dm is then given
by

dV = −G dm

s
(10.2)
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Figure 10.1: Gravity Potential of an Arbitrary Body using Cartesian
Coordinates

where G is the universal gravitational constant and s is the magnitude of the
relative position vector between dm and P . Note that this gravity potential
definition yields a gravity potential per unit mass. Thus, taking the gradient
of V , as is done in Eq. (2.5), will yield the acceleration a body will experience
at point P . To obtain the gravitational potential energy expression between
the mass dm and a mass at point P as discussed in chapter 2, we would use
Eq. (2.6). Using the gradient of the gravitational potential function shown in
Eq. (10.2) as the inertial acceleration implicitly assumes that the gravitation
field of body B is not affected by the small bodies moving in its vicinity. While
using the relative position vector s to express the infinitesimal potential field
of dm, it is necessary to integrate this result to yield the total gravitation field.
The integration is facilitated if we express all vectors in the body fixed frame C.
Thus the relative distance s is written as

s = r − ρ (10.3)

Note s2 = s ·s = r2 +ρ2−2ρ ·r, leading to the law of cosines; the scalar relative
distance s is then expressed as

s = r

(

1 +
(ρ

r

)2

− 2
(ρ

r

)

cos γ

)1/2

(10.4)

Substituting Eq. (10.4) into Eq. (10.2), the gravitational potential of dm is
expressed as

dV (r,ρ, γ, dm) = − G dm

r
(

1 +
(
ρ
r

)2 − 2
(
ρ
r

)
cos γ

)1/2
(10.5)

Before we attempt to integrate the gravitational potential field of the entire
body, we digress to the introduce a convenient definition of the Legendre poly-
nomials Pk(ν). Expanding (1− 2νx+ x2)−1/2 using the binomial theorem, and
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collecting on xk, we are led to

(1 − 2νx+ x2)−1/2 =

∞∑

k=0

Pk(ν)x
k (10.6)

Note that the infinite series will only converge if |x| < 1. Legendre polynomials
are a classical set of orthogonal polynomials which can be computed recursively.
From Eq. (10.6), it is easy to verify that the first four Legendre polynomials are
given by

P0(ν) = 1 (10.7a)

P1(ν) = ν (10.7b)

P2(ν) = (3ν2 − 1)/2 (10.7c)

P3(ν) = (5ν3 − 3ν)/2 (10.7d)

The higher order Legendre polynomials can be obtained using the recursive
formula

Pn+1(ν) =
2n+ 1

n+ 1
νPn(ν) − n

n+ 1
Pn−1(ν) (10.8)

These polynomials also satisfy the convenient zero mean condition

∫ 1

−1

Pk(ν)dν = 0 (10.9)

as well as the orthogonality condition

∫ 1

−1

Pj(ν)Pk(ν)dν = 0 for j 6= k (10.10)

Using the Legendre polynomial identity in Eq. (10.6), the gravitational po-
tential of dm is rewritten as the infinite sum

dV (r,ρ, γ, dm) = −G dm

r

∞∑

k=0

(ρ

r

)k

Pk(cos γ) (10.11)

Note that we are assuming here that ρ/r is less than one that the point of
interest r is outside of the body B. Finally, integrating over the entire body,
we eliminate dependence on ρ, γ and dm and obtain a general solution of the
gravitation potential field of an arbitrary body B.

V (r) = −G m

r
− G

r

∞∑

k=1

∫∫∫

B

(ρ

r

)k

Pk(cos γ)dm (10.12)

Note that this solution is valid for a body of arbitrary shape and arbitrary
density variation. The only restriction applied so far is that the coordinate
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system C is fixed in the body. An immediate benefit of using the orthogonal
Legendre polynomials in this infinite series expression is that they allow us to
break down the gravity field components as a series of successively less relevant
(typically) contributions. Since ρ/r < 1, the contribution of the k-th element is
multiplied by (ρ/r)k and goes to zero as k grows infinitely large. It is evident
that as r → ∞, the Gm/r term dominates Eq. (10.12). Therefore an arbitrary
body’s potential approaches the point mass potential as r → ∞. This parti-
tioning of the gravity potential field function is used extensively in the following
approximation due to MacCullagh.

10.2 MacCullagh’s Approximation

In the following discussion we only consider an approximation to the gravi-
tational potential field model introduced by James MacCullagh (1809-1847),
a professor of mathematics and natural philosophy at the Trinity College in
Dublin, Ireland. This approximation involves retaining only the first three terms
of the infinite series expression of the gravitational potential field expression.
Substituting the first three Legendre polynomial definitions in Eq. (10.7) into
Eq. (10.12) yields

V (r) ≈ − G m

r
︸ ︷︷ ︸

term 1

− G

r2

∫∫∫

B
ρ cos γ dm

︸ ︷︷ ︸

term 2

− G

2r3

∫∫∫

B
ρ2(3 cos γ2 − 1) dm

︸ ︷︷ ︸

term 3

(10.13)

Note that term 1 is simply the point mass contribution of the gravitational
potential field. This assumes that the body generating the gravitation field can
be modeled as a point with mass m.

Next we investigate term 2. Since the orientation of the body fixed coordinate
system C is arbitrary, we chose to let the ξ axis be aligned with the point P
position vector r. In this case ξ = ρ cos γ and term 2 is rewritten as

term 2 =
G

r2

∫∫∫

B
ξ dm (10.14)

If the coordinate system origin of C is constrained to be the body center of mass
(see Eq. (2.77)), then term 2 is identified to be proportional to the first mass
moment of the body B and is thus zero.

term 2 = 0 (10.15)

A more subtle truth is that when leaving term 2 out of the gravity model which
is fit to precisely measured orbits, the coordinate origin has implicitly been
chosen at the mass center.

Before investigating term 3, the following body B inertia definitions are in-
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troduced:

Iξξ =

∫∫∫

B
(η2 + ζ2) dm (10.16a)

Iηη =

∫∫∫

B
(ξ2 + ζ2) dm (10.16b)

Iζζ =

∫∫∫

B
(ξ2 + η2) dm (10.16c)

A convenient identity is that the sum of Iii is the trace of the inertia matrix:

Iξξ + Iηη + Iζζ = 2

∫∫∫

B
ρ2 dm (10.17)

Further, the polar inertia of body B about the vector r is

Ir ≡
∫∫∫

B
ρ2 sin2 γ dm (10.18)

Using the trigonometric identity cos2 γ = 1 − sin2 γ, the term 3 expression is
rewritten as

term 3 =
G

2
r3
∫∫∫

B
(2ρ2 dm− 3ρ2 sin2 γ dm) (10.19)

Making use of the inertia definitions in Eqs. (10.16) and (10.18), term 3 is
expressed as the elegant form

term 3 =
G

2r3
(Iξξ + Iηη + Iζζ − 3Ir) (10.20)

Thus, the gravitational potential field of an arbitrary body with a body fixed
coordinate system centered at the body center of mass is approximated as

V (r) ≈ −G m

r
− G

2r3
(Iξξ + Iηη + Iζζ − 3Ir) + . . . (10.21)

Note that if the body B is spherically symmetric, then Iξξ = Iηη = Iζζ = Ir and
term 3 vanishes. This result indicates that the gravitational potential field of a
perfectly spherical object can always be modelled as that of a point mass. In
fact, the expression of term 3 provides a measure of asymmetry of body B from
the ideal spherically symmetric case.

In its current form, however, the gravitational potential function approxi-
mation is not very convenient since Ir depends on the location of the external
reference point P . To avoid this, we write Ir as

Ir =

∫∫∫

B
ρ2 sin2 γ dm =

∫∫∫

B
ρ2(1 − cos2 γ) dm (10.22)
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In terms of C coordinate frame components, let r = (x, y, z)T and ρ = (ξ, η, ζ)T .
Note then that cos γ can be written as

cos γ =
ρ · r
ρ r

=
ξx+ ηy + ζz

ρr
(10.23)

After substituting Eq. (10.23) into Eq. (10.22) and expanding we obtain

Ir =
1

r2

∫∫∫

B

[

x2(η2 + ξ2) + y2(ξ2 + ζ2) + z2(ξ2 + η2)

− 2xyξη − 2xzξζ − 2yzηζ
]

dm (10.24)

Noting that x, y and z can be taken outside of the body integral, and making
use of the cross product of inertia definitions

Iξη = −
∫∫∫

B
ξηdm (10.25a)

Iξζ = −
∫∫∫

B
ξζdm (10.25b)

Iηζ = −
∫∫∫

B
ηζdm (10.25c)

the polar inertia of body B about the axis r is written as

Ir =
1

r2

[

Iξξx
2 + Iηηy

2 + Iζζz
2 + 2(xyIξη + xzIξζ + yzIηζ

]

(10.26)

The advantage of this expression of Ir is that it is written in terms of the in-
ertias of B with only the (x, y, z) position of P left unspecified. Note that the
expression in Eq. (10.22) involved computing the polar inertia for every new
reference point P . To avoid having to keep track of the products of inertia,
here we assume at this point that the coordinate system C is a principal coordi-
nate system which diagonalizes the inertia matrix of the body B. Substituting
Eq. (10.26) into Eq. (10.21), the MacCullagh Gravity Potential Approximation
is given by

V (x, y, z) = −G m

r

− G

2r3

[

Iξξ

(

1 − 3
x2

r2

)

+ Iηη

(

1 − 3
y2

r2

)

+ Iζζ

(

1 − 3
z2

r2

)]

(10.27)

The potential function R(r) is then approximated as

R(r) =
G

2r3

[

Iξξ

(

1 − 3
x2

r2

)

+ Iηη

(

1 − 3
y2

r2

)

+ Iζζ

(

1 − 3
z2

r2

)]

(10.28)

Note that the gravity field of the arbitrary body B is defined completely in terms
of its mass m and its principal inertias Iξξ , Iηη and Iζζ . Of course, in practice it
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is rather difficult to obtain the precise inertias of a celestial body. However, it
is possible to estimate these values by observing the natural motion of a small
satellite about a larger celestial body.

To compute the acceleration ap experienced by a small body in the vicinity
of B, we compute the negative gradient of V .

aP (x, y, z) = −∇V (x, y, z) = −∂V
∂x

ı̂ξ −
∂V

∂y
ı̂η −

∂V

∂z
ı̂ζ (10.29)

Making use of the fact that

∇
(

1

r

)

= − 1

r2
ı̂r (10.30)

where ı̂r is the unit directional vector r, the acceleration a is written as

aP = −Gm
r2

ı̂r −
3G

2r4

(

Iξξ + Iηη + Iζζ − 5

(

Iξξ
x2

r2
+ Iηη

y2

r2
+ Iζζ

z2

r2

))

ı̂r

− 3G

r5
(Iξξxı̂ξ + Iηηyı̂η + Iζζzı̂ζ) (10.31)

Substituting Eq. (10.26), we are able to write the acceleration in terms of prin-
cipal inertias and polar inertia Ir .

aP = −Gm
r2

ı̂r −
3G

2r4
(Iξξ + Iηη + Iζζ − 5Ir) ı̂r

− 3G

r5
(Iξξxı̂ξ + Iηηyı̂η + Iζζzı̂ζ) (10.32)

Note that the last expression of either Eqs. (10.31) or (10.32) is the non-radial
perturbing acceleration. However, if Iξξ = Iηη = Iζζ , then the second and third
terms combine to yield zero. This reiterates that the gravitational potential
field of a spherical body of mass m is identical to that of a particle of mass m.

10.3 Spherical Harmonic Gravity Potential

While MacCullagh’s approximation defines the gravity potential field in terms of
the body inertias, an alternate approach is needed to model the general gravity
field in terms of a spherical harmonic series. Instead of writing the infinitesimal
body mass position components as Cartesian coordinates, the corresponding po-
sition vector is now expressed in terms of spherical coordinates as ρ = ρ(ρ, λ, β)
as shown in Figure 10.2. Analogously, the position vector of P is written as
r = r(r, θ, φ). The angle γ is the angle between the ρ and r position vectors as
in the previous development.

Recall the general gravity potential field expression in Eq. (10.12) for an
arbitrary body B.

V (r) = −G m

r
− G

r

∞∑

k=1

∫∫∫

B

(ρ

r

)k

Pk(cos γ) dm (10.33)
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Figure 10.2: Gravity Potential of an Arbitrary Body using Spherical
Coordinates

Using the body-fixed spherical coordinates ρ, λ and β, the differential mass
element dm is expressed as

dm = D(ρ, λ, β)ρ2 cosβ dρ dβ dλ (10.34)

with D = D(ρ, λ, β) being the local density of B. Since the gravity potential
is expressed as an infinite expansion using Legendre polynomials depending on
cos γ, it is convenient to express cos γ as a function of the angular coordinates
of the ρ and r position vectors. Using the spherical trigonometric law of cosines
we write

cos γ = sinφ sinβ + cosφ cosβ cos(θ − λ) (10.35)

To further facilitate the development of the gravitational spherical harmonic
series, we make use of the definition of the associated Legendre Functions.1

P jk (ν) = (1 − ν2)
1

2
j d

j

dνj
(Pk(ν)) (10.36)

The parameter j is referred to as the order of the associated Legendre function,
while k is referred to as the degree. Note that zeroth order associated Legendre
functions are simply the Legendre polynomials.

P 0
k (ν) ≡ Pk(ν) (10.37)
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Further, since Pk(ν) is a polynomial expression of degree k, then

P jk = 0 ∀ j > k

must be true. The associated Legendre functions for Legendre polynomials up
to third degree as explicitly given as:

P 1
1 (ν) =

√

1 −ν2 P 1
2 (ν) = 3ν

√

1−ν2 P 1
3 (ν) =

3

2

√

1 −ν2(5ν2 − 1)

(10.38a)

P 2
2 (ν) = 3(1−ν2) P 2

3 (ν) = 15ν(1−ν2) (10.38b)

P 3
3 (ν) = 15(1−ν2)

3

2 (10.38c)

For our present study we set ν = sinα. The corresponding associated Legendre
functions up to second degree are

P 1
1 (sinα) = cosα (10.39a)

P 1
2 (sinα) = 3 sinα cosα (10.39b)

P 2
2 (sinα) = 3 cos2 α (10.39c)

Notice that the first Legendre polynomial can now be written in terms of asso-
ciated Legendre functions by making use of the spherical trigonometric identity
in Eq. (10.35).

P1(cos γ) = cos γ = P1(sinφ)P1(sinβ) + P 1
1 (sinφ)P 1

1 (sinβ) cos(θ − λ) (10.40)

To write the second Legendre polynomial in terms of associated Legendre func-
tions, we first express cos2 γ as

cos2 γ =
1

2

(

3 sin2 φ sin2 β − sin2 φ− sin2 β + 1
)

+
1

2
cos2 φ cos2 β cos (2(θ − λ)) + 2 sinφ cosφ sinβ cosβ cos(θ − λ) (10.41)

Using Eqs. (10.39) and (10.41), the second Legendre polynomial is expressed as

P2(cos γ) =
1

2
(3 cos2 γ − 1) = P2(sinφ)P2(sinβ)

+
1

3
P 1

2 (sinφ)P 1
2 (sinβ) cos(θ − λ)

+
1

12
P 2

2 (sinφ)P 2
2 (sinβ) cos(2(θ − λ)) (10.42)

Carrying these expansion to higher degrees leads to the general addition theorem
for Legendre polynomials.1

Pk(cos γ) = Pk(sinφ)Pk(sinβ)

+ 2

k∑

j=1

(k − j)!

(k + j)!
P jk (sinφ)P jk (sinβ) cos(j(θ − λ)) (10.43)
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Substituting Eq. (10.43) into Eq. (10.33), and making use of the trigonometric
identity

cos(j(θ − λ)) = cos jθ cos jλ+ sin jθ sin jλ

the gravitational potential field is expressed in terms of spherical coordinates as

V (r, φ, θ) = −G m

r
−

∞∑

k=1

1

rk+1

(

AkPk(sinφ)

+
k∑

j=1

P jk (sinφ)
(

Bjk cos jθ + Cjk sin jθ
))

(10.44)

with the coefficients Ak (zonal harmonics) and Bjk and Cjk (sectorial harmonics)
defined as the following (k + 2)-th degree mass moments

Ak = G

∫∫∫

B
ρk+2D(ρ, λ, β)Pk(sinβ) cosβ dρ dβ dλ (10.45a)

Bjk = 2G
(k − j)!

(k + j)!

∫∫∫

B
ρk+2D(ρ, λ, β)P jk (sinβ) cos jλ cosβ dρ dβ dλ (10.45b)

Cjk = 2G
(k − j)!

(k + j)!

∫∫∫

B
ρk+2D(ρ, λ, β)P jk (sinβ) sin jλ cosβ dρ dβ dλ (10.45c)

Note that the gravity potential field expression in Eq. (10.44) separates the
position coordinates which depend on the body B mass distribution (i.e. Ak,
Bjk and Cjk) and the those which depend on the location of P (i.e. φ and θ).

Consider the body integrals of Eq. (10.45). If these integrals vanish, ob-
viously the gravitational potential field expression in Eq. (10.44) reduces to
−Gm/r. This occurs if the density is a function of ρ only; or, in other words,
when the body B is spherically symmetric with D = D(ρ). To establish this
result, let us first investigate the integrals for the common case where the body
is assumed to have an axis of symmetry. We chose this axis to be ı̂ζ . This
means that the density D(ρ, λ, β) = D(ρ, β) does not depend on the longitude
λ. Evaluating the λ integral first, Bjk and Cjk are expressed as

Bjk=2G
(k − j)!)

(k + j)!

∫ R

0

∫ π/2

−π/2
ρk+2D(ρ, β)P jk (sinβ) cosβ dβ dρ

(∫ 2π

0

cos(jλ)dλ

)

(10.46)

Cjk=2G
(k − j)!)

(k + j)!

∫ R

0

∫ π/2

−π/2
ρk+2D(ρ, β)P jk (sinβ) cosβ dβ dρ

(∫ 2π

0

sin(jλ)dλ

)

(10.47)

where R is the outer most radius of the body B. Since both λ integrals are zero,
we come to the conclusion that

Bjk = Cjk = 0 ∀ D = D(ρ, β) (10.48)
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for any body of revolution (i.e. cylinders, ellipsoids, etc.). Thus Bj
k and Cjk are

only non-zero if the body density depends on the longitude λ.
Investigating the integral Ak, we assume at this point that the body B is

spherically symmetric with D = D(ρ). Performing the longitude integration
first, we are able to write Ak as

Ak = 2πG

(
∫ R

0

ρk+2D(ρ)dρ

)(
∫ π/2

−π/2
Pk(sinβ) cosβdβ

)

(10.49)

Using the variable ν = sinβ, this integral is rewritten as

Ak = 2πG

(
∫ R

0

ρk+2D(ρ)dρ

)(∫ 1

−1

Pk(ν)dν

)

(10.50)

Using the Legendre polynomial zero mean condition in Eq. (10.9), the integrals
Ak are found to be zero for the spherically symmetric body case.

Ak = Bjk = Cjk = 0 ∀ D = D(ρ) (10.51)

Example 10.1: Imagine a planetary body which is hollow. In this example
we investigate what the gravity potential field will look like if a person is
inside this planetary body. The gravitational potential field of differential
mass element dm is given in Eq. (10.11) for the case where r > ρ and the
point of interest r is entirely outside of the planetary body. If the point of
interest is inside a hollow body and r < ρ, then we rewrite the differential
potential field expression in Eq. (10.5) as

dV (r,ρ, γ, dm) = − G dm

ρ

(

1 +
(

r
ρ

)2

− 2
(

r
ρ

)

cos γ

)1/2
(10.52)

Since r/ρ < 1, we are able to use the Legendre polynomial identity in
Eq. (10.6) to express the differential potential field of dm as an infinite series.

dV (r,ρ, γ, dm) = −G dm

ρ

∞∑

k=0

(
r

ρ

)k

Pk(cos γ) (10.53)

Integrating over the entire body B, the gravitational potential field V (r) is
given by

V (r) = −
∫∫∫

B

G

ρ
dm

︸ ︷︷ ︸

V0

−G
∞∑

k=1

∫∫∫

B

1

ρ

(
r

ρ

)k

Pk(cos γ)dm (10.54)

where the point of interest r interior to the hollow body. For the standard case
where r > ρ the term V0 becomes the standard inverse-square gravitational
attraction of a point mass. Note that for the present case where r < ρ this
term becomes a constant of the body B. The function V0 only depends on
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with Gkj being defined as

Gkj = 2G
(k − j)!

(k + j)!
(10.57)

Equivalent arguments regarding Ak, Bj
k and Cj

k can be made as were done
for the case where r > ρ. If the density function satisfies D = D(ρ, β), then
Bj

k and Cj
k will always be zero. This density function condition applies to any

body of revolution. Ellipsoids and sphere would be examples of such bodies.
Further, if the density function satisfies D = D(ρ), then the gravitational
parameter Ak will also be zero. An example of this would be a spherical shell
as shown in Figure 10.3. Note that in this case the gravitational potential
field V (r) experienced at any point r in the interior of this shell will be
the constant V0. Since the gravitational acceleration is the gradient of the
potential field function with respect to r, the gravitational acceleration will be
zero for any interior point. Assuming the spherically symmetric shell shown in
Figure 10.3 has a homogenous density D, the constant gravitational interior
potential V0 is

V0 = −GD2π
(
ρ2
2 − ρ2

1

)
(10.58)

A spacecraft inside this shell planetoid will be attracted to the planetoid mass.
However, the various gravitational forces will cancel each other at any interior
point due to the symmetry of the planetoid body.

If the origin of the coordinate system C is the body mass center, it can be
shown that A1 will always be zero. To do so, we substitute the dm definition in
Eq. (10.34) into Eq. (10.45a) with k set to 1.

A1 = G

∫∫∫

B
ρ sinβ dm (10.59)

Using analogous arguments that lead to Eq. (10.14) being zero, it is clear that
A1 is always zero if the coordinate system origin is at the mass center.

For a body with rotational symmetry, the gravitational potential field func-
tion V is then expressed as the sum of the point mass contribution and the
zonal harmonics.

V (r, φ) = −G m

r
−

∞∑

k=2

1

rk+1
AkPk(sinφ) (10.60)

Note that the rotation of this body about the symmetry axis does not affect the
gravity field. The physical reason is that the mass distribution is not changed
when a symmetric body is rotated about it’s symmetry axis. As a consequence,
if rotational symmetry is assumed, Earth rotation does not change the gravity
field and this greatly simplifies the equations of motion.

The conventional notation in the orbital mechanics literature for the zonal
harmonics is

Jk = −Ak
rkeq

(10.61)
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with req being the equatorial radius of body B. The gravity potential V now
takes on its most famous for:

V (r, φ) = −G m

r

[

1 −
∞∑

k=2

(req
r

)k

JkPk(sinφ)

]

(10.62)

Note that as the point P moves away from the body B (i.e. r → ∞), the effect
of the zonal harmonics diminish to zero quickly.

Practically speaking, it is essentially impossible to obtain values for Jk by
integration of its analytical expression, because we do not have an accurate
knowledge of the Earth’s mass distributionD(ρ, λ, β). Instead, these coefficients
are typically obtained by observing the motion of a satellite about the body and
then extracting these harmonics through an estimation method. For the Earth,
the first six zonal harmonics are given by1, 2

J2 = 1082.63 10−6

J3 = − 2.52 10−6

J4 = − 1.61 10−6

J5 = − 0.15 10−6

J6 = 0.57 10−6

The J2 harmonic, also referred to as the oblateness perturbation, is clearly the
dominant harmonic. It causes a highly noticeable precession of the near-Earth
satellite orbits.

Setting µ = G m, the gravitational perturbation function R(r) for the J2

through J6 gravitational perturbations is then given by

R(r) = − J2

2

µ

r

(req
r

)2 (
3 sin2 φ− 1

)

− J3

2

µ

r

(req
r

)3 (
5 sin3 φ− 3 sinφ

)

− J4

8

µ

r

(req
r

)4 (
35 sin4 φ− 30 sin2 φ+ 3

)

− J5

8

µ

r

(req
r

)5 (
63 sin5 φ− 70 sin3 φ+ 15 sinφ

)

− J6

16

µ

r

(req
r

)6 (
231 sin6 φ− 315 sin4 φ+ 105 sin2 φ− 5

)

(10.63)

Computing the gradient of R(r) and making use of z/r = sinφ, the perturbing
acceleration aJi

due to Ji is given in terms of inertial Cartesian coordinates as:2

aJ2
= −3

2
J2

( µ

r2

)(req
r

)2








(

1 − 5
(
z
r

)2
)
x
r

(

1 − 5
(
z
r

)2
)
y
r

(

3 − 5
(
z
r

)2
)
z
r








(10.64)



380 GRAVITATIONAL POTENTIAL FIELD MODELS CHAPTER 10

aJ3
= −1

2
J3

( µ

r2

)(req
r

)3








5
(

7
(
z
r

)3 − 3
(
z
r

))
x
r

5
(

7
(
z
r

)3 − 3
(
z
r

))
y
r

3
(

10
(
z
r

)2 − 35
3

(
z
r

)4 − 1
)








(10.65)

aJ4
= −5

8
J4

( µ

r2

)(req
r

)4








(

3 − 42
(
z
r

)2
+ 63

(
z
r

)4
)
x
r

(

3 − 42
(
z
r

)2
+ 63

(
z
r

)4
)
y
r

−
(

15 − 70
(
z
r

)2
+ 63

(
z
r

)4
)
z
r








(10.66)

aJ5
= −J5

8

( µ

r2

)(req
r

)5








3
(

35
(
z
r

)
− 210

(
z
r

)3
+ 231

(
z
r

)5
)
x
r

3
(

35
(
z
r

)
− 210

(
z
r

)3
+ 231

(
z
r

)5
)
y
r

(

15 − 315
(
z
r

)2
+ 945

(
z
r

)4− 693
(
z
r

)6
)








(10.67)

aJ6
=
J6

16

( µ

r2

)(req
r

)6








(

35 − 945
(
z
r

)2
+ 3465

(
z
r

)4− 3003
(
z
r

)6
)
x
r

(

35− 945
(
z
r

)2
+ 3465

(
z
r

)4− 3003
(
z
r

)6
)
y
r

(

3003
(
z
r

)6− 4851
(
z
r

)4
+ 2205

(
z
r

)2− 315
)
z
r








(10.68)

Example 10.2: The Ji induced gravitational acceleration vectors in Eq. (10.64)
– (10.68) are developed with components taken in a Cartesian coordinate
frame {ı̂x, ı̂y, ı̂z}. In this example we take the gradient of the gravitational
perturbation function R(r) in Eq. (10.63) using the spherical coordinates
(r, φ, θ). Let S be a coordinate frame defined through {ı̂r, ı̂θ, ı̂φ} as shown in
Figure 10.4. The acceleration experienced due to the gravitational potential

r
φ

θ

P

ιyˆ

ιzˆ

ιxˆ

ιrˆ
ιφˆ

ιθˆ

Figure 10.4: Illustration of Spherical Coordinates and the Coordinate
Frame Unit Direction Vectors
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R is given by

a = ∇R =
∂R

∂r
ı̂r +

1

r

∂R

∂φ
ı̂φ +

1

r cos φ

∂R

∂θ
ı̂θ

Note that the pertubance potential R does not depend on the longitude
angle θ, thus their will be no acceleration component in the ı̂θ direction. The
perturbation acceleration vectors aJi

due to Ji are expressed in terms of the
spherical coordinate frame unit direction vectors as:

aJ2
= −3

4
J2κ2

[

(3 cos(2φ) − 1)ı̂r + 2 sin(2φ)ı̂φ
]

aJ3
= −1

8
J3κ3

[

(20 sin(3φ) − 12 sinφ)ı̂r

− (15 cos(3φ) − 3 cosφ)ı̂φ
]

aJ4
= − 5

64
J4κ4

[

(−35 cos(4φ) + 20 cos(2φ) − 9)ı̂r

− (28 sin(4φ) − 8 sin(2φ))ı̂φ
]

aJ5
= − 3

128
J5κ5

[

2(−63 sin(5φ) + 35 sin(3φ) − 30 sinφ)ı̂r

+ (105 cos(5φ) − 35 cos(3φ) + 10 cosφ)ı̂φ
]

aJ6
= − 7

512
J6κ6

[

(221 cos(6φ) − 126 cos(4φ) + 105 cos(2φ) − 50)ı̂r

+ (198 sin(6φ) − 72 sin(4φ) + 30 sin(2φ))ı̂φ
]

with κi being defined as

κi =
( µ

r2

)(req

r

)i

10.4 Multi-Body Gravitational Acceleration

In chapter 9 the equations of motion for the three body problem were discussed.
It was shown that if a body has a small small mass compared to the other two
bodies, then it would essentially abide by Keplerian motion in the vicinity of
either remaining body. For example, the motion of a satellite in near Earth
orbit is dominated by Earth’s gravitational attraction. However, the Moon
does cause a small perturbation of the orbits. The acceleration experienced
by the spacecraft due to the Moon can be viewed as a result of a disturbing
potential function. This section will provide the general equations of motion for
a multi-body system of point masses and derive such a multi-body perturbative
potential function.

In the following development, let m1 be the primary mass about which a
second mass m2 is orbiting. The remaining masses mi (with 2 < i ≤ N) are
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assumed to be close or massive enough to have an effect on the (m1,m2) two-
body solution. Using Eq. (9.3), the equations of motion for m1, m2 and mi

are

r̈1 = G
m2

r312
r12 +G

N∑

j=3

mj

r31j
r1j (10.69)

r̈2 = G
m1

r321
r21 +G

N∑

j=3

mj

r32j
r2j (10.70)

r̈i = G

N∑

j=1

mj

rij
rij summed for i 6= j (10.71)

with the relative position vector rij being defined as

rij = rj − ri (10.72)

Using the position vector property rij = −rji, the equations of motion of m2

relative to m1 are

r̈12 = G



−m1 +m2

r312
r12 +

N∑

j=3

mj

(

r2j

r32j
− r1j

r31j

)

 (10.73)

Expressing all position vectors relative to m1, the equations of motion of m2

are given by

r̈12 +
G(m1 +m2)

r312
r12 = G

N∑

j=3

mj

(

r1j − r12

r32j
− r1j

r31j

)

︸ ︷︷ ︸

ad

(10.74)

Note that the left hand side of Eq. (10.74) is the result of the standard Keplerian
motion between masses m1 and m2. The right hand side forms the perturbative
acceleration ad away from this solution. No assumption has been made here as
to whether this acceleration is small or large. Further, note that the mass index
labeling has been setup arbitrarily here. By switching the indices, the equations
of motion provided in Eq. (10.74) are applicable to any of the N bodies.

Assume that the N -body system consists of the Earth (m1), the Moon (m2)
and the Sun (m3), and we are interesting in the motion of the Moon relative to
the Earth. As seen in Table 8.2, the Sun is at least 106 times more massive than
either the Earth or the Moon. At first glance then, it would appear as if the
perturbative acceleration ad would be very large in this case. However, since
the relative distances r23 and r13 are almost identical, then the effect of the
Sun’s gravitational attraction on the relative motion of the Moon to the Earth
is very small. In essence, the Earth-Moon system are approximately free-falling
together around the Sun.
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The disturbing potential function generated by mass mj on the motion of
m2 is given by1, 3

Rj(r12) = Gmj

(

1

r2j
− r12 · r1j

r31j

)

(10.75)

To verify that this potential function does lead to the previously derived pertur-
bative acceleration ad, we need to compute the gradient of the scalar distance
r2j .

∇r2j =






∂r2j

∂x2

∂r2j

∂y2
∂r2j

∂z2




 = −r2j

r2j
= −r1j − r12

r2j
(10.76)

Making use of Eq. (10.76), we find that indeed

ad =

N∑

j=3

∇Rj(r12) (10.77)

10.5 Spheres of Gravitational Influence

Consider the classical two-body problem where one relatively small object of
mass m, such as a man-made spacecraft, is orbiting about a relatively massive
object of mass m1 such as the Earth. Depending on the relative energy of m to
m1, the relative orbit of m will be one of the three conic solutions discussed in
chapter 8 (i.e. either be elliptic, parabolic or hyperbolic). If additional celestial
objects are present, then the precise motion of m relative to m1 is no longer
the classical two-body solution, but rather a trajectory which is perturbed from
this two-body solution. For example, consider a satellite in Earth orbit with the
Moon acting as the additional celestial body. The gravitational influence of the
Moon will cause slight perturbations to the nominal two-body solution of the
satellite orbit. However, the closer the satellite orbit is to the Earth, the smaller
the gravitational perturbation would be. Thus, for a very low Earth orbiting
satellite, the lunar gravitational effect could be ignored, since the satellite mo-
tion is overwhelmingly dominated by the Earth’s gravitational attraction. As
the satellite travels between the Earth and Moon, however, the lunar effect must
be included when determining the satellite orbit. This concept is evident math-
ematically in Eq. (10.74) where the equations of motion for a multi-body system
are defined with the additional gravitational effects written as a disturbance to
the classical two-body solution.

Treating the gravitational acceleration of additional bodies as a perturba-
tions leads to the concept of defining a sphere of in
uence about a particular
celestial body. These spheres are regions around celestial objects where the par-
ticular object’s gravitational attraction will largely determine the trajectory of
any other small mass within its vicinity. The gravitational attraction due to any
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remaining objects would typically be very small within the sphere of influence.
Thus, as an initial approximation of the multi-body problem, the gravitational
effect of the remaining bodies is ignored while a small object resides within such
a sphere of influence. This idea is illustrated in Figure 10.5 where a conceptual
trajectory is shown of a satellite traveling from Earth to Mars. The spheres of
gravitational influence of Earth and Mars are illustrated as transparent spheres
around each planet. Note that the Sun also possesses a sphere of influence. How-
ever, the Sun’s region of attraction is so large that it encompasses the entire
solar system. Thus, if any object is outside the sphere of influence of a planet,
it is by default assumed to be under the dominant gravitational influence of the
Sun. The spacecraft motion shown in Figure 10.5 begins close to Earth. The
craft has enough energy relative to the Earth such that it is on a hyperbolic
escape orbit. This trajectory description is reasonably accurate up to the point
where the craft departs the Earth’s sphere of influence. From here on its motion
is dominated by the gravitational influence of the Sun. Assuming the spacecraft
doesn’t have enough energy relative to the Sun to be on an escape trajectory,
its orbit can be described by a heliocentric ellipse. At a later point of time the
craft enters the sphere of influence of Mars, whose gravitational attraction will
determine its orbit from here on. Since the velocity ”far from Mars” is non-zero,
we can be certain the motion relative to Mars will be hyperbolic.

Note that with this approximation, the spacecraft motion within a particu-
lar sphere of influence is solely described through two-body conic intersections.
Since the entire trajectory of the spacecraft through the multi-body gravita-
tional field is approximated as a series of conic solutions (i.e. locally elliptic,
parabolic or hyperbolic relative orbits), this method of determining the trajec-
tory is referred to as the method of patched conics. As the name describes, the
various conic solutions are patched together to find an approximate solution to
the multi-body problem.

To express the sphere of influence concept in mathematical terms, we rewrite
the multi-body equations of motion in Eqs. (10.74). Let m1 and m2 be celestial
bodies, while m is a spacecraft with m� m1 and m� m2. The position vector
of m relative to mi is given by ri, while the position vector from body i to body
j is given by rij as illustrated in Figure 10.6. Defining µi = Gmi, the equations
of motion of m relative to either m1 or m2 are given by

r̈1 = −µ1

r31
r1

︸ ︷︷ ︸

a1

−µ2

(
r2

r32
+

r12

r312

)

︸ ︷︷ ︸

ad1

(10.78)

r̈2 = −µ2

r32
r2

︸ ︷︷ ︸

a2

−µ1

(
r1

r31
− r12

r312

)

︸ ︷︷ ︸

ad2

(10.79)

In each case, the gravitational attraction of the other celestial body is expressed
as a disturbance acceleration adi

on the two-body solution aboutmi. The sphere
of influence is defined as the vicinity around mi where the disturbance vector
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Figure 10.5: Approximating a Trajectory Among Multiple Bodies
Through Spheres of Influences

r

r12

r1
r2

m1

m2

m
Sphere of Influence

Figure 10.6: Gravitational Spheres of Influence
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adi
is of the same magnitude as the two-body acceleration vector ai. Assuming

that the mass m2 is smaller than the mass m1, this surface about m2 can be
approximated as a sphere. The radius r of this approximate spherical surface is
determined through the formula1, 3

r =

(
m2

m1

)2/5

r12 (10.80)

Using the planetary mass coefficients in Table 8.2, the sphere of influence radii
of the solar system planets are computed in Table 10.1.

Table 10.1: Spheres of Influence Radii of the Solar System Planets Rel-
ative to the Sun Gravitational Influence

Average Orbit Approx. Sphere
Planet Radius [km] of Influence [km]

Mercury � 57,910,000 112,500
Venus � 108,200,000 616,400
Earth � 149,600,000 916,600
Mars � 227,940,000 577,400

Jupiter � 778,330,000 48,223,000
Saturn � 1,429,400,000 54,679,000
Uranus � 2,870,990,000 51,792,000

Neptune 	 4,504,300,000 86,975,000
Pluto 
 5,913,520,000 15,146,000

Note that the spheres of influence around a planet grows larger as the planets
mean orbit radius increases, and thus the local gravitational influence of the Sun
diminishes. This is how the Saturn sphere of influence radius r � is larger than
the Jupiter sphere of influence radius r � . This is true even though Jupiter is
much more massive than Saturn.

Problems

10.1 Use the binomial expansion theory to verify the Legendre polynomial identity
given in Eq. (10.6).

10.2 Verify the derivation of gravitational acceleration expression given in Eq. (10.32)
by starting with Eq. (10.29) and showing all steps in between.

10.3 Verify that Iξξ = Iηη = Iζζ does reduce the gravitation acceleration to be

ap = −G

r2
ı̂r
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10.4 ♣ Consider a planet spinning at a constant rate ω about its polar axis ı̂ζ . Assume
that the planet is an ellipsoid of revolution with the inertia’s Iξξ = Iηη and Iζζ .
The motion of a particle on the planet’s surface is studied in this problem.

a) Show that for this case the MacCullagh Gravity Potential Approximation
is given by

V (r) ≈ −µ
r

+
G

2

(Iζζ − Iξξ)

r3
(
3 sin2φ− 1

)

b) Write the equations of motion of a particle located at r = (r, φ, θ) on
the planet’s surface using the unit direction vectors {ı̂r, ı̂θ, ı̂φ} shown in
Figure 10.4. If the planet’s surface is frictionless, in what direction would
the particle slide?

c) Establish that the modified potential function V ′ = V − 1
2
r2ω2 cos2φ

provides the measured gravitational acceleration of this particle on the
planet’s surface.

d) Assume that Iζζ < Iξξ (Note: this is not typically the case). Consider
the approximation r ≈ re(1 + η) of the radial distance of the particle
with respect to the planet’s center with η << 1, where re is the planet’s
equatorial radius. Assuming a frictionless planet surface, establish the
condition for equilibrium such that the particle will remain fixed as seen
by the rotating planet reference frame.
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Chapter Eleven

Perturbation Methods

While on the macroscopic scale unpowered spacecraft and celestial bodies typ-
ically prescribe elliptic, parabolic or hyperbolic trajectories, on the small scale
every body is suspect to minor disturbative accelerations. Precise orbit calcula-
tions require us to account for these perturbations. For example, perturbations
could be due to the gravitational attraction of other celestial bodies, the non-
spherical shape of planets, atmospheric drag or solar radiation pressure. While
these affects are usually relatively small compared to the dominant point mass
gravitational attraction, they do have an important impact when studying the
long-term behavior of these orbits.

Most perturbations methods have in common that instead of directly nu-
merically integrating the orbits themselves, only deviations from a two-body
solution are studied. This allows us to separate the large effect of the domi-
nant point mass gravitational field from the small effect of the disturbance and
enables the use of analytical approximations. In the mid 19-th century, both
the English astronomer John Couch Adams (1819–1892) and the French as-
tronomer Urbain-Jean-Joseph Le Verrier (1811–1877) independently used the
method of variations of parameters when studying the irregularities of the mo-
tion of Uranus.1 Their amazingly precise observations and calculations predicted
the existence of a then unknown planet Neptune which was causing the observed
deviations. In 1846 both were able to detect Neptune within one degree of the
predicted position. After Le Verrier became director of the Paris Observatory
in 1854, he began to study the motion of the planet Mercury. He found that
this planet’s orbit had similar irregularities as he found in Uranus’ trajectory.
He thus predicted the existence of new planet closer to the sun, which he name
Vulcan. However, after his death the wobbles in the motion of Mercury were
later explained using Einstein’s general theory on relativity without the need to
introduce a new planet.

This chapter will first discuss Encke’s method to introduce the ideas of per-
turbation induced departure motion. Following this a general procedure called
the variation of parameters is discussed which is mathematically more chal-
lenging, but provides very valuable algebraic insight into the effects of these

389
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disturbances on the various evolutions of orbits. Finally, the state transition
matrix is introduced. This matrix is often used in dynamics and control the-
ory to predict the departure motion of an object relative to a nominal motion
trajectory if small perturbations are present.

osculating
reference

orbit

actual perturbed
        orbit

r(t0 )

r(t)

rosc(t) δ(t)

ṙ(t0 )t0

t

t

Figure 11.1: Illustration of Encke’s Method

11.1 Encke’s Method

The relative equations of motion of a mass m2 relative to m1 was found in
Eq. (8.42) to be

r̈ = − µ

r3
r + ad (11.1)

where r = r2 − r1 and ad is the perturbative acceleration defined in Eq. (8.43).
To directly numerically integrate these equations of motion is commonly referred
to as Cowell’s Method. This is the preferred method, as compared to analytical
approximations, if the perturbative acceleration vector ad is changing generally
and is of the same order of magnitude as the dominant gravitational accelera-
tion. However, in many applications ad is orders of magnitude smaller than the
dominant gravitational force. For example, for a satellite in a low Earth orbit,
the dominant Earth oblateness effect is three orders of magnitude smaller than
the spherical Earth gravity field acceleration. Other effects such as solar radi-
ation drag, atmospheric drag and the gravitational pull of the moon are even
smaller. Using Cowell’s method to solve the equations of motion accurately
captures the small deviations from the two-body Keplerian solution; however,
this numerical solution takes no advantage of the nearness of the motion to the
analytically solvable two-body case.

The guiding principle of Encke’s method is to use the known, closed-form
Keplerian solution to compute the dominant trajectory, and then numerically
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solve a second differential equation for the deviations δ from the two-body
solution. This concept is illustrated in Figure 11.1. At time t0 the reference
Keplerian orbit is established using the instantaneous r(t0) and ṙ(t0) vectors.
This reference orbit is referred to as the osculating orbit since at t0 it “kisses”
or osculates the actual orbit at t0.

r(t0) = rosc(t0) ṙ(t0) = ṙosc(t0) (11.2)

Therefore, the two orbits only differ in their mutual curvatures at time t0 due
to the different acceleration expressions. The positions and velocity vectors of
each orbit will be identical at t0. The true trajectory is given by the differential
equation in Eq. (11.1). The osculating orbit is determined through

r̈osc = − µ

r3osc
rosc (11.3)

Defining the orbit deviation δ to be

δ = r − rosc (11.4)

the relative equations of motion of the actual orbit compared to the osculating
orbit are given by

δ̈ = r̈ − r̈osc = µ

(
rosc

r3osc
− r

r3

)

+ ad (11.5)

Adding and subtracting r/r3osc terms and using Eq. (11.4), the δ̈ expression is
rewritten as

δ̈ = − µ

r3osc
δ − µ

r3osc

(
r3osc
r3

− 1

)

r + ad (11.6)

Defining the scalar function f to be

f(r, rosc) =
r3osc
r3

− 1 (11.7)

the deviation equations of motion are written in their final form as

δ̈ = − µ

r3osc
(δ + f(r, rosc)r) + ad (11.8)

Unfortunately computing the function f directly using the algebraic expression
in Eq. (11.7) is numerically challenging since two essentially identical numbers
are subtracted from another. To compute this term without having to resort
to higher precision arithmetic, it is possible to rewrite the function f() into a
more convenient form. Let us define the scalar parameter q as

q ≡ δ · δ − 2δ · r
r2

(11.9)
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where it is easy to show from Eq. (11.9) that

r2osc
r2

= 1 + q (11.10)

Substituting Eq. (11.10) into the f() expression in Eq. (11.7) and multiplying
and dividing the result by (1 + (1 + q)3/2), we are able to express f() directly
in terms of q without subtracting any near-equal numbers in the following form

f(q) = q
3 + 3q + q2

1 + (1 + q)3/2
(11.11)

Let’s summarize Encke’s method. At time t0 the osculating orbit is setup
invoking the conditions in Eq. (11.2) and the conditions

δ(t0) = δ̇(t0) = 0 (11.12)

From here on, osculating position and velocity vectors rosc and ṙosc are com-
puted using the 2-body solution such as the F and G functions. The deviation
position and velocity vectors δ and δ̇ are computed by numerically integrating
Eq. (11.8) twice. The actual orbit position and velocity vectors r(t) and ṙ(t)
are then computed through

r(t) = rosc(t) + δ(t) (11.13)

ṙ(t) = ṙosc(t) + δ̇(t) (11.14)

The result is a natural splitting in the computation of the 2-body and distur-
bance components. For systems with a relatively small ad vector, this allows
larger integration step sizes to be used than if Cowell’s method were employed.

If the deviation vector δ grows too large at time t1, then the osculating orbit
conditions are reset and a new 2-body reference orbit is found which osculates
with the current r(t) and ṙ(t). This process of resetting the reference osculating
orbit is called orbit recti�cation. Given a chosen small tolerance ε, a common
method to determine whether or not to rectify the osculating orbit is to see if

∣
∣
∣
δ

r

∣
∣
∣+
∣
∣
∣
δ̇

ṙ

∣
∣
∣ ≥ ε (11.15)

The newly rectified osculating orbit will again “kiss” or osculate the actual orbit
at time t1.

11.2 Variation of Parameters

The method of variation of parameters can be viewed as the continuous limit
of rectification of an osculating orbits at each instant of time. Given the in-
stantaneous inertial position and velocity vectors r(t) and ṙ(t) of the perturbed
problem, we can always compute a corresponding set of six instantaneous orbit
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elements ei as is discussed previously in Chapter 8. However, for this perturbed
problem the six orbit elements will no longer remain constants, but become time
varying parameters. These instantaneous orbit elements, whose corresponding
keplerian 2-body orbit kisses the current perturbed orbit, are referred to as the
osculating orbit elements.

11.2.1 General Methodology

Assuming the scalar parameters ei are integration constants of an un-perturbed
motion, then the method of variation of parameters seeks a corresponding set of
differential equations for ėi such that the perturbed motion description instan-
taneously has the same algebraic form as the unperturbed motion. We would
like the only difference between the solution of the perturbed and un-perturbed
problem to be that the elements ei(t) are time-varying. For example, the pa-
rameters ei could be the initial conditions of a general dynamical problem or
the six orbit elements of a Keplerian two-body solution.

Let x be a N -dimensional position vector. Since mechanical dynamical sys-
tems are second order, the solution will have have 2N integration constants ei.
Let the 2N × 1 vector e be defined as

e = (e1, · · · , e2N)T (11.16)

In general, the un-perturbed solution of a dynamical system can be written as

x(t) = f(t, e) (11.17)

ẋ(t) =
df

dt
(t, e) =

∂f

∂t
(11.18)

ẍ(t) =
d2f

dt2
(t, e) =

∂2f

∂t2
(11.19)

The last steps in Eqs. (11.18)and (11.19) hold since the elements ei are constants
for the un-perturbed problem. Using variation of parameters, we seek a solution
of the perturbed motion which has the same algebraic form, so we require

x(t) = f(t, e(t)) (11.20)

dx(t)

dt
=
∂f

∂t
(t, e(t)) (11.21)

This is analogous to the osculating conditions used to compute Encke’s method
in Eq. (11.12). These conditions force the perturbed and the osculating un-
perturbed solutions to have the same position and velocity vector, the only
difference will be in the acceleration expression where the perturbative acceler-
ation ad appears.

d2x

dt2
=
∂2f

∂t2
+ ad (11.22)
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To enforce the osculation condition and the equations of motion, the elements
ei are now treated as time-varying parameters. With e = e(t), the chain rule
of differentiation provides

dx(t)

dt
=
∂f

∂t
+

[
∂f

∂e

]
de

dt
(11.23)

Comparing Eqs. (11.21) and (11.23), it is evident that for the perturbed and un-
perturbed solutions to have the same velocity expression, the following condition
must be true:

[
∂f

∂e

]
de

dt
= 0Nx1 (11.24)

Eq. (11.24) provides N “osculation” constraints that the differential equations
ėi must satisfy. The second set of N constraints required to determine ė is
found through the acceleration expression. Taking the derivative of Eq. (11.21)
we find

d2x

dt2
=
∂2f

∂t2
+

[
∂2f

∂t∂e

]
de

dt
(11.25)

Comparing Eqs. (11.22) and (11.25) we find the remaining N constraints on ė

to be
[
∂2f

∂t∂e

]
de

dt
= ad (11.26)

Combining Eqs. (11.24) and (11.26), the coupled osculating conditions on ė are
written compactly as

[
∂f
∂e
∂2f
∂t∂e

]

de

dt
= [L]ė =

[
0Nx1
ad

]

(11.27)

where the 2N × 2N matrix [L] is referred to as the Lagrangian matrix. Note
that this [L] matrix, as defined in Eq. (11.27), is generally fully-populated and
may depend explicitly on time. The desired differential equations ė are now
found by inverting the matrix in Eq. (11.27). For many applications such as
the perturbed two-body problem, a compact analytical inverse of this matrix
is possible. Lagrange developed a very elegant process called the Lagrange
Brackets that facilitates this process as is shown in the next section.

Example 11.1: Let us illustrate the basic concepts of variation of parameters
by attempting to solve the forced linear oscillator

ẍ = −ω2x+ ad(t, x, ẋ, . . . )

with the initial conditions x(0) = x0 and ẋ(0) = ẋ0. For the un-perturbed
case, a well-known closed-form solution exists for this oscillator problem. Let
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us choose to write the un-perturbed motion x(t) and associated velocity ẋ(t)
as

x(t) = x0 cosωt+
ẋ0

ω
sinωt

ẋ(t) = −ωx0 sinωt+ ẋ0 cosωt

For this scalar system there are only two integration constants ei, namely the
initial conditions x0 and ẋ0. Therefore we choose to set

e1 = x0 e2 = ẋ0

Using the method of variation of parameters, we seek for the solution of the
perturbed system to be of the same algebraic form as shown above for the
un-perturbed system, with the exception that x0 and ẋ0 are now treated as
time-varying parameters to compensate for the perturbations. In essence, we
are trying to find differential equations for e1(t) and e2(t) such that

x(t) = e1(t) cosωt+
e2(t)

ω
sinωt

ẋ(t) = −ωe1(t) sinωt+ e2(t) cosωt

holds for the perturbed system. To write the motion x(t) in the form of
Eq. (11.17) we define f to be

f = e1 cosωt+
e2
ω

sinωt

Computing the necessary partial derivatives of f as required in Eq. (11.27),
the osculating conditions on ė are given by

[
cosωt 1

ω
sinωt

−ω sinωt cosωt

](
ė1
ė2

)

=

(
0
ad

)

Inverting the 2×2 matrix, the desired differential equations for x0 and ẋ0 are

ė1 =
dx0

dt
= −

(
1

ω
sinωt

)

ad

ė2 =
dẋ0

dt
= (cosωt)ad

Given a perturbative acceleration ad, these differential equations show how
the initial conditions x0 and ẋ0 have to be adjusted for the algebraic form of
the un-perturbed solution still to hold.

11.2.2 Lagrangian Brackets

Lagrange developed a convenient method to calculate the various elements of
the Lagrange matrix [L] called the Lagrangian brackets. His method leads to
a matrix [L] which is sparsely populated and thus easy to invert. We will
develop these brackets here using a Keplerian orbit as the example. Assume
all perturbations experienced are conservative and can therefore be modeled
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through a scalar disturbance potential function R, where R = R(r) only. The
potential energy V per unit mass of the system is then given by

V (r) = −µ
r
−R(r) (11.28)

where r is the instantaneous orbit radius. The equations of motion for this
system are given by

dr

dt
= v (11.29)

dv

dt
= −∂V

∂r
= − µ

r3
r +

[
∂R

∂r

]T

(11.30)

Note that the partial derivative of the disturbance potential function R with
respect to the position vector r is the same as the previously defined disturbance
acceleration ad.

[
∂R

∂r

]T

= ad (11.31)

We have seen that for Keplerian motion, the orbit shape and orientation is
parameterized by six orbit elements. Therefore, let the 6×1 vector e contain the
six orbit elements. Which set of six elements is chosen is of no consequence in
the general development. If the disturbance potential function R were zero, then
these six orbit elements would remain constant. Using the F and G solution, for
example, we are able to write the instantaneous position and velocity vectors as
functions of the constant orbit elements and time.

r = r(e, t) v = v(e, t) (11.32)

However, in the presence of the the disturbance potential function R, the cho-
sen six orbit elements will vary with time. Using variation of parameters, we
again seek a solution to the perturbed problem whose instantaneous position
and velocity vectors are equal to the unperturbed Keplerian solution given in
Eq. (11.32). To match up the velocity vectors, the condition in Eq. (11.21)
requires that

v =
∂r

∂t
(11.33)

Taking the derivative of the position vector given in Eq. (11.32) and allowing e

to be time varying, we find that

dr

dt
= v =

dr

de

de

dt
+
∂r

∂t
(11.34)

Making use of Eq. (11.33), we again find the first osculating condition given in
Eq. (11.24).

dr

de

de

dt
= 03×1 (11.35)
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Taking the derivative of the velocity expression in Eq. (11.32) we find

dv

dt
=
∂v

∂t
+
∂v

∂e

de

dt
(11.36)

Since ∂v/∂t is the Keplerian component of the acceleration, comparing Eq. (11.36)
to Eq. (11.30) we find the second osculating condition in Eq. (11.26) to be

∂v

∂e

de

dt
=

[
∂R

∂r

]T

(11.37)

We could combine the conditions on the orbit element rate vector ė in Eqs. (11.35)
and (11.37) as is done in Eq. (11.27). However, since the perturbation potential
R is often expressed in terms of the orbit elements, the more convenient compact
form is possible. Following a pattern introduced by Lagrange, we pre-multiply
Eq. (11.37) by (∂r/∂e)T and pre-multiply Eq. (11.35) by −(∂v/∂e)T and then
subtract the latter from the first. After simplifying the algebraic expression we
find

[(
∂r

∂e

)T
∂v

∂e
−
(
∂v

∂e

)T
∂r

∂e

]

︸ ︷︷ ︸

[L]

de

dt
=

[
∂R

∂r

∂r

∂e

]T

=

[
∂R

∂e

]T

(11.38)

where [L] is a new Lagrangian coefficient matrix. Thus the Lagrangian varia-
tional equations, which express the orbit element drift ė due to the disturbance
potential R, are written as

ė = [L]−1

[
∂R

∂e

]T

(11.39)

The individual entries Lij of this matrix are called the Lagrangian brackets and
are computed through

Lij = [ei, ej ] =

(
∂r

∂ei

)T
∂v

∂ej
−
(
∂v

∂ei

)T
∂r

∂ej
(11.40)

Using the state vector s

s(t, e) =

(
r(t, e)
v(t, e)

)

(11.41)

the matrix [L] is written in the compact form

[L] =
∂s

∂e

T

[J ]
∂s

∂e
(11.42)

where the matrix [J ] is defined as

[J ] =

[
03×3 I3×3

−I3×3 03×3

]

(11.43)



398 PERTURBATION METHODS CHAPTER 11

Since [J ] is symplectic, it satisfies the property

[J ][J ] = −[I6×6] (11.44)

The Lagrangian bracket operator Lij satisfies the the following three prop-
erties:

[ei, ej ] = −[ej , ei] (11.45a)

[ei, ei] = 0 (11.45b)

∂

∂t
[ei, ej ] = 0 (11.45c)

The latter property is the most amazing truth; the Lij elements are constants
of the un-perturbed motion. In terms of the Lagrangian matrix [L], these prop-
erties are summarized as

[L]T = −[L] (11.46a)

∂

∂t
[L] = 0 (11.46b)

The skew-symmetry of [L] is immediately verified by studying the definition
of the Lagrangian bracket operator in Eq. (11.40). To verify that [L] never
explicitly depends on the time variable t, we take the partial derivative of the
Lagrangian bracket definition with respect to time.

∂

∂t
[ei, ej ] =

∂

∂t

(
∂r

∂ei

)T (
∂v

∂ej

)

+

(
∂r

∂ei

)T
∂

∂t

(
∂v

∂ej

)

− ∂

∂t

(
∂v

∂ei

)T (
∂r

∂ej

)

−
(
∂v

∂ei

)T
∂

∂t

(
∂r

∂ej

)

(11.47)

Switching the order of the partial differentiation and making use of the osculat-
ing condition in Eq. (11.33), we find

∂

∂t
[ei, ej ] =

(
∂v

∂ei

)T (
∂v

∂ej

)

+

(
∂r

∂ei

)T
∂

∂ej

(
∂v

∂t

)

− ∂

∂ei

(
∂v

∂t

)T (
∂r

∂ej

)

−
(
∂v

∂ei

)T (
∂v

∂ej

)

(11.48)

The first and fourth term clearly cancel each other. To see that the remain-
ing two terms do cancel, note that the expression ∂v/∂t is the unperturbed
acceleration and therefore

∂v

∂t
= −

(
∂V

∂r

)T

(11.49)

must hold. Using this condition, we are able to reduce Eq. (11.48) to

∂

∂t
[ei, ej ] = − ∂

∂ej

∂V

∂r

∂r

∂ei
+

∂

∂ei

∂V

∂r

∂r

∂ej
= − ∂2V

∂ej∂ei
+

∂2V

∂ei∂ej
= 0 (11.50)
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which proves that the Lagrangian bracket never depends explicitly on the time
variable. Note that the Lagrangian bracket operator generates information re-
quired to produce the necessary elements rates ė such that the current two-body
orbit, corresponding to the current elements e(t), osculates or “kisses” the ac-
tual non-Keplerian orbit. Since [L] does not explicitly depend on time, only
implicitly through e(t), it does not matter where along the osculating orbit we
evaluate the bracket expressions. Therefore we will be able to evaluate the La-
grangian brackets anywhere it is convenient along the instantaneous two-body
(osculating) orbit. In particular, we will find it convenient later on to evaluate
the bracket expressions at periapses to reduce the amount of algebra involved.
This is similar in spirit to the development in Chapter 8 where we chose to
evaluate the total energy constant α at periapses.

Example 11.2: Let us examine the motion of vertical spring mass system un-
der the influence of a constant gravitational field as illustrated in Figure 11.2.
If the mass m is at a height ŷ, then the spring has zero potential energy. The
height above ground is measured by the variable y. The velocity of the mass
is given by v = ẏ. The potential energy of the system is then given by

V = mgy +
k

2
(y − ŷ)2

The equations of motion are then given by

ÿ = − 1

m

∂V

∂y
= −g − k

m
(y − ŷ)

where g is the local gravitational acceleration and k is the spring stiffness
coefficient.

m

k

y

ŷ

mg

Figure 11.2: Oscillating Point Mass Illustration

Assume we choose to treat the effect of the spring as a disturbance. Therefore
we set the mass-less disturbance potential R equal to

R =
k

2m
(y − ŷ)2

Without the spring present, the equations of motion of the mass m are easily
solved to the well-known form

y(t) = y0 + v0t− g

2
t2

v(t) = v0 − gt
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where y0 and v0 are the initial position and velocity. For the unperturbed
problem (i.e. spring-less), these two quantities are the constants of integration
and do not vary with time.

We now ask the question, how would we need to vary y0 and v0 such that
the perturbed (i.e. spring effect included) problem has the same position and
velocity expression as the unperturbed problem. Choosing y0 and v0 to be
are constants elements of the unperturbed problem, we set

e1 = y0 e2 = v0

To find the desired variation ėi, we must first find the various Lagrangian
brackets. The unperturbed solutions above for y(t) and v(t) provides the
necessary relationships between the unperturbed position and velocity quan-
tities and the chosen elements ei. Computing the required partial derivatives
we find

∂y

∂e1
= 1

∂y

∂e2
= t

∂v

∂e1
= 0

∂v

∂e2
= 1

Since the skew-symmetric Lagrangian bracket for this problem is only a 2× 2
matrix, we only need to compute the one off-diagonal term.

[e1, e2] =
∂y

∂e1

∂v

∂e2
− ∂v

∂e1

∂y

∂e2
= 1

The resulting osculating condition on ėi (i.e. ẏ0 and v̇0) are

[
0 1
−1 0

](
ė1
ė2

)

=

(
∂R
∂e1
∂R
∂e2

)

For a general conservative disturbance potential function R, the variational
equations for y0 and v0 are then given by

ė1 = ẏ0 = − ∂R

∂e1

ė2 = v̇0 =
∂R

∂e2

To compute the variational equations for this particular example, we write
the disturbance potential R as

R =
k

2m
(e1 + e2t− g

2
t2 − ŷ)2

Taking the required partial derivatives with respect to e1 and e2, the varia-
tional equations for “spring disturbance” are

ė1 = ẏ0 = − k

m
(y − ŷ)t = − k

m

(

e1 + e2t− g

2
t2 − ŷ

)

t

ė2 = v̇0 =
k

m
(y − ŷ) =

k

m

(

e1 + e2t− g

2
t2 − ŷ

)

These variational equations are readily verified by taking two time derivatives
of the unperturbed position expression and treating y0 and v0 now as time
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varying quantities. The acceleration expression should be the same as is given
in the exact equations of motion of the system.

11.2.3 Lagrange’s Planetary Equations

Given the Lagrangian bracket operator, we now proceed to develop the vari-
ational equations for a chosen set of orbit elements e. The resulting set of
first order differential equations is commonly known as Lagrange’s planetary
equations. We chose the classical orbit element set

e = (Ω, i, ω, a, e,M0)
T (11.51)

as our Keplerian integration constants where Ω, i and ω are the (3-1-3) Euler
angle set orientating the orbit plane and line of periapses, a and e are the semi-
major axis and eccentricity respectively, and M0 is the initial mean anomaly.
The following development will be analogous for other sets of orbit elements. Let
n be the mean angular motion defined in Eq. (8.104), then M0 can be expressed
in terms of the time of periapses passage τ as

M0 = −nτ (11.52)

Kepler’s equation is then given by

M(t) = M0 + nt = n(t− τ) = E − e sinE (11.53)

To orient the orbit plane and line of periapses, we define the orbit reference
frame O as

O : {ı̂e, ı̂p, ı̂h} (11.54)

where ı̂e points toward periapses, ı̂h is orbit plane normal and ı̂p is perpendicular
to the previous two unit vectors as discussed in Chapter 8. Before evaluating the
Lagrangian brackets, we first need to find analytical expressions for the inertial
position and velocity vectors r(t) and v(t) in terms of the chosen orbit element
vector e. Using Eqs. (8.16) and (8.17) we are able to express the position vector
r in the orbit frame O as

Or =

O



a(cosE − e)
b sinE

0



 (11.55)

where b = a
√

1 − e2 is the semi-minor axis. Taking the O frame derivative and
making use of the Ė expression in Eq. (8.101), the velocity vector v is expressed
in the O frame as

Ov =

O



−a sinE
b cosE

0




n

1 − e cosE
(11.56)
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Let [NO] be the direction cosine matrix that maps orbit frame vector compo-
nents into inertial frame N vector components. The position vector r is then
expressed in inertial components as

Nr = [NO] Or (11.57)

Note that for the two-body solution the orbit plane orientation is constant and
therefore [NO] is also constant. The inertial velocity vector v is then simply
expressed as

Nv = [NO] Ov (11.58)

To express the position and velocity vectors in terms of the given orbit elements,
we parameterize the direction cosine matrix [NO] in terms of the (3-1-3) Euler
angles Ω, i and ω as

[NO] = [ı̂eı̂pı̂h] =





cωcΩ − sωcisΩ
cωsΩ + sωcicΩ

sωsi

−sωcΩ− cωcisΩ
−sωsΩ + cωcicΩ

cωsi

sisΩ
−sicΩ
ci



 (11.59)

where the short-hand notation si = sin i and ci = cos i is used again. Thus the
position and velocity vectors are expressed in terms of Ω, i, ω, a, e and M0.
We note that dependence on the initial mean anomaly M0 is implicit in the
eccentric anomaly E which must satisfy Kepler’s equation in Eq. (11.53).

Expressions for r and v in the form given in Eqs. (11.57) and (11.58) will
be very convenient in the following development. Note that only Or and Ov

depend on the orbit elements a and e, and implicitly on M0. Similarly, the
direction cosine matrix [NO] only depends on the three Euler angles and not on
the other orbit elements. This separation of dependencies will greatly simplify
the resulting algebra when computing the various partial derivatives required
with the Lagrangian brackets. For example, the partial derivative of r with
respect to Ω is simply given by

∂r

∂Ω
=

∂

∂Ω
[NO] Or (11.60)

To find the partials of [NO], it is convenient to first find the partials of the orbit
frame O unit vectors. Expressing the unit vector components as

ı̂e = (ı̂e1, ı̂e2, ı̂e3)
T (11.61a)

ı̂p = (ı̂p1, ı̂p2, ı̂p3)
T (11.61b)

ı̂h = (ı̂h1, ı̂h2, ı̂h3)
T (11.61c)

we are able to express the various partial derivatives of the O frame unit vectors
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with respect to the three (3-1-3) Euler angles as

∂ ı̂e

∂Ω
=





−ı̂e2
ı̂e1
0




∂ ı̂p

∂Ω
=





−ı̂p2
ı̂p1
0




∂ ı̂h

∂Ω
=





−ı̂h2

ı̂h1

0



 (11.62)

∂ ı̂e

∂i
= sinωı̂h

∂ ı̂p

∂i
= cosωı̂h

∂ ı̂h

∂i
=





cos i sinΩ
− cos i cosΩ

− sin i



 (11.63)

∂ ı̂e

∂ω
= ı̂p

∂ ı̂p

∂ω
= −ı̂e

∂ ı̂h

∂ω
= 0 (11.64)

As was discussed earlier, since the Lagrangian brackets do not explicitly depend
on time, we are able to compute the brackets (i.e. the partial derivatives) on
any convenient location of the osculating orbit. Choosing to evaluate the partial
derivatives at periapses, at this point we have E = 0 and t = τ . The position
and velocity vectors in Eqs. (11.55) and (11.56) evaluated at periapses reduce
to

Or
∣
∣
periapses

=

O



q
0
0



 Ov
∣
∣
periapses

=

O



0
nab
q

0



 (11.65)

where q = a(1−e). The partial derivatives of r and v with respect to the (3-1-3)
Euler angles, evaluated at periapses, are then given by

∂r

∂Ω
= q





−ı̂e2
ı̂e1
0




∂r

∂i
= q sinωı̂h

∂r

∂ω
= qı̂p (11.66)

∂v

∂Ω
= q





−ı̂p2
ı̂p1
0




∂v

∂i
=
nab cosω

q
ı̂h

∂v

∂ω
= −nab

q
ı̂e (11.67)

Since only Or and Ov depend on the semi-major axis a, finding the partial
derivatives of r and v with respect to a only involves

∂r

∂a
= [NO]

∂Or

∂a

∂v

∂a
= [NO]

∂Ov

∂a
(11.68)

Let us first focus on the position vector partial derivative. Noting that the
eccentric anomaly E implicitly depends on the orbit elements, we find that

∂Or

∂a
=

O



cosE − e− a sinE ∂E
∂a√

1 − e2 sinE + b cosE ∂e
∂a

0



 (11.69)

To express ∂E/∂a, we take the partial derivative of Kepler’s equation of Eq. (11.53)
with respect to a.

∂E

∂a
− e cosE

∂E

∂a
=
∂n

∂a
t = −3n

2a
t (11.70)
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Making use of Eq. (8.15) we find that

∂E

∂a
= −3nt

2r
(11.71)

Substituting Eq. (11.71) into Eq. (11.69) we express ∂Or/∂a as

∂Or

∂a
=

O



cosE − e+ a sinE 3nt
2r√

1 − e2 sinE − b cosE 3nt
2r

0



 (11.72)

Since the Lagrangian bracket does not explicitly depend on time, we again
choose to evaluate this partial derivative at periapses where r = q, E = 0 and
t = τ .

∂Or

∂a

∣
∣
∣
∣
periapses

=

O



q/a
3bM0

2q

0



 (11.73)

Substituting Eq. (11.73) into (11.68) we obtain the required partial derivative
of the position vector with respect to a.

∂r

∂a
=
q

a
ı̂e +

3bM0

2q
ı̂p (11.74)

Evaluating the partial derivative of the velocity vector with respect to a follows
the same logic, but is algebraically more complicated. Using Eq. (11.71), taking
the partial derivative of the velocity vector v with respect to a we find

∂Ov

∂a
=

O




−an
r sinE + 3a2nt

2r2

(

n cosE + sinE − ane sin2 E
r

)

− bn
2r cosE + 3abn2t sinE

2r2

(
1 + a cosE

r

)

0




 (11.75)

Evaluating this partial derivative at periapses we get

∂Ov

∂a

∣
∣
∣
∣
periapses

= −
O




3a2nM0

2q2
bn
2q

0




 (11.76)

After substituting Eq. (11.76) into Eq. (11.68) we are able to write the partial
derivative of v with respect to a as

∂v

∂a
= −3a2nM0

2a2
ı̂e −

bn

2q
ı̂p (11.77)

The partial derivatives of r and v with respect to e and M0 are found in
a similar manner. By finding the partial derivative of Kepler’s equation with
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respect to either e or M0, we find the required partial derivatives of the eccentric
anomaly E for any point on the osculating orbit to be

∂E

∂e
=
a sinE

r

∂E

∂M0
=
a

r
(11.78)

Evaluating these partial derivatives at periapses we find

∂E

∂e

∣
∣
∣
∣
periapses

= 0
∂E

∂M0

∣
∣
∣
∣
periapses

=
a

q
(11.79)

Using these partial derivatives and following the same path as is used in the
development of the partial derivatives of r and v with respect to a, we find the
remaining partial derivatives to be:

∂r

∂e
= −aı̂e

∂v

∂e
=
na3

bq
ı̂p (11.80)

∂r

∂M0
=
ab

q
ı̂p

∂v

∂M0
= −na

3

q2
ı̂e (11.81)

With the various partial derivative of r and v with respect to the orbit
elements evaluated, finding the Lagrangian brackets now is a relatively straight
forward matter. We will only carry out the algebra here for the Lagrangian
bracket [a, ω] for illustrative purposes. Using Eq. (11.40), the bracket [a, ω] is
defined as

[a, ω] =
∂r

∂a
· ∂v

∂ω
− ∂v

∂a
· ∂r

∂ω
(11.82)

Using the partial derivative expressions that we have just found, and noting
that the orbit frame O unit vectors are mutually orthogonal, the bracket [a, ω]
is reduced to

[a, ω] =

(
q

a
ı̂e +

3bM0

2q
ı̂p

)

·
(

−nab
q

ı̂e

)

+

(
3a2nM0

2q2′
ı̂e +

bn

2q
ı̂p

)

· qı̂p

= −nb+
nb

2
= −nb

2

Due to the skew-symmetry of the Lagrangian matrix, only 15 distinct brackets
need to be evaluated and are shown below:1

[i,Ω] = nab sin i [ω, i] = 0 [a, ω] = −nb
2

[e, a] = 0 [M0, e] = 0

[ω,Ω] = 0 [a, i] = 0 [e, ω] =
na3e

b
[M0, a] =

na

2

[a,Ω] = −nb
2

cos i [e, i] = 0 [M0, ω] = 0

[e,Ω] =
na3e

b
cos i [M0, i] = 0

[M0,Ω] = 0



406 PERTURBATION METHODS CHAPTER 11

Using these Lagrangian brackets, the osculating constraints on ė for a conser-
vative disturbance potential R are












0 −nab sin i 0 nb
2 cos i −na3e

b cos i 0
nab sin i 0 0 0 0 0

0 0 0 nb
2 −na3e

b 0
−nb

2 cos i 0 −nb
2 0 0 −na

2
na3e
b cos i 0 na3e

b 0 0 0
0 0 0 na

2 0 0






















dΩ
dt
di
dt
dω
dt
da
dt
de
dt
dM0

dt











=











∂R
∂Ω
∂R
∂i
∂R
∂ω
∂R
∂a
∂R
∂e
∂R
∂M0











(11.83)

Since many of the Lagrangian brackets are zero, it is relatively easy to invert the
Lagrangian matrix [L] in Eq. (11.83) and solve for the desired orbit parameter
rate vector ė. For example, due to the sparse nature of [L], solving for Ω̇ and
ȧ is trivial. Solving for the six unknown ei, we obtain the classical form of
Lagrange’s planetary equations:

dΩ

dt
=

1

nab sin i

∂R

∂i
(11.84a)

di

dt
= − 1

nab sin i

∂R

∂Ω
+

cos i

nab sin i

∂R

∂ω
(11.84b)

dω

dt
= − cos i

nab sin i

∂R

∂i
+

b

na3e

∂R

∂e
(11.84c)

da

dt
=

2

na

∂R

∂M0
(11.84d)

de

dt
= − b

na3e

∂R

∂ω
+

b2

na4e

∂R

∂M0
(11.84e)

dM0

dt
= − 2

na

∂R

∂a
− b2

na4e

∂R

∂e
(11.84f)

Note that these variational equations, and thus also the corresponding La-
grangian bracket matrix [L], are singular whenever either the eccentricity is
0 (i.e. circular orbit) or the inclination angle i is zero degrees (i.e. equatorial
orbit). Further, these differential equations also loose their validity whenever
the orbit energies rise to the point where the corresponding trajectories are
parabolic or hyperbolic. The reason for this is the underlying assumption in the
preceding development that the position vector r(t) is the solution of an elliptic
orbit. However, by choosing a different set of orbit elements it is possible to
avoid these singularities.1

Example 11.3: Let us use Lagrange’s planetary equations to compute how
the J2 gravitational perturbation will affect the orbit elements. The dis-
turbance potential function R(r) for the J2 oblateness component of the
spherical gravitational harmonics is defined in Eq. (10.63) and is given by

R(r) = −J2

2

µ

r

(req

r

)2 (
3 sin2 φ− 1

)
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Using Eq. (8.130) we note that

sin φ = ı̂r · ı̂z = sin(ω + f) sin i

This allows us to write the disturbance potential function R in terms of the
chosen orbit elements as

R(e) = −J2

2

µ

r

(req

r

)2 (
3 sin2(ω + f) sin2 i− 1

)
(11.85)

Expressing the orbit radius using Eq. (8.6) and performing the partial deriva-
tives required in Lagrange’s planetary equations, we find the J2 gravitational
perturbation to cause the following instantaneous rates in the orbit elements.2

dΩ

dt
= −3J2n

a2

br

(req

r

)2

sin2 θ cos i (11.86a)

di

dt
= −3

4
J2n

a2

br

(req

r

)2

sin(2θ) sin(2i) (11.86b)

dω

dt
=

3

4
J2n

a2

bep

(req

r

)2 [

cos f
(

2(1 + e2)

−
(
(3 + e2) − (3 + 5e2) cos(2i)

)
sin2 θ

)

+ 2e
(

2 cos(2i) + cos(2θ) − cos(2(θ − i))

+ 2 sin2(θ + i)
)]

(11.86c)

da

dt
= −3J2n

a4

br2

(req

r

)2 [

e sin f(1 − 3 sin2 θ sin2 i)

+
p

r
sin(2θ) sin2 i

] (11.86d)

de

dt
= −3

2
J2n

a2

br

(req

r

)2 [p

r
sin f(1 − 3 sin2 θ sin2 i)

+ (e+ cos f(2 + e cos f) sin(2θ) sin2 i)
] (11.86e)

dM0

dt
= − 3

16
J2
n

e

(req

r

)2

cos f
[

2 + 6 cos(2i) + 6 cos(2θ)

− 3 cos(2(θ − i)) − 3 cos(2(θ + i))
] (11.86f)

Taking the partial derivatives, note that

∂f

∂M0
=
∂f

∂E
· ∂E

∂M0
=
ab

r2

Also, the true anomaly θ = ω+f is used here to simplify the rate expressions.
Note that the orbit elements rates provides in Eq. (11.86) are instantaneous,
or sometimes also referred to as the osculating, orbit elements rates. In some
application it is convenient to deal with orbit averaged rates, or also called
the mean element rates. The J2 perturbation causes three types of rates;
(1) short period oscillations (2) long period oscillations and (3) secular drift.
The short and long period oscillations are periodic deviation from the element
mean values during an orbit. For long term orbit study the secular drift is
of great interest. Using asymptotic expansion theory, it is possible to extract
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the secular rates and express the mean or orbit average effect of J2 on the
orbit elements e as:3

dΩ

dt
= −3

2
J2n

(
req

p

)2

cos i (11.87a)

di

dt
= 0 (11.87b)

dω

dt
=

3

4
J2n

(
req

p

)2

(5 cos2 i− 1) (11.87c)

da

dt
= 0 (11.87d)

de

dt
= 0 (11.87e)

dM0

dt
=

3

4
J2n

(
req

p

)2√

1 − e2(3 cos2 i− 1) (11.87f)

The rigorous derivation of these rates is beyond the scope of this chapter.
The mapping between mean and osculating orbit elements is found as part
of Brouwer’s artificial satellite theory in Reference 3. Note that there exists
a critical inclination angle icrit = 63.4249 degrees where no mean regression
of the argument of perigee occurs.

11.2.4 Poisson Brackets

The Lagrangian coefficient matrix [L] is written in compact form in Eq. (11.42).
The Poisson matrix [P ] is closely related to the Lagrangian matrix [L]. The
6 × 6 matrix [P ] is defined as

[P ] =
∂e

∂s
[J ]

∂e

∂s

T

(11.88)

with s(t, e) being defined in Eq. (11.41) and the symplectic matrix [J ] being
defined in Eq. (11.43). The elements of [P ] are called the Poisson bracket and
defined as

Pij = (ei, ej) =
∂ei
∂r

(
∂ej
∂v

)T

− ∂ei
∂v

(
∂ej
∂r

)T

(11.89)

The Poisson bracket (ei, ej) satisfies the same three conditions as does the La-
grangian bracket [ei, ej ].

(ei, ej) = −(ej , ei) (11.90a)

(ei, ei) = 0 (11.90b)

∂

∂t
(ei, ej) = 0 (11.90c)



SECTION 11.2 VARIATION OF PARAMETERS 409

To find the relationship between [L] and [P ], let us evaluate their matrix
product:

[L][P ] =

(
∂s

∂e

)T

[J ]
∂s

∂e

∂e

∂s
︸ ︷︷ ︸

[I6×6]

[J ]

(
∂e

∂s

)T

=

(
∂s

∂e

)T

[J ][J ]
︸ ︷︷ ︸

−[I6×6]

(
∂e

∂s

)T

= −[I6×6]

(11.91)

Thus the Poisson matrix [P ] is the negative inverse of the Lagrangian matrix
[L].

[P ] = −[L]−1 (11.92)

Using the skew-symmetry property in Eq. (11.90a), this is also written as

[P ]T = [L]−1 (11.93)

Recall the Lagrangian variational equations in Eq. (11.39) where the inverse of
the Lagrangian matrix [L] appeared. Using Eq. (11.93), this equation can now
be written as

de

dt
= [P ]T

[
∂R

∂e

]T

(11.94)

Using the Poisson matrix [P ] or the Poisson brackets (ei, ej), we are able to
avoid the matrix inversion of [L] when solving for ė. After evaluating all the
Poisson brackets (ei, ej) of [P ] for a given orbit element set vector e, Eq. (11.94)
would lead directly to Lagrange’s planetary equations shown in Eq. (11.84).

Instead of re-deriving these equations, we will use the Poisson brackets to
derive the ė expressions when the disturbance is provided by a disturbance
acceleration ad. Substituting the [P ] definition in Eq. (11.88) into Eq. (11.94)
yields

de

dt
= −∂e

∂s
[J ]

[
∂R

∂s

∂e

∂s

]T

(11.95)

After substituting the definitions of s and [J ], this is written as

de

dt
=
∂e

∂v

[
∂R

∂r

]T

− ∂e

∂r

[
∂R

∂v

]T

(11.96)

Finally, making use of Eq. (11.31) and the fact that R = R(r), we arrive at the
compact orbit element rate equation

de

dt
=
∂e

∂v
ad (11.97)

Note that no coordinate frame has been chosen yet for the vectors v and ad in
Eq. (11.97). This equation is very useful in that it holds for all possible frames.
The following subsections develop the variational equations for several classi-
cal orbit elements while also maintaining a general vector description without
choosing a particular coordinate frame.
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Variation of the Semi-Major Axis

To find the semi-major axis rate ȧ due to a disturbance acceleration ad, we
must first express the semi-major axis in terms of the velocity vector v. To do
so, we make us of the vis-viva equation:

v2 = vTv =
2µ

r
− µ

a

Taking the partial derivative of this equation leads to

∂a

∂v
=

2a2

µ
vT (11.98)

Substituting this ∂a/∂v expression into Eq. (11.97) leads to the variation equa-
tion of the semi-major axis a.

da

dt
=
∂a

∂v
ad =

2a2

µ
vTad (11.99)

Note that Eq. (11.99) holds for any coordinate frame assigned to the vectors v

and ad.

Variation of the Eccentricity

To find the variation of the eccentricity e, the variation of the angular momen-
tum magnitude h is required. To express h in terms of the velocity vector v,
we make use of the fundamental definition h = r×v of the angular momentum
vector. The scalar h is then related to v through

h2 = (r × v) · (r × v) = r2vTv − (rTv)2 (11.100)

where some standard vector cross product identities were used. Taking the
partial derivative of Eq. (11.100) leads to

∂h

∂v
=

1

h

(
r2vT − (rTv)rT

)
(11.101)

Since the partial derivatives of both h and a with respect to v are know
at this point, it is convenient to solve for the eccentricity variation by using
Eqs. (8.9) and (8.65).

h2 = µp = µa(1 − e2) (11.102)

Taking the partial derivative of Eq. (11.102) with respect to v leads to

2h
∂h

∂v
= µ

∂a

∂v
(1 − e2) − 2µae

∂e

∂v
(11.103)

Substituting Eqs. (11.99) and (11.101) into Eq. (11.103) leads to

∂e

∂v
=

1

µae

(
(pa− r2)vT + (rTv)rT

)
(11.104)
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The variational equation for the eccentricity is then given by

de

dt
=
∂e

∂v
ad =

1

µae

(
(pa− r2)vTad + (rTv)rTad

)
(11.105)

Variation of the Longitude of the Ascending Node and the Inclination Angle

To find the variations of the longitude of the ascending node Ω and inclination
angle i, we first define an inertial coordinate frame N : {ı̂x, ı̂y, ı̂z} and the orbit
frame O : {ı̂n, ı̂m, ı̂z}. The angles Ω and i are the first two (3-1-3) Euler angles
which determine the orbit plane orientation. Using Eq. (3.35), the frames O
and N are then related through







ı̂n
ı̂m
ı̂h






=





cosΩ sin Ω 0
− sinΩ cos i cosΩ cos i sin i
sinΩ sin i − cosΩ sin i cos i











ı̂x
ı̂y
ı̂z






(11.106)

The angular momentum vector h can now be expressed in terms of both Ω and
i as

h = hı̂h = h(sin Ω sin i ı̂x − cosΩ sin i ı̂y + cos i ı̂z) (11.107)

Taking the partial derivative of h with respect to v, and making use of the
reference frame unit direction vector identities in Eq. (11.106), we find

∂h

∂v
= h sin i ı̂h

∂Ω

∂v
− hı̂m

∂i

∂v
+ ı̂h

∂h

∂v
(11.108)

To obtain ∂h/∂v, we make use of the fundamental definition of h.

∂h

∂v
=
∂(r × v)

∂v
= (r×) (11.109)

Substituting Eq. (11.109) into Eq. (11.108) and taking the transpose, we find

−(r×) = h sin i

(
∂Ω

∂v

)T

ı̂Tn − h

(
∂i

∂v

)T

ı̂Tm +

(
∂h

∂v

)T

ı̂Th (11.110)

By multiplying Eq. (11.110) by ı̂n, we are able to isolate the Ω derivative.

∂Ω

∂v
=

1

h sin i
(ı̂n × r)T (11.111)

Since the position vector r can be expressed as

r = r(cos θı̂n + sin θı̂m) (11.112)

where θ = ω + f , then the partial derivative of Ω is simplified to

∂Ω

∂v
=
r sin θ

h sin i
ı̂Th (11.113)
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To find the partial derivative of the inclination angle with respect to v,
Eq. (11.110) is multiplied by ı̂m and r is replaced by the expression in Eq. (11.112).

∂i

∂v
=
r cos θ

h
ı̂Th (11.114)

Substituting Eqs. (11.113) and (11.114) into Eq. (11.97), the variational equa-
tions for the longitude of the ascending node and the inclination angle are found
to be

dΩ

dt
=
∂Ω

∂v
ad =

r sin θ

h sin i
ı̂Thad (11.115)

di

dt
=

∂i

∂v
ad =

r cos θ

h
ı̂Thad (11.116)

Variation of the Anomalies

Finding the various anomaly variations is algebraically the most challenging task
of all the orbit element variations discussed in this section. First, the variation
of the true anomaly will be derived. This result will then be used to derive the
variations of the eccentric anomaly E and mean anomaly M .

The orbit equation in Eq. (8.6) provides an equation which relates the true
anomaly f to h and e. This is attractive since both the h and e partial derivatives
with respect to v have already been derived. Taking the partial derivative of
Eq. (8.6) leads to

re sin f
∂f

∂v
= r cos f

∂e

∂v
− 2h

µ

∂h

∂v
(11.117)

We could substitute the previously found partial derivative for both e and h at
this point and attempt to solve for ∂f/∂v. However, this path involves a lot
of algebra to reduce the answer to a simple form. Battin presents an elegant
solution to this problem in Reference 1 which avoids some of the algebra involved
in reducing the answer. From the position and velocity vector expressions in
Eqs. (8.132) and (8.133), the following identity is found:

µ

h
re sin f = rTv (11.118)

This equation provides another relationship between the true anomaly f and
the parameters e and h. Taking the partial derivative of Eq. (11.118) we find

re cos f
∂f

∂v
= −r sin f

∂e

∂v
+

rTv

µ

∂h

∂v
+
h

µ
rT (11.119)

The reason that Reference 1 uses this second equation along with Eq. (11.117)
is now clear. After multiplying Eq. (11.117) by sin f and Eq. (11.119) by cos f
and adding the two, the following simplified equation for ∂f/∂v is found.

reh
∂h

∂v
= p cosfrT − (p+ r) sin f

∂h

∂v
(11.120)
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Note that the ∂e/∂v term has been eliminated by this method and that the
∂f/∂v term is no longer pre-multiplied by sin f . Substituting the partial deriva-
tive expression for h in Eq. (11.100), the partial derivative of f is expressed as

∂f

∂v
=

1

he

(
p

r
cos f +

p+ r

p
e sin2f

)

︸ ︷︷ ︸

κ

rT − r

h2e
(p+ r) sin fvT (11.121)

The term κ can be further simplified by making use of the orbit equation in
Eq. (8.6).

κ =
p

r
cos f +

(

1 +
r

p

)

sin2fe

= cos f + e cos2f + e+
re

p
− re

p
cos2f − e cos2f

= e+ cos f

(

1 − e cosf

1 + e cos f

)

+
re

p

= e+
r

p
(cos f + e)

Substituting the simplified κ expression back into Eq. (11.121), the reduced
∂f/∂v expression is given by

∂f

∂v
=

1

he

(
r

p
(cos f + e) + e

)

rT − r

h2e
(p+ r) sin fvT (11.122)

When computing the anomaly rates, we must take into account that the anoma-
lies do have an unperturbed derivative. Thus

df

dt
=
∂f

∂t
+
∂f

∂v
ad

=
h

r2
+

1

he

(
r

p
(cos f + e) + e

)

rTad −
r

h2e
(p+ r) sin fvTad

(11.123)

To find the variation of the of the eccentric anomaly E, Eqs. (8.3) and (8.16)
are combined to yield

cosE =
cos f + e

1 + e cos f
(11.124)

Again, we are able to express the partial derivative of E in terms of already
derived partial derivatives. Similarly, Eqs. (8.4) and (8.17) are combined to
yield

sinE =
b sin f

a(1 + e cosf
(11.125)

Taking the partial derive of cosE yields

sinE(1 + e cos f)
∂E

∂v
= (e cosE − 1) sin f

∂f

∂v
+ (1 − cosE cos f)

∂e

∂v
(11.126)
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After substituting the cosE and sinE expressions in Eqs. (11.124) and (11.125),
the partial derivative of the eccentric anomaly E is written as

∂E

∂v
=
r

b

∂f

∂v
− ra

pb
sin f

∂e

∂v
(11.127)

After substituting the h and e partial derivative expressions and performing the
typical algebraic reductions, the partial derivative of E with respect to v is

∂E

∂v
=

r

µbe

(
h

p
(cos f + e)rT − (r + a) sin fvT

)

(11.128)

Using Eqs. (8.101) and (11.94), the eccentric anomaly variational equation is
given by

dE

dt
=
∂E

∂t
+
∂E

∂v
ad

=
na

r
+

r

µbe

(
h

p
(cos f + e)rTad − (r + a) sin fvTad

) (11.129)

To derive the variation of the mean anomaly, the mean anomaly definition
in Eq. (8.103) is used. Taking the partial derivative of M = E − e sinE we find

∂M

∂v
=
r

a

∂E

∂v
− sinE

∂e

∂v
(11.130)

After substituting the E and e partial derivatives and performing several alge-
braic reductions, ∂M/∂v is given by

∂M

∂v
=

rb

ha2e

(

cos frT − a

h
(r + p) sin fvT

)

(11.131)

Finally, the mean anomaly variation is given by

dM

dt
=
∂M

∂t
+
∂M

∂v
ad

= n+
rb

ha2e

(

cos frTad −
a

h
(r + p) sin fvTad

) (11.132)

Variation of the Argument of Perigee

The last variation to be derived is the variation of the argument of perigee.
This is accomplished indirectly through the latitude argument θ = ω + f . The
latitude angle θ is defined as the angle between the unit position vector ı̂r and
the ascending node direction ı̂n. Thus

cos θ = ı̂Tn ı̂r (11.133)

Using Eq. (11.106), this is written as

cos θ = cosΩ(ı̂Tx ı̂r) + sin Ω(ı̂Ty ı̂r) (11.134)
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When taking the partial derivative of Eq. (11.134), keep in mind that the inertial
unit vectors ı̂x and ı̂y, along with the unit position vector ı̂r, are invariant with
respect to the velocity vector v. Thus

− sin θ
∂θ

∂v
=
(
− sinΩ(ı̂Tx ı̂r) + cosΩ(ı̂Ty ı̂r)

) ∂Ω

∂v
(11.135)

After substituting the unit position vector expression from Eq. (8.130), the
partial derivative of the latitude angle with respect to v is

∂θ

∂v
= − cos i

∂Ω

∂v
(11.136)

Using θ = ω + f , the partial derivative of the argument of perigee ω is

∂ω

∂v
= −∂f

∂v
− cos i

∂Ω

∂v
(11.137)

After substituting the partial derivatives of f and Ω, the argument of perigee
variation is given by

dω

dt
=
∂ω

∂v
ad = − 1

he

(
r

p
(cos f + e) + e

)

rTad

r
ep) +re)sin∂ a

add p vthe ^

{
fis v
( and ^

{

θ vs4596ψ5uting a
(When)Tj
.15022ψ0ψT9deriv

L6.06R31T2(along)TjVLH99ψ1.50ψT13696264ψTf4eferenc5.884ψ0ψ5552d
(t)Tjfram28ψ4464ψT7796264ψTf
9.c0536ψ0ψT180(unit)Tjit964ψψT(6..9626th)Tj
-trac879647819.96264ψTfks15022ψ04654
(to)Tj
12.1067ψ050d
(the)Tjlo67.08x0Td
(with)Tjc83ψ0ψT15.02Td
(giv)Thoriz928ψ0ψ3338ψTd
(b)Tjplane964ψ0ψT86296264ψTf(spanned.884ψ0ψ9125ψ(en)Tj
12.9526ψ0ψTd
(b)Tj
5.398xpr0rtiion^{
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1rec9023 0 TdR352
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/R146 6.97385 Tf
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12.4641 0 Td
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10.9 T((4496ee)Tj
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(v)Tj
5.15022 0 Td
(ector)Tj
/R7166.96264 Tf
24.6886 0 Td
(v)Tj
/9.839.Td
(v)Tj
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(to)Tj
12.1067 0 Td
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a
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The tangential velocity component rḟ is rearranged into the form

rḟ =
h

r
=
µp

hr
(11.142)

The velocity vector v is now written as

v = ṙ =
µ

h

(

e sin f ı̂r +
p

r
ı̂θ

)

(11.143)

To express the semi-major axis variational equation in terms of LVLH frame
components of ad, Eqs. (11.139) and (11.143) are substituted into Eq. (11.99)
to yield

da

dt
=

2a2

h

(

e sin far +
p

r
aθ

)

(11.144)

After substituting Eqs. (11.139) and (11.143) into Eq. (11.105), the eccen-
tricity variation is initially expressed as

de

dt
=

1

µae

(

p sin far +
(pa− r2)(1 + e cosf)

ae
aθ

)

(11.145)

After making use of the orbit equation in Eq. (8.6), the eccentricity variation
expression is reduced to

de

dt
=

1

h
(p sin far + ((p+ r) cos f + re) aθ) (11.146)

The variational equations for the longitude of the ascending node Ω and the
inclination angle i are obtained trivially from Eqs. (11.115) and (11.116) since
ı̂Thad = ah.

dΩ

dt
=
r sin θ

h sin i
ah (11.147)

di

dt
=
r cos θ

h
ah (11.148)

The variation of the argument of perigee ω is obtained by substituting Eqs. (11.139)
and (11.143) into Eq. (11.138) and simplifying

dω

dt
= − 1

he
cos fpar +

1

he
(p+ r) sin faθ −

r sin θ cos i

h sin i
ah (11.149)

The variational equations of the anomalies f , E and M are obtained by sub-
stituting Eqs. (11.139) and (11.143) into Eqs. (11.123), (11.129) and (11.132)
respectively.

df

dt
=

h

r2
+

1

he
(p cosfar − (p+ r) sin faθ) (11.150)

dE

dt
=
na

r
+

p

bhe
(a(cos f − e)ar + (r + a) sin faθ) (11.151)

dM

dt
= n+

b

ahe
((p cosf − 2re)ar − (p+ r) sin faθ) (11.152)
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Gauss’ variation equations can be very convenient when the disturbance
acceleration ad is non-conservative. By mapping the acceleration vector into
the LVLH frame, the orbit element variations can readily be integrated. Also,
if the disturbance ad is due to a control thrust, Gauss’ variational equations
show what effect such a control thrust would have on the orbit elements. For
example, studying the variational equations of the ascending node Ω and i, it
is clear the most efficient period during an orbit to make a nodal correction is
during the polar crossing where sin θ is maximized. Similarly, the most efficient
period to adjust the orbit inclination is during the equator crossing where cos θ
is maximized. Since these equations are so convenient, they are summarized
below one more time.

da

dt
=

2a2

h

(

e sin far +
p

r
aθ

)

(11.153a)

de

dt
=

1

h
(p sin far + ((p+ r) cos f + re) aθ) (11.153b)

di

dt
=
r cos θ

h
ah (11.153c)

dΩ

dt
=
r sin θ

h sin i
ah (11.153d)

dω

dt
= − 1

he
cos fpar +

1

he
(p+ r) sin faθ −

r sin θ cos i

h sin i
ah (11.153e)

dM

dt
= n+

b

ahe
((p cos f − 2re)ar − (p+ r) sin faθ) (11.153f)

11.3 State Transition and Sensitivity Matrix

A state transition matrix [Φ(t, t0)] provides a direct mapping from initial con-
ditions r(t0) to the final state vector r(t) at any particular time. This matrix
can be viewed as the sensitivity matrix of the current state to the initial con-
ditions. As such, it has many applications in perturbation theory since it can
show, if setup properly, how initial trajectory errors will evolve over time. The
state transition matrix, along with the associated sensitivity matrices, are also
commonly used in control theory to drive initial trajectory errors to zero. This
section presents basic the state transition matrix theory for both linear and
nonlinear dynamical systems. Finally, an analytical solution is developed for
the special case of Keplerian motion.
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11.3.1 Linear Dynamic Systems

Homogeneous System

Let us begin by consideration of the homogeneous (constant coefficients) vector-
matrix differential equation case

dx

dt
= ẋ = [A]x x(t0) = x0, [A] = constant (11.154)

where x(t) is a n-dimensional state vector. To establish the form of the general
solution, we look at a Taylor’s series solution.

x(t) = x(t0) +

∞∑

n=1

d2x

dtn

∣
∣
∣
∣
t0

(t− t0)
n

n!
(11.155)

By differentiating Eq. (11.154) and enforcing [A] to be a constant matrix, note
that the higher order derivatives of x(t) are expressed as

dnx(t)

dtn
= Anx(t0) (11.156)

Substituting Eq. (11.156) into the infinite series in Eq. (11.155) yields

x(t) =

(

[I ] +
∞∑

n=1

An
(t− t0)

n

n!

)

︸ ︷︷ ︸

Matrix Exponential

x(t0) (11.157)

Note that the expression between the large brackets is precisely the definition of
the matrix exponential function. Thus we are able to write the general solution
for x(t) in the compact form

x(t) = e[A](t−t0)x(t0) (11.158)

Compare this solution to the solution of the scalar linear homogeneous equa-
tion

ẋ = ax (11.159)

which has the well-known solution

x(t) = ea(t−t0)x0 (11.160)

Thus, except for the order of the matrix multiplication, the solution of Eq. (11.158)
is analogous in many ways to the solution of the scalar case. However, caution
must be exercised with this analogy since it isn’t perfect.

Continuing with the constant [A] case, let us now introduce a classical result
which, if [A] has distinct eigenvalues, transforms the computation of the matrix
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exponential e[A](t−t0) into a trivial exercise. Consider the transformation to a
new n-dimensional state vector η.

x(t) = [T ]η(t) (11.161)

where [T ] is a constant, non-singular n× n matrix. Substituting the definition
of x(t) into the state differential equations in Eq. (11.154) yields

η̇ =
(
[T ]−1[A][T ]

)
η (11.162)

The question now is how should the constant matrix [T ] be chosen such that the
matrix matrix multiplication [Λ] = [T ]−1[A][T ] becomes diagonal? The answer
is to chose the columns of the [T ] matrix to be the eigenvectors of [A]. To prove
this, we write out the matrix multiplication as

[T ]−1[A][T ] = [Λ] =








λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

0 0 λn








(11.163)

which leads to

[A][T ] = [T ][Λ] (11.164)

Defining ti to be the i-th column matrix of [T ], Eq. (11.164) is rewritten as a
series of n equations.

[A]ti = λiti i = 1, 2, · · · , n (11.165)

From Eq. (11.165) it is obvious that the matrix diagonal entries λi are the
eigenvalues of [A] and the columns ti are the corresponding eigenvectors of
[A]. Thus this state transformation transforms the originally coupled set of n
differential equations into n uncoupled differential equations.

η̇(t) = λiη(t) (11.166)

Using the classical solution of a linear differential equation with constant coef-
ficient in Eq. (11.160), the state vector η(t) is computed as

η(t) =








eλ1(t−t0) 0 · · · 0

0 eλ2(t−t0) · · · 0
...

...
. . .

0 0 eλ2(t−t0)








η(t0) (11.167)

with a matrix exponential expression which is trivial to compute. Substituting
the state transformation definition in Eq. (11.161) back into the η(t) solution
and equating it with the x(t) solution in Eq. (11.158), we are able to compute
the complex matrix exponential e[A](t−t0) through

e[A](t−t0) = [T ][diag(eλi(t−t0))][T ]−1 (11.168)
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Non-Homogeneous System

Now, having covered the solution to a homogeneous set of differential equations,
we consider the more general case of non-homogeneous differential equations
where the matrix [A(t)] is time varying.

ẋ(t) = [A(t)]x(t) (11.169)

Going back to the analogy with the scalar case ẋ = a(t)x(t) which has the
solution

x(t) = x(t0)e
∫

t

t0a(τ)dτ (11.170)

we might expect that the solution of Eq. (11.169) be of the form

x(t) = e
∫

t

t0
[A(τ)]dτ

x(t0) (11.171)

But Eq. (11.171) does not hold in general. It only holds for the special cases
where either 1) [A] is constant, 2) [A] is diagonal and more generally 3) if
[A]
∫
[A]dτ =

∫
[A]dτ [A]. Instead, in order to solve the set non-homogeneous

differential equation ẋ = [A(t)]x, we seek a linear operator [Φ(t, t0)] which
maps the initial state vector x0 into x(t) as in

x(t) = [Φ(t, t0)]x(t0) [Φ(t0, t0)] = [In×n] (11.172)

This linear operator [Φ(t, t0)] will be referred to as the state transition ma-
trix. Substituting the proposed solution of x(t) in Eq. (11.172) back into the
differential equation in Eq. (11.169) yields

(

[Φ̇(t, t0)] − [A(t)][Φ(t, t0)]
)

x(t0) = 0 (11.173)

Since Eq. (11.173) must hold for any initial condition x0, it is apparent that the
state transition matrix differential equation must satisfy

[Φ̇(t, t0)] = [A(t)][Φ(t, t0)] [Φ(t, t0)] = [In×n] (11.174)

Thus, in the worst case we can solve Eq. (11.174) numerically to determine
[Φ(t, t0)]. Also, notice from Eq. (11.172) that the state transition matrix can be
defined as

[Φ(t, t0)] =

[
∂x(t)

∂x(t0)

]

(11.175)

Thus [Φ(t, t0)] can be viewed as the sensitivity of the current state vector x(t)
to the initial conditions x(t0).

For the special case where [A] is a constant matrix, we take the partial
derivative of Eq. (11.158) with respect to x0 to find the state transition matrix
for the homogeneous linear system.

[Φ(t, t0)] =

[
∂x(t)

∂x(t0)

]

= e[A](t−t0) (11.176)
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To verify that this is indeed correct, the state transition matrix [Φ(t, t0)] is
expanded as a Taylor’s series.

[Φ(t, t0)] = [Φ(t0, t0)]
︸ ︷︷ ︸

[In×n]

+

∞∑

n=1

dn[Φ(t, t0)]

dtn
(t− t0)

n

n!
(11.177)

Since [A] is a constant matrix for this special case, the higher derivatives of the
state transition matrix are given by

dn[Φ(t, t0)]

dtn
= [A]n[Φ(t, t0)] (11.178)

Substituting these higher derivatives back into Eq. (11.177) yields the expected
definition of a state transition matrix for a linear homogeneous system.

[Φ(t, t0)] = [In×n] +
∞∑

n=1

[A]n
(t− t0)

n

n!
︸ ︷︷ ︸

Matrix Exponential

= e[A](t−t0) (11.179)

In general, note that the state transition matrix [Φ(tj , ti)] maps the state
vector at time ti to a state vector at time tj .

x(tj) = [Φ(tj , ti)]x(ti) (11.180)

Thus, given the three times t1, t2 and t3, we are able to write

x(t2) = [Φ(t2, t1)]x(t1) (11.181)

x(t3) = [Φ(t3, t2)]x(t2) (11.182)

x(t3) = [Φ(t3, t1)]x(t1) = [Φ(t3, t2)][Φ(t2, t1)]x(t1) (11.183)

We conclude that [Φ(tj , ti)] abides by the group property

[Φ(tk, ti)] = [Φ(tk, tj)][Φ(tj , ti)] (11.184)

Also, note that the inverse of the state transition matrix is simply defined as

[Φ(tj , ti)]
−1 = [Φ(ti, tj)] (11.185)

Next, let us consider a linear differential equation with a forcing term u(t).

ẋ = [A(t)]x(t) + [B(t)]u(t) (11.186)

For the special case where u(t) = 0, we have already established that

x(t) = [Φ(t, t0)]x(t0) (11.187a)

[Φ̇(t, t0)] = [A(t)][Φ(t, t0)] [Φ(t0, t0)] = [In×n] (11.187b)
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For u(t) 6= 0, we seek to replace x(t0) by a function of time C(t) to make
Eq. (11.186) satisfy the forced differential equation in Eq. (11.186). Employing
Lagrange’s method of variation of parameters, we seek to find out what C(t)
will make the solution of Eq. (11.186) have the the form

x(t) = [Φ(t, t0)]C(t) C(t0) = x0 (11.188)

Differentiating Eq. (11.188) and making use of Eq. (11.187b) yields

ẋ(t) = [A(t)][Φ(t, t0)]C(t) + [Φ(t, t0)]Ċ(t) (11.189)

Substituting Eq. (11.187a) into Eq. (11.186) and comparing the resulting ẋ

expression to Eq. (11.189), the differential equation for C(t) must satisfy

Ċ(t) = [Φ(t, t0)]
−1[B(t)]u(t) (11.190)

Integrating Ċ while making use of C(t0) = x0 and the state transition matrix
inverse property in Eq. (11.185), the function C(t) is now expressed as

C(t) = x(t0) +

∫ t

t0

[Φ(t0, τ)][B(τ)]u(τ)dτ (11.191)

Substituting this C(t) function definition back into Eq. (11.188), the state vector
x(t) is expressed as a function of the initial conditions and the forcing function
u(t) as

x(t) = [Φ(t, t0)]x(t0) +

∫ t

t0

[Φ(t, τ)][B(τ)]u(τ)dτ (11.192)

11.3.2 Nonlinear Dynamic Systems

While the linear systems theory allows us to predict the response of a large class
of systems, often the dynamical systems of interest are nonlinear in their nature.
For example, the prime differential equation of interest for Keplerian two-body
motion is r̈ = −µ/r3r which is nonlinear. In the following development we will
illustrate how it is still possible to describe time evolution of a state vector in
terms of a state transition matrix.

Let us consider the case of a forced nonlinear dynamical system of the form

ẋ(t) = f(t,x(t),p,u(t)) x(t0) = x0 (11.193)

where the n-dimensional vector p is a force model parameter vector. It contains
time invariant parameters which affect the effectiveness of the control vector
u such as the moment arm for example. Integrating this differential equation
yields

x(t) = x(t0) +

∫ t

t0

f(τ,x(τ),p,u(τ))dτ (11.194)
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We are interested in the sensitivities of the current state vector x(t) with respect
to either the initial state vector x(t0) or the force model parameter vector p.

[Φ(t, t0)] ≡
[
∂x(t)

∂x(t0)

]

(11.195)

[Ψ(t, t0)] ≡
[
∂x(t)

∂p

]

(11.196)

The sensitivity matrix [Ψ(t, t0)] could be useful in determining how to modify
the p vector to enhance the x(t) trajectory. Differentiating Eqs. (11.195) and
(11.196) gives

[Φ(t, t0)] = [In×n] +

∫ t

t0

[
∂f()

∂x(τ)

] [
∂x(τ)

∂x(t0)

]

dτ (11.197)

[Ψ(t, t0)] = [0n×n] +

∫ t

t0

([
∂f()

∂x(τ)

][
∂x(τ)

∂x(t0)

]

+

[
∂f()

∂p

])

dτ (11.198)

where f() = f(τ,x(τ),p,u(τ)) is implied. Let us introduce the following defi-
nitions for this nonlinear system.

[A(t)] ≡
[
∂f()

∂x(t)

]

(11.199)

[C(t)] ≡
[
∂f()

∂p

]

(11.200)

Differentiating Eqs. (11.197) and (11.198) with respect to time leads to the
following sensitivity matrix time rates:

[Φ̇(t, t0)] = [A(t)][Φ(t, t0)] , [Φ(t0, t0)] = [In×n] (11.201)

[Ψ̇(t, t0)] = [A(t)][Ψ(t, t0)] + [C(t)] , [Ψ(t0, t0)] = [0n×n] (11.202)

If it is necessary to compute the solution of ẋ(t) = f(t,x(t),p,u(t)) numeri-
cally, then it is generally also impossible to solve analytically for either [Φ(t, t0)]
or [Ψ(t, t0)]. One standard algorithm is to simply integrate the three differen-
tial equations provided in Eqs. (11.193), (11.201) and (11.202) simultaneously.
Now, if the differential equation in Eq. (11.193) can be solved analytically for
x(t), then it is usually not necessary to directly solve the differential equations
of [Φ(t, t0)] and [Ψ(t, t0)]. Rather, we can simply determine these sensitivities
by partial differentiation of the analytical solution x(t).

Eqs. (11.201) and (11.202) define the state transition matrix and force pa-
rameter p sensitivity matrix for the actual trajectory x(t) of a nonlinear system.
However, occasionally it is convenient to study the evolution of deviations δx(t)
from a reference trajectory xref (t). This trajectory is generated using a refer-
ence initial condition xref (t0), along with a reference control vector uref (t) and
reference force model parameter pref . We formally indicate this trajectory as

xref (t) = xref (t0) +

∫ t

t0

f(τ,xref (τ),pref ,uref (τ))dτ (11.203)
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Let the actual trajectory be provided by the nonlinear equation in Eq. (11.194).
Deviations of this trajectory to the reference trajectory are then defined as

δx(t) = x(t) − xref (t) (11.204)

Using a first order Taylor series expansion of Eq. (11.194) yields

x(t) ≈ x(t0) +

∫ t

t0

(f(τ,xref (τ),pref ,uref (t))

+

[
∂f()

∂x

]

ref

δx +

[
∂f()

∂u

]

ref

δu +

[
∂f()

∂p

]

ref

δp

)

dτ (11.205)

Defining the following partial derivative short hand notations

[A(t)] ≡
[
∂f()

∂x

]

ref

(11.206)

[B(t)] ≡
[
∂f()

∂u

]

ref

(11.207)

[C(t)] ≡
[
∂f()

∂p

]

ref

(11.208)

the trajectory deviations δx(t) are approximated as

δx(t) = δx(t0) +

∫ t

t0

(

[A(τ)]δx + [B(τ)]δu + [C(τ)]δp
)

dτ (11.209)

Note that the δx(t) derivative is now given by the linear, time dependent dif-
ferential equation

δẋ(t) = [A(t)]δx + [B(t)]δu + [C(t)]δp (11.210)

Since Eq. (11.210) is of the form assumed in Eq. (11.186), we can write the
solution to this differential equation in terms of the state transition matrix as

δx(t) = [Φ(t, t0)]δx(t0) +

∫ t

t0

[Φ(t, τ)]
(

[B(τ)]δu + [C(τ)]δp
)

dτ (11.211)

Differentiating Eq. (11.209) with respect to δx(t0), the state transition matrix
is defined for the departure motion as

[Φ(t, t0)] =

[
∂(δx(t))

∂(δx(t0))

]

= [In×n] +

∫ t

t0

[A(τ)]

[
∂(δx(τ))

∂(δx(t0))

]

dτ (11.212)

Thus the state transition matrix assumes the now familiar form

[Φ̇(t, t0)] = [A(t)][Φ(t, t0)], [Φ(t0, t0)] = [In×n] (11.213)
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The sensitivity matrix [Ψ(t, t0)] of the trajectory deviations with respect to the
force model parameter vector differences δp is given by

[Ψ(t, t0)] =

[
∂(δx(t))

∂(δp)

]

= [0n×n] +
∫ t

t0

(

[A(τ)][Φ(τ, t0)] + [C(τ)]
)

dτ (11.214)

The differential equation of [Ψ(t, t0)] again assumes the form

[Ψ̇(t, t0)] = [A(t)][Φ(t, t0)] + [C(t)], [Ψ(t, t0)] = [0n×n] (11.215)

11.3.3 Symplectic State Transition Matrix

Discussing the direction cosine matrices in Chapter 3 we found that they had
the wonderful property of being orthogonal. Thus, their inverse is simply the
transpose of the matrix. If the state transition matrix satisfies some specific
properties, we can show that it is symplectic. This means that it too will have
a simple analytic matrix inverse formula. Let [Φ] and [J ] be a 2n× 2n matrices
with [J ] being defined as the skew-symmetric matrix

[J ] =

[
0n×n In×n

−In×n 0n×n

]

(11.216)

Note that [J ]2 = [J ][J ] = −[I2n×2n]. The matrix [Φ] is called symplectic if it
satisfies the following condition:

[Φ]T [J ][Φ] = [J ] (11.217)

The significance of this condition is that if we pre-multiply it by [J ] and post-
multiply it by [Φ]−1, then the matrix inverse of [Φ] is given by

[Φ]−1 = −[J ][Φ]T [J ] (11.218)

Partitioning the matrix [Φ] into n× n submatrices Φij through

[Φ] =

[
Φ11 Φ12

Φ21 Φ22

]

(11.219)

the matrix inverse of [Φ] is expressed analytically through the simple expression

[Φ]−1 =

[
ΦT22 −ΦT12

−ΦT21 ΦT11

]

(11.220)

The following development will show necessary conditions which will guar-
antee that the state transition matrix [Φ(t, t0)] is symplectic. Let the dynamical
system be given through the second order differential equation

r̈ = v̇ = f(t, r) (11.221)
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where r is a n-dimensional state vector and v = ṙ. Let the 2n dimensional state
vector x be defined as

x =

(
r

v

)

(11.222)

Then the second order differential equation in Eq. (11.221) can be written in
first order form analogous to Eq. (11.193) as

ẋ = F (t,x) =

(
v

f(t, r)

)

(11.223)

Using Eq. (11.199), the linear state plant matrix [A(t)] is given by

[A(t)] =

[
∂F (t,x(t))

∂x(t)

]

=

[
0n×n In×n
G 0n×n

]

(11.224)

The n× n matrix [G] is defined here as

[G] =

[
∂f(t, r)

∂r

]

(11.225)

Using the results from Eq. (11.201), the state transition matrix for the dynamical
system defined in Eq. (11.223) must satisfy

[Φ̇(t, t0)] = [A(t)][Φ(t, t0)], [Φ(t0, t0)] = [I2n×2n] (11.226)

The question now is, under what conditions will this state transition matrix
satisfy the symplectic condition shown in Eq. (11.217). By inspection, it is clear
that this condition is satisfied at t0 by the [Φ(t0, t0)] given in Eq. (11.226). To
complete the proof that [Φ(t, t0)] is symplectic, we must next show that

d

dt

(
[Φ(t, t0)]

T [J ][Φ(t, t0)]
)
≡ [02n×2n] (11.227)

Substituting the [Φ̇(t, t0)] definition in Eq. (11.226), we find that

[Φ̇(t, t0)]
T [J ][Φ(t, t0)] + [Φ(t, t0)]

T [J ][Φ̇(t, t0)]

= [Φ(t, t0)]
T [A(t)]T [J ][Φ(t, t0)] + [Φ(t, t0)]

T [J ][A(t)][Φ(t, t0)]

= [Φ(t, t0)]
T
(
[A(t)]T [J ] + [J ][A(t)]

)
[Φ(t, t0)]

= [Φ(t, t0)]
T

[
G−GT 0n×n
0n×n 0n×n

]

[Φ(t, t0)] ≡ [02n×2n]

(11.228)

Thus, the only condition necessary for the state transition matrix [Φ(t, t0)] of
the dynamical system given in Eq.(11.223) to be symplectic is that [G] = [G]T

is symmetric.
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Example 11.4: Again, let us return to our favorite differential equation
describing Keplerian two-body motion.

r̈ = − µ

r3
r = −∇V (r)

This second order differential equation of of the form assumed in Eq. (11.221).
Let r = r(x, y, z), then the matrix [G] is expressed as

[G] = −
[
∂(∇V (r))

∂r

]

= −






∂2V
∂x2

∂2V
∂x∂y

∂2V
∂x∂z

∂2V
∂x∂y

∂2V
∂y2

∂2V
∂y∂z

∂2V
∂x∂z

∂2V
∂y∂z

∂2V
∂y2






Since [G] = [G]T , the state transition matrix of the Keplerian 2-body problem
is guaranteed to be symplectic and posses the elegant matrix inverse shown in
Eq. (11.220). More generally, the symplectic [Φ(t, t0)] property is a property
of conservative systems and “natural” coordinates.

11.3.4 State Transition Matrix of Keplerian Motion

Since there exists an analytical solution to the two-body problem, it is also
possible to develop an analytical solution to the state transition matrix of the
two-body problem. Using the F and G solution developed in section 8.4.3,
we are able to express the position vector r(t) and velocity vector v(t) as a
nonlinear function of time and the initial conditions r0 = r(t0) and v0 = v(t0).

x(t) =

(
r(t)
v(t)

)

=

[
F · I3×3 G · I3×3

Ḟ · I3×3 Ġ · I3×3

]

x0 (11.229)

The scalar F and G coefficients, along with their derivatives, are given by

F = 1 − a

r0
(1 − cos Ê) G = ∆t+

√

a3

µ
(sin Ê − Ê) (11.230)

Ḟ = −
√
µa

rr0
sin Ê Ġ = 1 +

a

r
(cos Ê − 1) (11.231)

with ∆t = t− t0 and Ê = E−E0. The state transition matrix [Φ(t, t0)] for this
nonlinear system is defined as

[Φ(t, t0)] =

[
Φ11 Φ12

Φ21 Φ22

]

=

[
∂x(t)

∂x0

]

(11.232)

At first glance, it might appear that [Φ(t, t0)] would simply be given by

[Φ(t, t0)] =

[
F · I3×3 G · I3×3

Ḟ · I3×3 Ġ · I3×3

]
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for the two-body problem. However, this conclusion neglects the fact that the
F and G functions themselves also depend on the initial state vector. Only for
linear dynamical systems does the state transition matrix map directly between
the initial and current state vector. For a nonlinear system, the state transition
matrix provides the sensitivity matrix of the current state vector with respect
to the initial condition vector. Thus, to find the state transition matrix for
Keplerian motion, we must find the various partial derivatives of the F and G
functions with respect to the initial state vectors.

Subdividing the 6×6 state transition matrix into four 3×3 matrices Φij , and
using the F and G solution to compute the required partial derivatives leads to
the following result:

Φ11 =
∂r(t)

∂r0
= F · I3×3 + r0

∂F

∂r0
+ v0

∂G

∂r0
(11.233a)

Φ12 =
∂r(t)

∂v0
= G · I3×3 + r0

∂F

∂v0
+ v0

∂G

∂v0
(11.233b)

Φ21 =
∂v(t)

∂r0
= Ḟ · I3×3 + r0

∂Ḟ

∂r0
+ v0

∂Ġ

∂r0
(11.233c)

Φ22 =
∂v(t)

∂v0
= Ġ · I3×3 + r0

∂Ḟ

∂v0
+ v0

∂Ġ

∂v0
(11.233d)

Before we tackle the complex partial derivatives of F and G, along with
their derivative functions, we develop the partial derivatives of various scalar
parameters. The partial derivatives of the initial orbit radius r0 and initial orbit
velocity magnitude v0 are given by

∂r0
∂r0

=
1

r0
rT0

∂r0
∂v0

= 0T (11.234)

∂v0
∂r0

= 0T
∂v0
∂v0

=
1

v0
vT0 (11.235)

Using the definition of σ0 ≡ (1/
√
µ)rT0 v0, the partial derivative of σ0 with

respect to either r0 or v0 is given by

∂σ0

∂r0
=

1√
µ

vT0
∂σ0

∂v0
=

1√
µ

rT0 (11.236)

To find the sensitivities of the semi-major axis a with respect to the initial state
vectors, we write the vis-viva equation (Eq. (8.77)) at the initial time t0 as

1

a
=

2

r0
− v2

0

µ
(11.237)

To simplify the development of the various partial derivatives, we introduce the
place-holder vector α. This vector can be either r0 or v0. Taking the partial
derivative of Eq. (11.237) with respect to the generic α vector yields

− 1

a2

∂a

∂α
= − 2

r20

∂r0
∂α

− 2v0
µ

∂v0
∂α

(11.238)
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Substituting Eqs. (11.234) and (11.235), the partial derivatives of a with respect
to either r0 or v0 are

∂a

∂r0
=

2a2

r30
rT0

∂a

∂v0
=

2a2

µ
vT0 (11.239)

To find the sensitivity of Ê with respect to the initial state vectors, we make
use of the modified Kepler’s equations derived for the F and G solution in
Eq. (8.176).

√
µ

a3
∆t = Ê +

(r0
a

− 1
)

sin Ê +
σ0√
a

(

1 − cos Ê
)

(11.240)

Taking the partial derivative of Eq. (11.240) with respect to the generic vector
α, we find

− 3

2

√
µ

a5
∆t

∂a

∂α
=

(

1 +
(r0
a

− 1
)

cos Ê +
σ0√
a

sin Ê

)
∂Ê

∂α

+

(
1

a
sin Ê

)
∂r0
∂α

+

(

− r0
a2

sin Ê − 1

2

σ0

a3/2
(1 − cos Ê)

)
∂a

∂α

+
1√
a
(1 − cos Ê)

∂σ0

∂α
(11.241)

Substituting the orbit radius expression in Eq. (8.172) and solving for the partial
derivative of Ê, we find

∂Ê

∂α
=

(

−3

2

√
µ

a3

∆t

r
+
r0
ra

sin Ê +
σ0

2
√
ar

(1 − cos Ê)

)
∂a

∂α

− sin Ê

r

∂r0
∂α

−
√
a

r
(1 − cos Ê)

∂σ0

∂α
(11.242)

To find the sensitivity of the orbit radius r at time t, we make use of the orbit
radius expression in terms of the eccentric anomaly difference Ê in Eq. (8.172).

r = a

(

1 +
(r0
a

− 1
)

cos Ê +
σ0√
a

sin Ê

)

(11.243)

Taking the partial derivative of r with respect to the generic vector α yields

∂r

∂α
=

(

1 − cos Ê +
1

2

σ0√
a

sin Ê

)
∂a

∂α
+ cos Ê

∂r0
∂α

√
a sin Ê

∂σ0

∂α
+ a

((

1 − r0
a

)

sin Ê +
σ0√
a

cos Ê

)
∂Ê

∂α
(11.244)

At this point we are able to compute the partial derivatives of the scalar
functions F and G, along with the derivatives of the associate derivative func-
tions, using the intermediate results we just derived. Using Eqs. (11.230) and
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(11.231), the sensitivities of the F , G, Ḟ and Ġ scalar parameters to the initial
state vectors are expressed as:

∂F

∂α
=

1

r0
(1 − cos Ê)

(

− ∂a

∂α
+

a

r0

∂r0
∂α

)

− a

r0
sin Ê

∂Ê

∂α
(11.245a)

∂G

∂α
=

3

2

√
a

µ
(sin Ê − Ê)

∂a

∂α
−
√

a3

µ
(1 − cos Ê)

∂Ê

∂α
(11.245b)

∂Ḟ

∂α
=

√
µa

sin Ê

rr0

(

− 1

2a

∂a

∂α
+

1

r0

∂r0
∂α

+
1

r

∂r

∂α
− cot Ê

∂Ê

∂α

)

(11.245c)

∂Ġ

∂α
= −1

r
(1 − cos Ê)

(
∂a

∂α
− a

r

∂r

∂α

)

− a

r
sin Ê

∂Ê

∂α
(11.245d)

As was the convention earlier, the vector α in Eq. (11.245) is replaced with either
r0 or v0. Substituting the partial derivatives in Eq. (11.245) into Eq. (11.233),
an analytical solution to the two-body problem state transition matrix is found.

While the presented analytical method to compute the state transition ma-
trix is relatively straight forward to program, it is not a very compact or elegant
solution. Richard Battin develops in Reference 1 an elegant and compact analyt-
ical expression of the two-body state transition matrix by performing extensive
algebraic simplifications. Defining the scalar parameter C as

C = a

√

a3

µ

(

3 sin Ê − (2 + cos Ê)Ê
)

− ∆ta(1 − cos Ê) (11.246)

and the position and velocity vector differences as

δr = r − r0 δv = v − v0 (11.247)

he is able to express the state transition submatrices Φij through

Φ11 =
r

µ
δvδvT +

1

r30

(
r0(1 − F )rrT0 + CvrT0

)
+ F · I3×3 (11.248a)

Φ12 =
r0
µ

(1 − F )
(
δrvT0 − δvrT0

)
+
C

µ
vvT0 +G · I3×3 (11.248b)

Φ21 = − 1

r20
δvrT0 − 1

r2
rδvT − µC

r3r30
rrT0

+ Ḟ

(

I3×3 −
1

r2
rrT +

1

µr
(rvT − vrT )rδvT

) (11.248c)

Φ22 =
r0
µ
δvδvT +

1

r3
(
r0(1 − F )rrT0 − CrvT0

)
+ Ġ · I3×3 (11.248d)

with the state transition matrix being defined through

[Φ] =

[
Φ11 Φ12

Φ21 Φ22

]

=

[ ∂r
∂r0

∂r
∂ṙ0

∂ṙ
∂r0

∂ṙ
∂ṙ0

]

(11.249)
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Problems

11.1 Observe that the F and G solution in Eqs. (8.148) and (8.149), using rectangular
coordinates, can be written in the form:











x
y
z
ẋ
ẏ
ż











=











F 0 0 G 0 0
0 F 0 0 G 0
0 0 F 0 0 G

Ḟ 0 0 Ġ 0 0

0 Ḟ 0 0 Ġ 0

0 0 Ḟ 0 0 Ġ











︸ ︷︷ ︸

[Θ(t,t0)]











x0

y0
z0
ẋ0

ẏ0
ż0











(11.250)

Comparing Eq. (11.250) with the usual state transition matrix form, we conclude
that [Θ(t, t0)] “looks like” a state transition matrix [Φ(t, t0)] in that it maps
initial conditions into the instantaneous state. But [Φ(t, t0)], as we developed in
this chapter, approximately maps the linearized departure motion in the sense











δx
δy
δz
δẋ
δẏ
δż











= [Φ(t, t0)]











δx0

δy0
δz0
δẋ0

δẏ0
δż0











Note that [Φ(t, t0)] is fully populated, whereas [Θ(t, t0)] has an elegant sparse
structure. Establish the relationship between these two matrices.

11.2 Program the state transition matrix computation of the two-body problem using
Battin’s method in Eqs. (11.246)–(11.249).
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Chapter Twelve

Transfer Orbits

PLANET is latin for ”wanderer.” As seen by an Earth based observer, the
planets appear to wander across the sky on smooth, but seemingly arbi-

trary paths. Aristarchus of Samos (310–230 B.C.) was a Greek astronomer and
mathematician who developed a heliocentric universe in which the Earth ro-
tated about the Sun. He even developed an ingenious geometric method to
determine the distance between the Sun, Earth and the moon. However, this
knowledge got mostly forgotten during the afterward until Nicholas Copernicus
(1473–1543 A.D.) rediscovered the fact that the Earth rotated about the Sun.
Galileo Galilei (1564–1642 A.D.) later confirmed through the use of his tele-
scope that the Earth revolved about the Sun. Understanding this was crucial
to understand the orbits of the planets. Since the planets each have a different
mean heliocentric orbit radius, they travel each at different rates. As seen from
the rotating Earth frame, observing the planet’s trajectories yields interesting
and complex geometric paths.

At first glance it would appear very daunting to attempt to travel between
planets with their relative trajectories being so complex. Of course, choosing an
inertial Sun centered reference frame is the first step toward simplification of the
interplanetary motion. Similar considerations govern transfers between Earth
centered orbits. This chapter discusses some basic methods used to design
interplanetary transfer orbits. Various methods of minimum energy transfer
orbits are discussed, as well as the two-point two-body boundary value problem.
The method of pathed-conic’s is a convenient method to perform preliminary
mission analysis. Here the total transfer orbit from one body to another is
broken up into various stages where there is only one dominating gravitational
influence. The section on patched-conic orbits will discuss issues in developing
the interplanetary transfer orbit, as well as issues in designing orbits to escape
and enter a planet’s sphere of influence. While most theory is typically applied
to travel among different solar system planets, it can also be applied to travel
between other celestial bodies such as moons or comets.

433
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12.1 Minimum Energy Orbit

Often it is of interest to find a suitable transfer orbit that will connect two points
in space. The following development will derive the concept of a minimum
energy transfer orbit. As discussed by Battin in Reference 1, this minimum
energy orbit becomes a good initial guess at an orbit to start the numerical
iteration to find the solution to the two-point boundary value problem. It is
also convenient to find other specialized orbit transfers such as the Hohmann
transfer.

F∗

F
r1

r2 c
r2

∗

r1
∗

P2

P1

Figure 12.1: Illustration of Lambert’s Problem

Consider the general elliptical orbit that connect points P1 and P2 shown
in Figure 12.1. Let r1 and r2 be the corresponding position vectors relative
to the occupied focus F , and let r∗

1 and r∗
2 be the position vectors relative to

the un-occupied focus F ∗. We begin the development of the minimum energy
transfer orbit by recalling a key geometrical property of an ellipse. The sum
of the two radial distances from any point on the ellipse to each focal point is
constant and equal to 2a. Thus, we are able to write

FP1
︸︷︷︸

r1

+F ∗P1
︸ ︷︷ ︸

r∗
1

= 2a (12.1a)

FP2
︸︷︷︸

r2

+F ∗P2
︸ ︷︷ ︸

r∗
2

= 2a (12.1b)

where the notation ri = |ri| is used. Summing Eqs. (12.1a) and (12.1b) we
obtain the following geometric result which must hold for any ellipse:

r1 + r2
︸ ︷︷ ︸

fixed

+r∗1 + r∗2 = 4a (12.2)
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Since the radial distances r1 and r2 are specified by the two-point boundary
value problem statement, we are only free to chose the parameters r∗1 , r∗2 and
a. Note that the radial distances r∗i to the un-occupied focus are related to the
chord length c through the inequality constraint

c ≤ r∗1 + r∗2 (12.3)

Recall the elliptic orbit energy equation, also referred to the vis-viva equation,
given in Eq. (8.77) through

v2

2
− µ

r
= E ≡ − 1

2a
(12.4)

where E is the total orbit energy and v = |ṙ|. Studying Eq. (12.4) it is clear that
in order to minimize E, we seek a transfer orbit with the smallest semi-major
axis parameter a. Revisiting the elliptic orbit condition in Eq. (12.2), minimizing
a means that the sum r∗1 + r∗2 must be minimized. However, according to the
constraint in Eq. (12.3), the smallest possible value that the sum r∗1 + r∗2 can
achieve is the chord length c. Thus we conclude that the un-occupied focus of the
minimum energy transfer orbit must lie on the chord vector c. The semi-major
axis am of this minimum energy orbit is then given by1

am =
1

4
(r1 + r2 + c) (12.5)

Notice that (r1 + r2 + c) is the perimeter of the triangle FP1P2. Given the
initial and final position vectors r1 and r2, we can compute c using

c = |r2 − r1| (12.6)

If we know the true anomaly difference ∆f between the points P1 and P2, then
we can use the law of cosines to compute c through the scalar values r1 and r2.

c =
√

r22 + r21 − 2r1r2 cos θ (12.7)

Example 12.1: Let us consider the special minimal energy orbit transfer
case where r1 = r2 = r as illustrated in Figure 12.2. Note that this problem
is essentially the minimal energy ballistic missile problem which was discussed
in Example 8.3. Therefore we can assume that we are attempting to fire a
projectile at time t1 and target a point on Earth’s surface that is ∆f degrees
away. For this special case where the initial and final orbit radius are equal
(the Earth is assumed to be spherical here), the cord length determined using
Eq. (12.7) to be

c = r
√

2(1 − cos ∆f)

Using the energy equation, the normalized initial velocity magnitude v0 is
given by

v2
0min

= 2 − r

am
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F

F∗
r1r2

ṙ2

ṙ1

∆ f
f2

f1

Figure 12.2: Illustration of Lambert’s Problem with the r1 = r2 Con-
straint

where the velocity magnitude is normalized by
√
µ/r. Since 1/am is given

by

1

am
=

4

2r + c

the minimum energy transfer orbit initial velocity v0 is expressed in terms of
the range angle ∆f as

v2
0min

= 2 − 4

2 +
√

2(1 − cos ∆f)

Note the two simple special cases where ∆f is either 0 or 180 degrees. For
the case where ∆f = 0 degrees, we find that v0 is equal to zero. This makes
intuitive sense since it should take no energy for an object to remain at the
same location. If ∆f = 180 degrees, then the normalized v0 becomes 1.
This corresponds to the projective being in a circular orbit and just skimming
across the surface.

The minimum velocity function developed in the Example 8.3 is expressed in
terms of the semi-range angle φ = ∆f/2.

v2
0min

= 2 tan2 φ

(
1

| sinφ| − 1

)
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After performing some extensive trigonometric algebra, it can be shown that
the two velocity expressions are identical.

12.2 The Hohmann Transfer Orbit

Let us consider the special transfer orbit case where the ∆f is equal to 180
degrees. The minimum energy transfer case is illustrated in Figure 12.3. Note
that since the un-occupied focus F ∗ must lie on the cord c, the points P1 and
P2 become either the apoapses or periapses of the transfer orbit, depending on
which ri is larger. This type of minimum energy transfer orbit is commonly re-
ferred to as a Hohmann transfer orbit.2, 3 Walter Hohmann (1880–1945) showed
in 1925 that an elliptic transfer orbit requires the least ∆v to transfer between
two circular orbits. His book entitled Die Erreichbarkeit the Himmelsk�orper was
a pioneering work that showed how to perform interplanetary travel.

ṙ1

ṙ2

F

F∗

r1

r2

c

P1

P2 Min. Energy/Velocity
Transfer Orbit
= “Hohmann Transfer”

Figure 12.3: Illustration of a Special Case of Lambert’s Problem with
∆f = 180o

Hohmann transfer orbits are commonly used when increasing or decreasing
the radius of a circular orbit. Since ∆f = 180o, note that

c = r1 + r2 (12.8)

The minimum energy orbit semi-major axis am is then given by

am =
1

4
(r1 + r2 + c) =

c

2
(12.9)
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Using the orbit energy equation and the identity in Eq. (12.8), we are able to
write the velocity magnitude vm1

at point P1 as

v2
m1

= µ

(
2

r1
− 1

am

)

= 2µ

(
c− r1
r1c

)

=
2µ

c

(
r2
r1

)

(12.10)

Similarly, we are able to write the velocity magnitude vm2
at point P2 as

v2
m2

=
2µ

c

(
r1
r2

)

(12.11)

Note that the vmi
expressions in Eqs. (12.10) and (12.11) only depend on the

initial and final orbit radii r1 and r2 since c = r1 + r2.
Now consider not just the minimum velocity orbit, but the family of all

orbits which pass through the points P1 and P2. Further results for the 180o

special case are obtained by studying the equation of a conic p = r(1 + e cosf).
Since f2 = f1 + π, we find that

p = r1(1 + e cos f1) (12.12a)

p = r2(1 − e cos f1) (12.12b)

Adding Eqs. (12.12a) and (12.12b) we find

p

r1
+

p

r2
= 2 (12.13)

Solving for the semi-latus rectum p yields

p =
2r1r2
r1 + r2

=
2r1r2
c

(12.14)

which states that p is the harmonic mean of the initial and final orbit radius.
Note that the above equation only holds for the special case being considered
where ∆f = 180o.

Next we investigate the radial and tangential velocity components. Let the
position vector be given by r = rı̂r, the velocity vector v is given by

v = ṙ = ṙı̂r + rθ̇ı̂θ = vr ı̂r + vθ ı̂θ (12.15)

where θ̇ is the true latitude rate. Using the angular momentum definition h =√
µp = r2θ̇, we write the transverse velocity magnitude vθ for any orbit transfer

angle ∆f as

v2
θ1 = r21 θ̇

2
1 =

r41 θ̇
2
1

r21
=
h2

r21
=
µp

r21
(12.16)
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ṙ1

ṙ2

F

ṙ2m

ṙ2
~

ṙ1
~

ṙ1mvr1 vθ1

Minimum
Velocity
Orbit

Figure 12.4: Possible Orbit Solutions to Lambert Problem with
∆f = 180o

Specializing the transverse velocity expression for the special case of having
∆f = 180o, we substitute the semi-latus rectum definition in Eq. (12.14) into
Eq. (12.16) to find

v2
θ1 =

2µ

c

(
r2
r1

)

for ∆f = 180o (12.17)

Note that Eq. (12.17) must hold true for any orbit that connects the given points
P1 and P2 which are ∆f = 180o apart. The transverse velocity magnitude only
depends on the orbit radii r1 and r2. Comparing vθ1 in Eq. (12.17) to the
minimum energy orbit velocity magnitude vm1

in Eq. (12.10), we find that

v2
θ1 ≡ v2

m1
(12.18)

Similarly we find

v2
θ2 =

2µ

c

(
r1
r2

)

≡ v2
m2

(12.19)

Thus we can conclude that for the special case of having ∆f = 180o, that all
transfer orbits passing through P1 and P2 have the same transverse velocity vθ.

Next we investigate the radial take-off and arrival velocity vr1 and vr2 . Using
Eq. (11.141), we are able to write the general orbit radial speed as

vri
= ṙi =

he sin f1
p

(12.20)
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Adding the radial velocities at P1 and P2 we find

vr1 + vr2 =
he

p
(sin f1 + sin(f1 + π)) (12.21)

Since sin(f1 + π) = − sin f1, the above equation reduces to the simple relation-
ship

vr1 = −vr2 for ∆f = 180o (12.22)

From this equation we can conclude that the radial take-off and arrival speeds
will have equal magnitude and opposite sign for all transfer orbits.

This very elegant take-off and arrival behavior for the ∆f = 180o special
case is illustrated in Figure 12.4. Note that

|ṙi| = vθi

is only true if the transfer orbit is a minimum energy transfer orbit. The locus
of the take-off and arrival velocity vectors is a straight line. From the energy
equation we find that

v2
i = v2

ri
+ v2

θi
= µ

(
2

ri
− 1

a

)

(12.23)

Substituting vθi
= vmi

, the radial take-off and arrival speeds are expressed for
general transfer orbits as

v2
ri

= µ

(
2

c
− 1

a

)

(12.24)

Note the elegant similarity of the above equation to the energy equation. If the
minimum energy transfer orbit semi-major axis am = c/2 is chosen (which is
specialized for the ∆f = 180o case), then the vri

expressions become zero again.
This repeats the above conclusion that a minimum energy take-off and arrival
velocity will only have transverse components.

Example 12.2: Let us consider the case where a circular orbit of radius r1
is to be boosted to a higher orbit or radius r2. The minimum energy transfer
orbit is a Hohmann orbit where ∆f = 180o. The initial and final circular
orbits, as well as the Hohmann transfer orbit, is illustrated in Figure 12.5.
The orbital velocities v1 and v2 of the respective initial and final circular
orbits are given through the energy equation in Eq. (8.82) as

vi =

√
µ

ri

Note that for this case the chord is given by c = r1 + r2. Using the minimum
energy transfer orbit to reach the higher circular orbit, the transverse velocity
vθ1

that a spacecraft must have at point P1 is given by Eq. (12.17).

vθ1
=

√

2µ

c

(
r2
r1

)

= v1

√

2r2
c
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Figure 12.5: Illustration of a Hohmann Transfer Orbit

Being a minimum energy transfer orbit, no radial velocity will be present at
this point. Thus, for the spacecraft leave its circular orbit of radius r1 and
enter the elliptic transfer orbit of semi-major axis am = c/2, a change in
velocity ∆v1 is required.

∆v1 = vθ1
− v1 = v1

(√

2r2
c

− 1

)

(12.25)

Note that since r2 > r1 that ∆v1 will be positive. Once the spacecraft
reaches point P2, a second burn will be required to correct the orbit velocity.
The spacecraft will have the velocity vθ2

of the transfer orbit given by

vθ2
=

√

2µ

c

(
r1
r2

)

= v2

√

2r1
c

The change in velocity ∆v2 of the second burn to enter the higher circular
orbit is computed through

∆v2 = v2 − vθ2
= v2

(

1 −
√

2r1
c

)

(12.26)

Again, note that this second change in velocity is magnitude is also positive
since r2 > r1. The cost of an orbit transfer is typically given in terms of the
sum of all required changes in velocities (i.e. burns). For this maneuver, the
total ∆v is computed using

∆v = |∆v1| + |∆v2|
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Assume the initial orbit had a radius of r1 = 7000 km, and the final circular
orbit has a radius of r2 = 7200 km. The first burn to enter the elliptic
Hohmann transfer orbit would require ∆v1 = 52.3541 m/s, while the second
burn would require a ∆v2 of 51.9867 m/s. The total cost for raising the orbit
radius of the circular orbit is ∆v = 104.351 m/s.

12.3 Lambert’s Problem

The two-point boundary value problem of the two-body problem is a classic
celestial mechanics challenge that was first stated and solved by Johann Heinrich
Lambert (1728–1779). The goal is to find an orbit which connects to points in
space with a given flight time. Today this problem is commonly solved when
controlling and targeting spacecraft or directing missiles in an inverse-square
gravity field.

F

F∗

f1
f2

∆ f

r1

ṙ1
ṙ2 r2

t1

t2

c = r2 − r1

γ 2

γ1

Figure 12.6: Illustration of the Two-Point Boundary Value Problem of
the Two-Body Problem

The geometry of Lambert’s Problem is illustrated in Figure 12.6. The initial
position vector is given by r1 and the final position vector is r2. All position
vectors are measured relative to the source of the dominant inverse gravity field.
As such, this source will be the focus F of any elliptic orbit that will connect
position r1 to position r2. For example, if the objective is to travel between
two planets, then the gravity source during the interplanetary flight would be
the Sun. The unoccupied focus is denoted by F ∗. The true anomalies fi are
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measured relative to periapses, with ∆f being the angular change between the
initial and final position vectors. The chord vector c is relative vector between
the final and initial positions. Given r1, r2 and a time of flight ∆t = t2 − t1,
Lambert’s problem seeks to find the orbit which will connect the two positions
at the given times.

To solve this problem, this section presents a general numerical iteration
technique to solve this two-point boundary value problem. This method ap-
plies to un-perturbed gravity field case, as well as the perturbed gravity field
case. The reader is referred to Battin’s chapter on Lambert’s problem in Ref-
erence 1, where he develops a very elegant analytical solution to Lambert’s
problem. However, this solution is only applicable if there are no perturba-
tions to the inverse-square gravity field. The general solution presented in this
chapter makes use of the state transition matrix and can be applied even if
gravitational perturbations are present. To start the iteration, the elegant and
convenient concept of the minimum energy orbits is employed. As suggested by
Battin, the convergence and stability of the numerical iteration is improved if
this orbit is used as the initial solution guess of the two-point boundary value
problem. The solution to Lambert’s problem is full of very elegant and beautiful
properties. This section will discuss two some elegant properties of the departure
and arrival velocity vectors of the two-point two-body boundary value problem.

12.3.1 General Problem Solution

A common method to solve a general two-point boundary value problem is to
employ a numerical iteration technique called the “shooting-method”. Given the
initial and final states x(t1) and x(t2), as well as a desired transfer time ∆t, the
shooting method technique starts out with a guess of the initial velocity ẋ(t1).
After integrating the trajectory to obtain the state x̂(t2), the final targeting
error

δx(t2) = x̂(t2) − x(t2) (12.27)

is computed. Using the sensitivity of the final position to the initial velocity, the
initial velocity estimate is updated using the local-linearization based Newton
method:

ẋ(t1)
︸ ︷︷ ︸

new

= ẋ(t1)
︸ ︷︷ ︸

old

−
(
∂x(t2)

∂ẋ(t1)

)−1

δx(t2) (12.28)

The initial velocity is successively updated until the target error δx(t2) has
become sufficiently small. The success of this iterative technique depends on
the nonlinearity of the governing differential equations, as well as the quality of
the initial guess. If the guess is very poor and the problem is highly nonlinear,
then the shooting method may not converge to the true answer. The more linear
the problem is, the more accurate the initial velocity updates in Eq. (12.28) will
be and the more successful the application of the shooting method will be to
solve the two-point boundary value problem.



444 TRANSFER ORBITS CHAPTER 12

To solve Lambert’s problem, a slightly modified version of the shooting
method is proposed since the governing differential equations are relatively sen-
sitive to the initial velocity vector guess. A good estimate of this vector is
required for the standard shooting method to converge. The problem statement
provides us with the initial position vector r1 and the desired position vector
r2 with a flight time of ∆t. To start the numerical iteration, we don’t simply
choose an arbitrary initial velocity vector ṙ1. Instead, we choose a velocity
vector which results in a motion that will reach point r2 precisely, though not
necessarily at the desired time t2. We will show how to construct such a solution
using a minimum energy orbit transfer. This will provide us with the required
initial velocity vector. Note that in principle any transfer orbit could be used.
It is not required to use the minimum energy orbit as the initial guess. However,
as pointed out by Battin in Reference 1, the convergence and stability of solving
Lambert’s problem is increased if this minimum energy transfer orbit is used as
the initial guess.

A flow diagram of the modified shooting method to solve Lambert’s problem
is shown in Figure 12.7. This continuation method is often used in numerical
iterations. Assume the initial velocity estimate ˙̃r1 results in a transfer time of ∆t̃
and zero final tracking error. Whereas the standard shooting method attempts
to solve the two-point boundary value problem in one go, the modified shooting
method employed here solves a series of neighboring two-point boundary value
problems which gradually lead to the desired answer. The benefit here is greatly
increased convergence and stability of the numerical iteration method. The
transfer time ∆t̂ of each successive two-point boundary value problem is swept
linearly from the initial transfer time of ∆t̃ to the desired transfer time of ∆t.
The initial guess will result in no final tracking error. As the transfer time ∆t̂
slowly approaches the desired transfer time ∆t, the initial velocity vector ṙ1 is
iteratively adjusted such that the final tracking errors remain within a certain
tolerance ε. By starting out with a set of states ( ˙̃r1,∆t̃) that do reach the
desired r2, and then gradually adjusting the flight time to the desired flight
time, the numerical iteration technique will never encounter very large final
tracking errors. This makes the state transition matrix computed initial velocity
corrections more accurate and the overall convergence time is decreased.

To compute the state transition matrix [∂r̂2/∂ṙ1], the analytical solution
given in Eq. (11.248c) could be used. This equation is valid if forces are per-
turbing the two-body Keplerian motion. If large perturbations are present,
then this state transition matrix should be computed using standard numerical
techniques.

To find a initial velocity vector which results in an orbit that connects the
position vectors r1 and r2 precisely, we recall the Lagrange F and G solution to
the orbit motion in terms of a true anomaly difference ∆f . Using Eqs. (8.148)
and (8.177) we are able to relate the velocity vectors ṙ1 and ṙ2 to the speci�ed
position vectors r1 and r2 through

r2 = Fr1 +Gṙ1 (12.29)

r1 = Ġr2 −Gṙ2 (12.30)
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Figure 12.7: Flow Diagram of the Modified Shooting-Method to Solve
Lambert’s Problem
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Solving these two equations for the velocity vectors of interests yields

ṙ1 =
1

G
(r2 − Fr1) (12.31)

ṙ2 =
1

G

(

−r1 + Ġr2

)

(12.32)

with the functions F , G and Ġ being defined in Eqs. (8.183), (8.184) and (8.187)
as

F = 1 − r2
p

(1 − cos∆f) (12.33)

G =
r1r2√
µp

sin ∆f (12.34)

Ġ = 1 − r1
p

(1 − cos∆f) (12.35)

Substituting Eqs. (12.33) - (12.35) into the velocity vector expressions in Eqs. (12.31)
and (12.32) yields the desired initial and final velocity expressions

ṙ1 =

√
µp

pcto-1ψ9.74j
/R105ψ9.96264ψTf
7.19111ψ0ψTd
(�)Tj
/R98ψ9.96264ψTf
11.182ψ6.83999ψTd
(r)Tj
/R108ψ6.97385ψtned
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These two equations contain the three unknown parameters e, f1 and p. If
p = a(1− e2) is used, then the semi-major axis a replaces the semi-latus rectum
p as a free parameter. By choosing either an initial p̃ or ã, the two equations in
Eqs. (12.38) and (12.39) must be solved simultaneously for the corresponding
orbit eccentricity ẽ and initial true anomaly f̃1. Given f̃1 and f̃2 = f1 + ∆f , as
well as the eccentricity ẽ, we are able to compute the corresponding eccentric
and mean anomalies. The transfer time of the initial transfer orbit guess is then
given through Kepler’s equation:

∆t̃ =

√

ã3

µ

(

M̃2 − M̃1

)

(12.40)

To use the minimum energy orbit as an initial guess for solving Lambert’s
problem, we first compute am and then solve Eqs. (12.38) and (12.39) for the
transfer orbit initial true anomaly f1 and eccentricity e. With these parame-
ters, we are then able to compute the required initial velocity vector ṙ1 using
Eq. (12.36) and the minimum energy orbit transfer time ∆t̃ using Eq. (12.40).

This completes the required steps to solve Lambert’s two-point boundary
value problem of the two-body problem using the modified shooting method.
While this method works with a standard two-body problem, it will also work
for more general boundary value problems where the gravity field contains some
perturbations.

12.3.2 Elegant Velocity Properties

In Eqs. (12.36) and (12.37) we developed the necessary orbit velocities such that
the corresponding transfer orbit will contain the points P1 and P2. Some very
elegant geometric interpolations can be arrived at by investigating these velocity
vectors in the non-orthogonal coordinate system (ı̂c, ı̂ri

), where ı̂c is the unit
vector of the chord vector and ı̂ri

is the unit vector of either the initial or final
orbit radius vector. This coordinate system is illustrated in Figure 12.8.

Using these unit coordinates, the initial and final velocity vector of any
transfer orbit is written in the compact form

ṙ1 = vρ ı̂r1 + vcı̂c (12.41)

ṙ2 = −vρı̂r2 + vcı̂c (12.42)

with the velocity vector component vρ along the orbit radius being given by

vρ =

√
µ

p

(
1 − cos∆f

sin∆f

)

(12.43)

and the vector component vc along the chord c being given by

vc =
c
√
µp

r1r2 sin ∆f
(12.44)
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Figure 12.8: Geometric Interpretation of the Solution to the Two-Point
Boundary Value Problem of the Two-Body Problem

Note that vc must be equal for any orbits that connects the points P1 and P2.
The initial and final velocity vector components along the initial and final orbit
position vectors have the same magnitude, but opposite sign.

To investigate on what curve all possible take-off and arrival velocity vectors
will lie, we look at the product of vρ and vc:

1

vcvρ =
µc

r1r2

(
1 − cos∆f

sin ∆f

)

(12.45)

Using several trigonometric identities, this product can be written in the com-
pact form

vcvρ =
µc

2r1r2
sec2

(
∆f

2

)

(12.46)

Note that the right hand side of this product depends solely upon the triangle
formed by the position vectors r1 and r2. Thus, all infinity of orbits passing
through P1 and P2 have the property that vcvρ = (const)2. At first glance
this property may not be recognized. However, Eq. (12.46) is the equation of a
hyperbola in asymptotic coordinates.

Let us digress briefly and study the hyperbola expressed in terms of asymp-
totic coordinates to establish this truth. Figure 12.9 shows a hyperbola with
coordinates (x, y) relative to an orthogonal base vector set {êx, êy} and with
asymptotic coordinates (X,Y ) relative to the non-orthogonal base vector set
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{êX , êY }. Note that the hyperbola will asymptotically approach the direction
vectors êX and êY , with ψ being the slope angle of the hyperbola asymptote
relative to the êx axis.

X

x

y
Y

P

ψ
ψ

ψ

ψ

êxêy

ê X

êY

Figure 12.9: Equation of a Hyperbola in Asymptotic Coordinates

Studying Figure 12.9 carefully, we find the relationship between the orthog-
onal and non-orthogonal coordinates to be

x = (X + Y ) cosψ (12.47a)

y = (Y −X) sinψ (12.47b)

The equation of a hyperbola in terms of orthogonal coordinates (x, y) is

x2

a2
− y2

b2
= 1 (12.48)

where the hyperbolic semi-major axis a is defined to be a negative quantity and
b = a

√
1 − e2. Substituting Eqs. (12.47a) and (12.47b) into Eq. (12.48) we find

(X2 + 2XY + Y 2) cos2 ψ

a2
− (X2 − 2XY + Y 2) sin2 ψ

b2
= 1 (12.49)

In Eq. (8.26) we found the useful relationship

b2 = a2 tan2 ψ (12.50)

Using this identity, the equation of a hyperbola is written in terms of the asymp-
totic coordinates (X,Y ) as

XY =
a2

4
sec2 ψ = constant (12.51)

Comparing Eqs. (12.46) and (12.51), it is apparent that the product vcvρ indeed
describes a hyperbola in terms of asymptotic coordinates with the hyperbolic
semi-major axis being

a =

√
2µc

r1r2
(12.52)
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Figure 12.10: Illustration of the Velocity Vector Locus

The geometric interpretation of this hyperbola is shown in Figure 12.10.
Note that the loci of all velocity vectors leaving point P1 going through point
P2 lie along a hyperbola. Additionally, this hyperbola is completely established
by the triangle FP1P2. Studying Figure 12.10 the minimum velocity orbit is
easily found to be such that

vρ = vc (12.53)

Also, the direction of the minimum velocity vector ṙm1
is such that its unit

vector bisects the angle φ1.
Compare the general minimum velocity transfer orbit condition in Eq. (12.53)

to the minimum velocity orbit conditions for the special case where ∆f is pre-
cisely 180 degrees. As ∆f → 180o, the hyperbola of take-off velocity vectors loci
becomes a rectilinear curve collinear aligned with the r1 position vector. Simul-
taneously the asymptotic velocity coordinates vc and vρ will go to zero for the
minium velocity solution. This agrees with the ∆f = 180o special case which
concluded that a corresponding minimum velocity orbit would have zero radial
take-off velocity. Similarly, as ∆f → 180o, the minimum velocity take-off vector
ṙm1

will become perpendicular to the r1 position vector. Again this agrees with
the ∆f = 180o special case condition which states that the minimum velocity
transfer orbit will only have a transverse velocity component.

12.4 Rotating the Orbit Plane

The previous orbit maneuvers all had in common that they strive to move a
spacecraft from one point in space to another point. In this section we will
investigate a different type of orbit maneuver. Here the goal is to change the
orbit plan orientation, without necessarily affecting the orbit geometry itself.

Assuming the spacecraft is undergoing Keplerian (non-perturbed) motion,
then its orbit plane is fixed in inertial space. The orientation of any plane is
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Figure 12.11: Illustration of an Orbit Plane Change Maneuver

completely prescribed through a unit normal vector to this plane. For the case of
having a Keplerian motion, the angular momentum vector h1 = r×v1 provides
such an orbit-plane normal vector. Let the desired orbit plane orientation be
given through the angular momentum vector h2 = r × v2. These two orbit
planes are illustrated in Figure 12.11. The difference in angular momentum
vectors is given by

∆h = h2 − h1 (12.54)

Let the axis which which intersects the two orbit planes of interest be given be
described through the unit direction vector n̂x. Note that since both orbit planes
are inertially fixed, so is n̂x inertially fixed. Let n̂z be the unit direction vector of
the original angular momentum vector h1, then we can define the inertial frame
N : {n̂x, n̂y, n̂z}, where n̂y completes the right-hand coordinate system. The
orbit plane orientation change is described through the scalar angular parameter
∆i. As shown in Eq. (2.38), the rate of change of the angular momentum vector
h is equal to the torque L applied to the spacecraft.

ḣ = L = r × v̇ (12.55)

Assuming the orbit plane change is applied impulsively, we are able to rewrite
Eq. (12.55) as a difference equation between angular momentum and velocity
vectors.

∆h = r × ∆v = h2 − h1 (12.56)
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To determine what velocity change ∆v must be applied at which point r of the
original orbit, we write these two vectors with inertial N components as

r = rxn̂x + ryn̂y (12.57)

∆v = ∆vxn̂x + ∆vyn̂y + ∆vzn̂z (12.58)

Studying Figure 12.11, it is clear that the angular momentum vector change
∆h will not have any vector component along the n̂x axis. Thus, ∆h can be
written in terms of inertial N frame components as

∆h = −∆hyn̂y − ∆hzn̂z (12.59)

with the angular momentum change vector components ∆hy and ∆hz being
given by

∆hy = h1 sin ∆i (12.60)

∆hz = h1 (1 − cos∆i) (12.61)

Substituting Eqs. (12.57) and (12.58) into Eq. (12.56), the angular momen-
tum difference ∆h is expressed as

∆h = ry∆vzn̂x − rx∆vzn̂y + (rx∆vy − ry∆vx) n̂z (12.62)

By comparing the N frame components of Eqs. (12.59) and (12.62), we are
able to make the following conclusions. Since the angular momentum change
along the n̂y axis is non-zero, neither the position vector component ry nor the
velocity vector difference component ∆vz can be zero. Thus, since there is no
angular momentum change along the n̂x axis, the position vector component
ry must be zero. This provides us with the intuitive solution that the orbit
plane change will occur at the point r = rxn̂x where where the two orbit planes
intersect. Note that rx could be either positive or negative, depending on which
of the possible two intersection points is used to perform the orbit plane change.

Let us write the orbit velocity vector v1 in terms of N frame components as

v1 = ṙxn̂x + rxḟ n̂y = vxn̂x + vyn̂y (12.63)

Using the angular momentum property h1 = r2xḟ , and by comparing the vector
components along the remaining two axis of the N frame, the velocity vector
change vector components are in terms of the desired orbit plane difference angle
∆i as

∆vx = arbitrary (12.64)

∆vy = −vy (1 − cos∆i) (12.65)

∆vz = vy sin∆i (12.66)

Since ∆vx is arbitrary, while ∆vy and ∆vz must have specific values, the mini-
mum energy orbit plane change is achieved by setting ∆vx equal to zero. Let us
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further examine what happens to the orbit energy v2
i . Using the orbit velocity

N frame vector components shown in Eq. (12.63), the orbit energy v2
2 is found

to be

v2
2 = (vx + ∆vx)

2
+ v2

y (1 − (1 − cos∆i))
2

+ v2
y sin2 ∆i

= (vx + ∆vx)
2 + v2

y = v2
1 + 2vx∆vx + ∆v2

x

(12.67)

Thus, for the minimum energy orbit plane change where ∆vx = 0, we find that
v2
2 = v2

1 . Therefore the orbit energy is not changed during such a plane change.
Practically, this means that a minimum energy orbit plane change will only
change the orbit plane itself, but will not affect the orbit geometry (semi-major
axis and eccentricity).
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Figure 12.12: Side View of Velocity Vectors Involved in a Minimal En-
ergy Orbit Plane Change Maneuver

Figure 12.12 illustrates what happens to the orbit velocity vectors during the
orbit plane change maneuver. The tangential velocity component vy is simply
rotated by the ∆v velocity correction to lie in the desired orbit plane. The
radial velocity component vx is unaffected by the orbit plane change if ∆vx is
equal to zero. However, since the magnitudes of the ∆v components are directly
a function of the tangential orbit velocity vy, performing a orbit plane change
is a very costly maneuver that requires a relatively large ∆v.

Example 12.3: To illustrate how much ∆v is required to perform a orbit
plane change, we revisit initial circular orbit used in Example 12.2. In that
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example, an initial circular orbit radius of 7000 km was increased to a circular
orbit of 7200 km through a Hohmann orbit transfer. The total velocity change
required for that maneuver was ∆vH = 104.351 m/s. Using the same fuel
cost, let us see just how far we would be able to rotate the initial orbit plane.
Summing the terms in Eqs. (12.65) and (12.66), the total fuel budget for the
minimal energy orbit plane change is given by

∆v = vy

√

2(1 − cos ∆i) (12.68)

Solving this equation for the desired ∆i we find

∆i = cos−1

(

1 − 1

2

(
∆v

vy

)2
)

Given an orbit radius of rx = 7000 km, the tangential orbit velocity vy is 7460
m/s. For a given allowable ∆vH , the achievable orbit plan rotation angle ∆i
is only 0.80o. This corresponds to a maximum out-of-plane separation from
the original orbit of 97.92 m.

Example 12.4: Using Gauss’ variation equations in Eqs. (11.153), we saw
how a continuous external disturbance acceleration a = (ar, aθ, ah) will affect
the orbit element rates. We could also use Eq. (11.153c) to find how a
continuous thrust is used to change the orbit inclination angle i. This equation
is repeated here for convenience.

di

dt
=
r cos θ

h
ah

where θ is the true latitude angle. The orbit inclination angle is easiest to
adjust while crossing the equatorial plane with θ = 0. Using h = rvy, we find
the ∆v requirement for a desired ∆i inclination change to be

∆vh = vy∆i

Note that this equation is obtained by integrating the continuous disturbance
equation over a small time interval ∆t. At first glance this equation appears to
differ from Eq. (12.68). However, if we linearize Eq. (12.68), i.e. assume that
the orbit inclination change ∆i is small, it agrees with the ∆v requirement
developed in this example.

Note another important detail. Gauss’ equations form a set of continuous
differential equations for the orbit elements in terms of the disturbance accel-
eration vector components ar, aθ and ah. Note that these vector components
are taken relative to the rotating spacecraft fixed reference frame {ı̂r, ı̂θ, ı̂h}.
Since the impulsive thrust is approximated to be a continuous thrust over a
small period of time ∆t, the orientation vector ı̂h is time varying through-out
this maneuver. Thus, the ∆vh requirement shown above is to to be taken in
a straight-line manner. Rather, it forms the arc length as the current velocity
vector component vy is rotated to the desired orbit inclination angle.
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12.5 Patched-Conic Orbit Solution

In Section 10.5 we discussed the concept of gravitational spheres of influence.
The idea is that the gravity field of a multi-body system can be locally approx-
imated about a single body through the inverse square gravitational field. This
concept is illustrated in Figure 12.13. Assume that m1 >> m2, then the local
gravitational sphere of influence about m2 is approximated in Eq. (10.80) as

r =

(
m2

m1

)2/5

r12 (12.69)

Note that this formula was derived seeking the surface where the gravitational
accelerations due to either body are equal. Different formula exists to compute
the approximated spherical region of influence. However, to be used in the
method of patched-conic orbits, the resulting energy approximations are rather
insensitive to the choice of sphere of influence radius formula selection.

r

r12

r1
r2

m1

m2

m
Sphere of Influence

Figure 12.13: Illustration of the Concept of Gravitational Spheres of
Influence

When a spacecraft is traveling among several celestial bodies, then the trans-
fer orbit can be dissected into a finite number of section using the concept of
gravitational spheres of influence. At any instance of time, the gravitational
attraction acting on the spacecraft is assumed to be originating solely from the
local dominant gravitational influence. For example, using the illustration in
Figure 12.13, assume that m1 is Earth and m2 is the Moon. As the spacecraft
enters a transfer orbit from the Earth to the Moon, its initial trajectory is es-
sentially a solution of the classical Keplerian two-body problem. Only as the
spacecraft becomes sufficiently close to the Moon is its gravitational attraction
dominated by the Moon. To find an initial transfer orbit guess, or to approxi-
mately evaluate what ∆v’s would be involved in reaching the Moon, the transfer
orbit can be split into two regions where the spacecraft is considered to be under
the sole influence of either the Earth or the Moon. This method of dissecting
a transfer orbit into various sections of two-body solutions is referred to a the



456 TRANSFER ORBITS CHAPTER 12

method of patched conics. To determine a precise transfer orbit, a numerical
solution technique must be employed which incorporates the gravitational in-
fluence of all celestial bodies, as well as any other existing perturbations, at any
instance of time. The most common use of the patched-conic orbit solution is to
determine approximately what ∆v’s would be required for a proposed mission or
to find an initial orbit guess that will start a numerical orbit search algorithm.
We mention that the patched conic method is known to be much more valid
in estimating the magnitude of ∆v, rather than establishing the direction and
timing of the velocity changes.

While in transit between two planets, an interplanetary spacecraft will spend
most of its time under the dominant gravitational influence of the Sun . Investi-
gating the feasibility of interplanetary missions, the concept of the patch-conic
orbits is very useful. A sample orbit between Earth and Mars is illustrated in
Figure 12.14. While the spacecraft is in the Earth’s sphere on influence, it is
shown to be on a hyperbolic orbit relative to Earth. As the spacecraft leaves
the Earth’s sphere of influence, it continues on under the gravitational influence
of the Sun. Even though we had a hyperbolic orbit relative to Earth, at this
point the spacecraft velocity (energy) relative to the Sun is only sufficient to
yield an elliptic orbit with the Sun as its focus. Although both the Earth and
the Sun attract the spacecraft, the Sun is ignored inside the Earth’s sphere of
influence, and the Earth is ignored outside it’s sphere of influence. After the
long heliocentric orbit transit phase, the spacecraft finally enters Mars’ sphere of
influence. What type of orbit the spacecraft will have relative to Mars depends
on the relative velocity magnitude of the craft. However, since it’s velocity at
infinity is nonzero, we can anticipate a hyperbolic planet centric orbit from the
onset. The illustration in Figure 12.14 depicts the expected hyperbolic orbit of
the spacecraft relative to the target planet.

Figure 12.14: Approximating a Trajectory Among Multiple Celestial
Bodies Through Gravitational Spheres of Influences
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12.5.1 Establishing the Heliocentric Departure Velocity

Note that the transit orbit between the two planets can be chosen to fit the
mission requirements. To find the minimum energy transfer orbit to boost a
spacecraft from Earth’s orbit to another planets orbit, a Hohmann transfer
ellipse would be chosen. A sample Hohmann transfer orbit from Earth to Mars
is illustrated in Figure 12.15. A major benefit of Hohmann transfer orbits is
that the spacecraft approach trajectory will asymptotically approach the target
planet trajectory at the rendez vous point. The approach speed will also be
relatively slow. Without the target planet’s gravitational field present, the craft
would not have the proper heliocentric velocity to remain in this orbit. However,
if guided properly, it is possible for the spacecraft to enter the local planet’s
gravity well and, with a modest energy charge, remain in a closed orbit about
this planet. Depending on the target orbit, only small ∆v orbit corrections
would be necessary to achieve this final planetary orbit.
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Figure 12.15: Hohmann Transfer Orbit Illustration between Earth and
Mars

Example 12.2 illustrates how to compute the total ∆v required to perform a
Hohmann transfer between two circular orbits. For the interplanetary Hohmann
transfer, we only make use of the first ∆v1 calculation in Eq. (12.25) that yields
the required heliocentric departure velocity v1. At the end of the Hohmann
transfer, no second burn is performed to circularize the spacecraft orbit about
the Sun. Instead, the spacecraft is guided and controlled in such a way that the
craft is captured by the target planets gravity well. The total ∆v requirement
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to perform this capture depends on the target orbit geometry and orientation.

Using the average planetary orbit radii shown in Table 10.1, we can compute
the minimum heliocentric (measured relative to the Sun) ∆v requirement to
depart Earth’s orbit and arrive at any other planet in our solar system. The
required Earth departure ∆v’s are computed using Eq. (12.25). The results are
shown in Table 12.1. Note that a negative ∆v means that the spacecraft must
slow down relative to Earth in order to reach this planet. As a comparison, the
Earth’s heliocentric speed is 29.77 km/s. The negative ∆v entries for Mercury
and Venus indicate that the craft must exit the Earth’s sphere of influence in
the opposite direction to the Earth’s counter-clockwise motion. Through this
the apofocus counter-clockwise velocity will be appropriately reduced so that
the craft ”falls” interior to the Earth’s orbit and arrives at either planet at
perifocus.

Table 12.1: Minimum ∆v Requirements to Reach Other Planets While
Departing From Earth

Departure Transfer
Planet ∆v [km/s] Time [years]

Mercury � -7.53 0.29
Venus � -2.50 0.40
Mars � 2.94 0.71

Jupiter � 8.79 2.73
Saturn � 10.29 6.07
Uranus � 11.28 16.06

Neptune 	 11.65 30.71
Pluto 
 11.81 45.66

The results in Table 12.1 provide only rough estimates of the minimum
energy ∆v requirements and flight times. This simple calculation ignores any
orbit plane changes that might be required, as well the ∆v requirement to escape
the departure planets local gravity field or the ∆v requirement to park in an
orbit about the arrival planet. Even so, it is clear that the fuel requirements to
reach all the outer solar system planets with a minimum energy transfer orbit
are about the same. However, the flight time to reach Uranus, Neptune and
Pluto become very large and vary substantially from each other. The reason
for the small change in fuel requirements to the outer planets is that the Sun’s
gravitational attraction is much smaller in the outer reaches of our solar system
then in the proximity of Earth. In all cases to the outer planets the Earth
relative departure velocity is approaching the escape speed of approximately
12.33 km/s. The interplanetary spacecraft will require most of the fuel to travel
through the inner solar system. Traveling from Saturn on to the outer planets
(or escaping the solar system) will only take a relatively minor addition in ∆v
requirements.

To have the spacecraft actually intercept the target planet when it reaches
the desired heliocentric orbit radius, the departure and target planets true
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anomaly angles must have a specific phase difference γ(t1) at the time of the
spacecraft launch corresponding to the trip time. Let ∆f be the angular dis-
tance that the spacecraft will travel relative to the Sun while in transit between
planets. The associated travel time is given by ∆T . Let n1 be the mean angular
rate of the departure planet about the Sun, while n2 is the mean angular rate of
the target planet. Since the target planet will have traveled an angular distance
of n2∆T while the spacecraft is in transit, the initial phase angle between the
departure and target planets must be

γ(t1) = ∆f − n2∆T (12.70)

If a launch cannot be performed while the planets are at this particular phase
angle, then the mission planners must wait until the planets have rotated suffi-
ciently for this launch condition to repeat itself (or choose to use a sub-optimal
transfer orbit). How long this wait will be depends on the synodic period be-
tween the departure and target planet. A synodic period Ts is defined as the
time required for a particular phase angle between the planets to repeat itself.4

To compute the synodic period Ts, let us assume that the planets are at a de-
sired phase angle γ at the initial time. For this angle to repeat itself, after
a period Ts the angular difference between the planets must have changed by
±2π.

γ(Ts) = γ(t0) + n2Ts − n1Ts = γ(t0) ± 2π (12.71)

From this condition, the synodic period Ts is expressed in terms of the planets
heliocentric rotations rates ni as4

Ts =
2π

|n2 − n1|
(12.72)

Assuming that the interplanetary spacecraft is departing from Earth, Table 12.2
shows the synodic periods for the various launch windows to repeat themselves.
Note that if there is a large difference in the planetary rotation rates ni, then
the synodic periods will be relatively short. For example, the angular rate n � of
the planet Mercury is about 4 times larger than that of Earth. By the time that
Mercury finishes one revolution about the Sun, Earth will only have rotated a
relatively small distance. To catch up to the required phase angle γ will only
take a short time. This is why the synodic period between Mercury and Earth
is only slightly larger than the revolution period of Mercury. On the other
hand, the synodic periods between Earth and the outer planets is essentially
one Earth year. In this case Earth is considered to be the fast planet, while
the outer planets are almost standing still in comparison. It takes Neptune and
Pluto over 100 years to finish one revolution about the Sun. However, as the
difference in heliocentric rotation rates becomes small, then it can take a long
time for the required planetary phase condition to repeat itself. This is why the
synodic periods between Earth and Mars or Venus are the largest.

Besides requiring potentially long transit times and perhaps extended waits
for favorable planetary positions, using a pure Hohmann transfer for interplane-
tary travel has other drawbacks. If the spacecraft is to travel by another planet
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Table 12.2: Synodic Periods between Earth and Other Planets

Heliocentric Ang. Revolution Period Synodic
Planet Rate [deg/year] about the Sun [years] Period [years]

Mercury � 1493.04 0.24 0.318
Venus � 584.60 0.62 1.600
Mars � 191.20 1.88 2.138

Jupiter � 30.30 11.88 1.093
Saturn � 12.18 29.57 1.036
Uranus � 4.27 84.17 1.013

Neptune 	 2.17 165.40 1.007
Pluto 
 1.45 248.81 1.005

and then return to Earth, the craft will return to the point in space where Earth
was when the spacecraft was launched. However, in the mean time Earth will
have moved on to a new position about the Sun. For a free-return fly-by type
mission, the Hohmann transfer orbit would need to be abandoned to guarantee
that the spacecraft will reach both the other planet and Earth during its return
flight.

Example 12.5: Let us investigate a simplified heliocentric Hohmann transfer
orbit between Earth and Mars as shown in Figure 12.15. This example illus-
trates how the values in Table 12.1 were obtained. Both planetary orbits are
assumed to lie in the same plane and have zero eccentricity. The simplified
geometry is illustrated in Figure 12.15.

The gravitational constant of the Sun is µ � = 1.326 · 1011 km3/s2. Earth’s
average heliocentric radius is r � = 149.60 · 106 km, while Mars’ average
radius is r � = 227.94 · 106 km. The planet’s mean rotation rate about the
Sun is then computed through

n � =

√
µ �

r3�
= 0.985 deg/day

n � =

√
µ �

r3�
= 0.985 deg/day

The Earth’s heliocentric velocity magnitude v � is

v � =

√
µ �

r � = 29.77 km/s

The semi-major axis of the minimum energy transfer orbit is computed using
Eq. (12.9).

a =
r � + r �

2

Since the Hohmann transfer ellipse is only traveled from the periapses to the
apoapses (half an orbit), the transfer time ∆T is

∆T =
1

2

(

2π

√

a3

µ �

)

= 258.98 days
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The angular distances that the planets travel while the spacecraft is complet-
ing its transfer orbit are

f � = n � · ∆T = 255.13 deg

f � = n � · ∆T = 135.66 deg

Studying these angles, it is evident how critical timing is when performing
any interplanetary missions. When the spacecraft is departing the Earth’s
sphere of influence, Mars must be 135.66 degrees away from the rendez vous
point. This is generally not the case. Mission planners must therefore look
at the Earth and Mars motion and plan their launch windows accordingly. If
the different orbit inclinations and eccentricities are also taken into account,
then the launch window calculation become more complex.

To be able to intercept a planet at a specific time, Lambert’s two-point
boundary value problem would need to be solved. This is illustrated in Fig-
ure 12.16 as a non-Hohmann transfer orbit between Earth and Mars. This
method allows us to specify the spacecraft to be at a desired location at a de-
sired time. However, care must be taken when choosing the intercept time and
place to avoid large ∆v requirements. To find an optimum solution taking both
fuel consumption and time of flight considerations into account, a numerical op-
timization is typically performed taking all gravitational attractions and other
perturbations into account.

Another concern of such faster transfer orbits is that the spacecraft’s ap-
proach trajectory tangent will not asymptotically approach the arrival planets
trajectory target. Instead, the craft may approach the target planets trajectory
at an oblique angle. The relative approach speeds are often very high and have
different directions. So, while the transfer orbit time has been reduced, it may
take longer to insert the craft in a desired orbit about the target planet. Due to
deceleration and/or propulsion constraints, this is may be performed in multiple
steps.

12.5.2 Escaping the Departure Planet’s Sphere of Influence

Previously we discussed methods to find the required heliocentric velocity v1

that a spacecraft will need to travel from one planet and travel to another.
In the following discussion we will investigate how a spacecraft will escape the
gravitational influence of the departure planet. As a general notation heliocen-
tric velocity magnitudes are expressed as vi, while velocity magnitudes relative
to either the departure or target planets are expressed as νi.

Let us examine how a spacecraft would travel through the gravitational
sphere of influence of the departure planet. As the spacecraft exits the planets
sphere of influence, its velocity must have a know magnitude v1 and direction.
Without loss of generality, let us assume that the interplanetary transfer is a
minimum energy Hohmann transfer ellipse and that the departure planet is
Earth. According to Eq. (12.17), the heliocentric departure velocity vector v1
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Figure 12.16: Non-Minimum Energy Transfer Orbit Illustration be-
tween Earth and Mars

must be aligned with the Earth’s heliocentric velocity vector. Further, let us
assume that the spacecraft is initially in a circular orbit about the Earth at a
radius r0.

To depart Earth’s sphere of influence, either a parabolic or hyperbolic orbit
is required relative to Earth. As the Earth relative position vector grows large,
we required the velocity vector to be aligned with the heliocentric Earth velocity
ν � . Figure 12.17 illustrates the departure hyperbola from Earth both an outer
or inner solar system planet. If the spacecraft is to travel to an outer planet,
Table 12.1 shows that a positive ∆v is required. Thus the spacecraft needs
to accelerate relative to the heliocentric Earth velocity. If the spacecraft is to
travel to an inner planet, then a negative ∆v is to be applied and the craft has
to slow down relative to Earth.

As the departing spacecraft approaches Earth’s sphere of influence, its ve-
locity vector must have converged sufficiently to the required magnitude v1 and
direction. If the parking orbit radius r0 is large compared to the sphere of
influence radius, then this may not occur.

Let the time t0 be the time where the spacecraft performs a burn to leave
its circular orbit about Earth and enter a hyperbolic departure orbit. The time
t1 is defined as the an instance where the departure orbit intersects the planets
sphere of influence. The required Earth relative velocity nu1 that the spacecraft
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Figure 12.17: Earth Relative Hyperbolic Departure Orbit Illustration
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must possess as it approaches the sphere of influence is computed using

ν1 = v1 − v � (12.73)

The vis-viva equation of a hyperbolic orbit about Earth is given by

ν2
i =

2µ �
ri

− µ �
a

(12.74)

where the semi-major axis of a hyperbola is defined to be a negative quantity.
Since the spacecraft trajectory will have asymptotically approached its hyper-
bolic asymptote at t1, we can approximate r1 ≈ ∞. Using Eq. (12.74), the
Earth relative spacecraft velocity ν1 is then given by

ν1 =

√
2µ �
r1

− µ �
a

≈
√

−µ �
a

(12.75)

The semi-major axis a of the departure hyperbola is then expressed in terms of
the departure velocity ν1 or v1 through

a = −µ �
ν2
1

= − µ �
(v1 − v � )2

(12.76)

The Earth relative speed ν0 that the spacecraft must have after the burn to
enter the hyperbolic orbit at t0 is

ν0 =

√
2µ �
r0

− µ �
a

(12.77)

After substituting Eq. (12.76), the speed ν0 is expressed as

ν2
0 = ν2

1 +
2µ �
r0

(12.78)

While in the circular Earth parking orbit, the spacecraft has an orbit speed of

νc =

√
µ �
r0

(12.79)

The burn ∆ν0 at t0 to enter the departure hyperbolic orbit is computed using

∆ν0 = ν0 − νc =
√

2ν2
c + ν2

1 − νc (12.80)

As the parking orbit radius r0 becomes smaller, then the corresponding circular
orbit velocity νc becomes larger. If r0 is sufficiently small such that νc >> ν1,
then the departure burn ∆ν0 can be approximated as

∆ν0 ≈ νc (12.81)

The point at which the ∆ν0 burn must be applied is defined through the
angle Φ. Since the spacecraft velocity must asymptotically align itself with the
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Earth heliocentric velocity vector , this burn angle Φ is the hyperbolic asymptote
slope angle φ computed in Eq. (8.24). Note that the magnitude of this angle is
computed differently for burns sending spacecraft to outer planets versus burns
sending craft to inner planets. For transfers to inner planets, the burn angle Φ
is defined as

Φ = cos−1

(
1

e

)

(12.82)

For transfers to outer planets, the burn angle Φ must have a phase angle π
added to it.

Φ = cos−1

(
1

e

)

+ π (12.83)

Eq. (12.82) corresponds to launching ”in the evening” so that we exit out the
”back door” of the Earth’s sphere of influence. Whereas Eq. (12.83) corresponds
to launching ”in the morning” so that we exit out of the ”front door” of the
Earth’s sphere of influence (see Figure 12.17).

Note that the hyperbolic eccentricity e has a value greater than 1. Further,
note that the spacecraft hyperbolic injection point does not have to be in the
Earth orbit plane about the Sun as illustrated in Figure 12.17. Let the angle
Φ describe a cone about the Earth heliocentric velocity vector as illustrated in
Figure 12.18. The craft can be in a general Earth orbit initially, as long as
its trajectory intersects this cone. With each hyperbolic departure orbit, the
spacecraft is initially in a circular parking orbit before receiving a tangential
burn as shown in Figure 12.17. As prescribed, the hyperbolic departure orbit
achieves the required escape velocity ν1 at the Earth’s sphere of influence with
its direction being along either the positive or negative Earth velocity direction.
The distance between the spacecraft and the Earth heliocentric velocity direc-
tion is negligible here. With the patched-conic interplanetary orbit solution,
this distance is minor compared to the large distance to the other planet. How-
ever, to find a precise interplanetary transfer orbit using a numerical solution
technique, this distance must be taken into consideration.

Given the heliocentric departure velocity v1 required of the spacecraft to
perform the interplanetary mission, Eq. (12.76) defines the semi-major axis
of the hyperbolic departure orbit, while Eq. (12.78) defines the initial Earth
relative velocity ν0 at the hyperbolic perigee. Lastly, to define the hyperbolic
trajectory geometry, as well as compute the burn angle Φ, we need to determine
the departure orbit eccentricity. Using the definitions of angular momentum, as
well as Eqs. (8.28) and (8.29), we are able to express h through

h2 = µ � p = µ � a(1 − e2) = µ � rp(1 + e) (12.84)

Since the injection burn point at t0 is the periapses of the departure orbit, note
that r0 = rp. The angular momentum can then be expressed as

h2 = r20ν
2
0 (12.85)
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Figure 12.18: Three-Dimensional Illustration of the Departure Hyper-
bolic Orbits

Substituting Eq. (12.85) into Eq. (12.84), we are able to solve for the eccentricity
e in terms of the initial hyperbolic orbit speed ν0.

e =
r0ν

2
0

µ �
− 1 (12.86)

Substituting Eq. (12.76) into Eq. (12.84), we can solve for e in terms of the
escape velocity ν1 that the spacecraft must have as it travels through the Earth’s
sphere of influence.

e =
r0ν

2
1

µ �
+ 1 (12.87)

Either formula can be used to compute the hyperbolic departure orbit eccen-
tricity.
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12.5.3 Enter the Target Planet’s Sphere of Influence

After a long interplanetary transit phase of the mission, assume the spacecraft
is entering the target planet’s sphere of influence. Figure 12.19 illustrates the
arrival of the spacecraft as seen relative to the target planet. Assume the inter-
planetary transfer orbit is a near minimum energy type orbit. If the spacecraft is
traveling from Earth to an inner planet such as Venus, then the craft will arrive
at the target planet at the perifocus of its heliocentric transfer orbit. Thus the
heliocentric velocity of the spacecraft will be larger than the heliocentric orbit
velocity of the planet. To let the craft be captured by the planet, we typically
approach the planet through the ”back door”. We we were ahead of the planet,
our large velocity would make us out run the planet and we would never enter
its sphere of influence (see Figure 12.19(i)). If the spacecraft is traveling to an
outer planet such as Mars, then the planet is reached at the apofocus of the
heliocentric transfer orbit. Thus our velocity will be less than the planet’s orbit
velocity and we must position ourselves ahead of it. This way the planet will
overtake us and allow us to enter its sphere of influence (see Figure 12.19(ii)).

Without loss of generality, let us assume that the spacecraft travels from
Earth to Venus. Further, the planets orbits are once again assumed to be cir-
cular. To find the heliocentric arrival velocity v2, need to know the departure
planet heliocentric orbit radius r � and the heliocentric departure velocity v1.
Using the vis-viva equation in Eq. (8.82) and given the target planet’s heliocen-
tric orbit radius r � , the arrival velocity v2 is expressed as:

v2 =

√

µ �

(
1

r �
− 1

r �

)

+ v2
1 (12.88)

To compute the spacecraft heading angle σ2 relative to the Sun normal direction,
we recall the definition of the angular momentum vector h.

h = r × v (12.89)

Assuming that the interplanetary mission began with a minimum energy burn
along the Earth velocity vector, then h = r � v1. Here planets sphere of influence
radius is considered to be much smaller than the planetary heliocentric orbit
radius. The angular momentum of the spacecraft as it reaches Venus’ sphere of
influence is then expressed as

h = |r � × v2| = r � · v2 · sin(90o − σ2) = r � v2 cosσ2 (12.90)

Using Eq. (12.90), the heading angle σ2 is written as

σ2 = cos−1

(
h

r � v2

)

(12.91)

To compute the Venus relative velocity vector ν2 of the spacecraft as it
enters the planet’s sphere of influence, the Venus heliocentric velocity v � must
be subtracted from the heliocentric velocity v2 of the craft.

ν2 = v2 − v � (12.92)
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Using the law of cosines, we can compute the magnitude of nu2 through

ν2 =
√

v2
2 + v2� − v2v � cosσ2 (12.93)

The heading angle ϕ2 between the velocity vectors v2 and ν2 is found using the
law of sines.

ϕ2 = sin−1

(
v �

ν2
sinσ2

)

(12.94)

The velocity ν2 is the velocity of the spacecraft relative to the target planet
as it enters the sphere of influence. Using the energy equation, we can express
the semi-major axis of the approach trajectory through

1

a
=

2

r2
− ν2

2

µ �
(12.95)

Assuming that the approach trajectory is a hyperbolic orbit, which is typically
the case, we can set r2 → ∞ and approximate a as

a = −µ �

ν2
2

(12.96)

In order to achieve a final orbit about the target planet, it is obviously
important that the spacecraft is not aimed directly at the target planet. Instead,
it’s heliocentric trajectory is designed such that it will miss the target planet
by a certain miss-distance dm. This distance is measured along the planets
heliocentric orbit path as shown in Figure 12.20. The illustrations used in this
discussion all assume the spacecraft is going to approach the target planet from
behind (as seen by the planets heliocentric velocity direction). It is also possible
for the spacecraft to be aimed to intercept the target planets trajectory ahead
of the planet. However, the resulting orbit about the target planet will have the
opposite direction. To compute the shortest distance da between the hyperbolic
approach asymptote and the target planet we use

da = dm sin(ϕ2 + σ2) (12.97)

The hyperbolic asymptote angle Φ is determined through

Φ = cos−1

(
1

e

)

(12.98)

To determine the hyperbolic eccentricity, we investigate again the constant
spacecraft’s angular momentum relative to the target planet. As the space-
craft enters the sphere of influence, the momentum h is given by

h = |r2 × ν2| = daν2 (12.99)
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Substituting Eqs. (12.96) and (12.99) into Eq. (12.84), the hyperbolic eccentric-
ity e is expressed as

e =

√

1 +
d2
aν

2
2

µ2�
(12.100)

The periapses radius rp is determined by substituting the semi-major axis a
definition in Eq. (12.96) into the angular momentum expression in Eq. (12.84).

rp =
µ �

ν2
2

(e− 1) (12.101)

The orbit mission is typically designed such that the periapses radius rp is also
the desired circular orbit radius about the target planet. This state is controlled
both by the approach speed ν2 and the eccentricity e of the hyperbolic approach
orbit. Since e depends on the miss-distance dm, the periapses radius can be set
by aiming the spacecraft an appropriate distance ahead or behind the planet.

Assume we wish to have a final circular parking orbit of radius r3 about the
target planet, where r3 is also the periapses radius rp of the hyperbolic approach
orbit. Let time t3 be the point where the approach trajectory touches this
desired parking orbit. Using the energy equation, we can express the spacecraft
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velocity v3 at that instance.

ν3 =

√

2
µ �

r3
+ ν2

2 (12.102)

The impulsive orbit correction required at perigee to circularize the orbit about
the target planet is

∆ν3 = νc − ν3 (12.103)

where the circular orbit speed νc is given by

νc =

√
µ �

r3
(12.104)
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v

Figure 12.21: Illustration of Using a Staged Injection Burn with Elliptic
Intermediate Orbits

Depending on the incoming hyperbolic velocity magnitude, the ∆ν3 com-
puted in Eq. (12.103) may cause excessive deceleration forces on the crew and
spacecraft structure. Also, it is possible that the spacecraft engines cannot pro-
duce a large enough ∆v over the short burning time. What is commonly done
is to achieve the desired orbit about the target planet through several stages
of ∆ν burns. During the first periapses passage, a large enough ∆ν is applied
to change the target planet relative orbit from being hyperbolic to being ellip-
tic. As the spacecraft revisits the periapses, additional burns are performed to
gradually reduce the semi-major axis of the elliptic orbit to the desired value.
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This concept is illustrated in Figure 12.21. Through this sequential adjustment
approach, the deceleration forces can be kept smaller to be achievable by the
trusters and, possibly, to be bearable to crew and spacecraft structure. Note
that in order to use the patched-conic orbits to compute ∆ν requirements, it is
important that the staging ellipses remain well within the sphere of influence
of the target planet. Otherwise we can no longer assume Keplerian two-body
motion. Instead, the complete influence of both the target planet and the Sun
must be taking into account in a numerical simulation.

Instead of performing thrusting maneuvers to decelerate the spacecraft, it is
also possible to use the target atmosphere (if present) to decelerate the space-
craft. Such maneuvers are referred to as aerobraking maneuvers. Their effec-
tiveness depends on the approach speed and mass of the spacecraft. If the either
is too high, than the atmosphere may not be able to slow down the spacecraft
sufficiently to achieve an elliptic orbit and the craft will exit the planets sphere of
influence. Structural heating and stress restrictions dictate how low a spacecraft
can dip into an atmosphere to slow down.

12.5.4 Planetary Fly-By’s

All interplanetary orbits discussed so far had the spacecraft travel directly from
the departure planet to the target planet. Due to the sphere’s of influence con-
cept, the gravitational attraction of the other solar system planets was ignored.
This greatly simplified the initial mission analysis and allowed to predict some
basic ∆v estimates.

However, omitting the gravitational influence of other planets excludes a
very attractive type of interplanetary transfer orbit. It is possible to make
use of other planets’ gravitational attraction to accelerate or decelerate the
spacecraft relative to the Sun. Since several of these planets are quite massive
(e.g. Jupiter), the favorable orbit perturbations can be large indeed. As the
spacecraft approaches a planet, it will be slung around the planet and leave
with a different heliocentric velocity direction and magnitude. This type of
orbit maneuver is called a planetary fly-by and is illustrated in Figure 12.22.
Instead of having a clean point-to-point interplanetary mission, the spacecraft
is sent on a game of cosmic pinball. The major benefit of a planetary fly-by is
that the spacecraft can be accelerated to reach a target planet faster without
requiring more ∆v’s. The velocity direction changes are especially important,
but the magnitude of the velocity can also be favorably affected. For example,
to reach Mars it is possible to use Venus to sling-shot around and reach Mars
in a much shorter period of time than what is typically possible for a given ∆v
and a direct interplanetary approach. Also, for a deep space probe to reach the
outer solar system planets, it is common to have them fly by Jupiter first to
receive an extra boost to their heliocentric velocity.

Assuming that the spacecraft is approaching a planet with a hyperbolic
speed, it should be clear that having the craft sling around the planet should
naturally change the velocity vector direction without having to fire any boost-
ers. What may not be clear at first glance is why would this also change the
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Figure 12.22: Illustration of a Sample Planetary Fly-By Maneuver
about Venus

magnitude of the velocity vector. Figure 12.22 illustrates how a planetary fly-
by would be seen by the moving planet. Let us use the same notation as was
used developing the hyperbolic approach trajectories to a target planet. As the
spacecraft as it enters the planets sphere of influence, its heliocentric velocity
is given by v2. The planet relative velocity vector is ν2 = v2 − v � . Studying
Keplerian two-body motion, we know that the velocity ν2 with which the space-
craft approach the planet will also be the asymptotic velocity that the craft will
approach as it leaves the planet on a hyperbolic orbit. The question is, how is
the spacecraft being accelerate or decelerate here? The key observation to make
here is that for interplanetary missions, we are concerned with the heliocentric
velocity of a spacecraft vi, not with the velocity νi relative to some planet.
As the craft departs the planets sphere of influence, it’s planet relative velocity
ν3 will have the same magnitude as the approach velocity vector ν2. The two
velocity vectors νi will only differ in their direction. Thus we have

ν3 6= ν2 ν3 = ν2 (12.105)

The spacecraft’s heliocentric velocity as it departs the planet’s sphere of influ-
ence is given by

v3 = ν3 + v � (12.106)
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Depending on the angle between the planetary heliocentric velocity vector and
the flight angle of the spacecraft, the velocity v3 can either have a larger or
smaller magnitude than v2. The illustration in Figure 12.22 shows a case where
the planet is approached from behind (as seen relative to the planet’s heliocentric
velocity vector). This type of approach will result in the spacecraft picking up
some heliocentric speed. If the craft approaches the planet from the front and
departs rearward, then the craft would loose some heliocentric speed.

How to compute the incoming spacecraft heading angles σ2 and ϕ2, as well
as the hyperbolic asymptote angle Φ, have already been shown in section 12.5.3.
For notational convenience, let us define θi to be

θi = ϕi + σi (12.107)

Studying Figure 12.22, the angle θ3 describes the planet relative departure ve-
locity vector ν3 direction relative to the planet’s heliocentric velocity vector and
is found to be

θ3 = 180o − 2Φ − θ2 (12.108)

Using the law of cosines, the heliocentric velocity magnitude v3 is expressed as

v3 =
√

ν2
3 + v2� + 2ν2v � cos θ3 (12.109)

Using the law of sines, the angle ϕ3 between the planet relative and the Sun
relative velocity vectors is given by

ϕ3 = sin−1

(

sin θ3
v �

v3

)

(12.110)

Thus, the direction angle σ3 of the spacecraft’s heliocentric departure velocity
vector is computed using

σ3 = θ3 − ϕ3 (12.111)

The heliocentric angular momentum of the spacecraft as it enters the planets
sphere of influence is

h(t2) = r � v2 cosσ2 (12.112)

As the spacecraft exits the sphere of influence, it’s angular momentum about
the Sun is given by

h(t3) = r � v3 cosσ3 (12.113)

Note that the planet’s sphere of influence radius is assumed to be much smaller
than the planet’s heliocentric orbit radius. As the spacecraft accelerates or decel-
erates during the fly-by maneuver, it does so by exchanging angular momentum
with the planet. Thus we find that momentum change ∆h to be

∆h = h(t3) − h(t2) 6= 0 (12.114)
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Since the total angular momentum of the solar system is constant, the planets
change in angular momentum will be −∆h. While the planet will change its
heliocentric orbit velocity during a fly-by, this effect can be ignored. The reason
for this is the huge mass imbalance between the spacecraft and the planets. The
change in the planetary orbit velocity is minuscule and has no practical effect
on its trajectory. Let us define m to be the spacecraft mass and v to be the
spacecraft velocity component normal to the heliocentric orbit radius. The total
angular momentum H of both Venus and the spacecraft about the Sun is given
by

H = m � r � v � +mr � v (12.115)

Again we make the simplifying assumption that the planets sphere of influ-
ence radius is negligible compared to the heliocentric orbit radius. During the
planetary fly-by, the total change in angular momentum must be zero.

∆H = 0 = m � r � ∆v � +mr � ∆v (12.116)

Thus, for a given spacecraft velocity change ∆v, the corresponding change in
the planet’s heliocentric velocity is

∆v � =
m

m �
∆v (12.117)

Sincem/m � → 0, the change in the planets velocity can be ignored for planetary
fly-by maneuvers.

Problems

12.1 Assume a spacecraft is to enter an interplanetary mission to either Mars, Venus
or Jupiter and requires an initial heliocentric departure velocity v1 from the Earth
sphere of influence. Compute the sensitivities of errors in the initial hyperbolic
injection burn ∆ν0 if the parking orbit is at an altitude of 250 km. Perform this
calculation for each of the three planets and comment on the values.
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Chapter Thirteen

Spacecraft Formation
Flying

Spacecraft formation flying concepts have been studied since the beginning of the
manned space program. The challenge at that time was to have two-spacecraft
rendez-vous and dock onto each other. This was particularly crucial for the
Apollo space program which had the final lunar spacecraft being assembled
in orbit. During this maneuver orbit corrections are performed not to correct
the Earth relative orbit itself, but rather to adjust and control the relative
orbit between two vehicles. For the docking maneuver, the relative distance is
decreased to zero in a very slow and controlled manner.

The modern day focus of spacecraft formation flying has now extended to
maintain a formation of various spacecraft. For example, the U.S. Air Force is
studying concepts of having a cluster of identical satellites form a sparse aper-
ture radar dish in space. Having multiple satellites flying at a specific geometry
avoids the significant technical and financial challenge of attempting to build
a radar dish of the equivalent size. These satellite formations can have diame-
ters ranging from several dozens of meters to several kilometers. Attempting to
build, control and navigate a light-weight radar dish structure that could span
several kilometers would be very challenging and not cost effective. Instead,
having a multitude of satellites form a virtual radar dish has the advantage of
avoiding the structural flexing issues of the large dish structure and the associ-
ated pointing difficulties.

A conceptual difference between the formation flying problems that result
in two or more vehicles docking and the spacecraft formation flying problem of
maintaining the relative orbit of a cluster of satellites is that the later is signifi-
cantly more sensitive to relative orbit modeling errors. If the satellites involved
are being navigated to a rendez-vous, then the formation flying period of the
two vehicles is relatively limited compared to the lifetime of the vehicle itself.
Typically, the rendez-vous and docking maneuvers occur over 1-2 orbits. Thus,
from a control perspective, if the relative orbit description contains some minor

477
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simplifying assumptions, then this will have a minimal impact on the control
performance. The feedback control laws are robust enough to compensate for
such modeling errors and will guide the spacecraft involved to a safe docking.
Also, as the two vehicles approach each other, the relative distance becomes
smaller and smaller. Thus any errors introduced into the relative motion de-
scription by making linearizing assumptions become negligible during the final
docking phase.

However, for the task of maintaining a spacecraft relative orbit formation,
where a cluster of satellites are supposed to continuously orbit each other, mak-
ing linearizing assumption can potentially lead to a substantially higher fuel
cost. The reason is that this formation is supposed to be maintained over the
entire life span of the satellites. If a relative orbit is designed using a very sim-
plified orbit model, then the formation station keeping control law will need to
continuously compensate for these modeling errors and burn fuel. Depending
on the severity of the modeling errors, this fuel consumption could drastically
reduce the lifetime of the spacecraft formation. It is precisely this sensitivity
to the orbital dynamics that makes this type of formation flying problem very
interesting from the celestial mechanics point of view.

There are two types of spacecraft formations that are being considered here.
One case has the satellite cluster consisting of spacecraft of different type and
built. This results in each craft having a different ballistic coefficient. Thus,
the orbit of each vehicle will decay at a different rate due to the drag difference
between the orbits. The main challenge for the station keeping control law
of such spacecraft formations is to assure that all the orbits of each satellite
decay on average at an equal rate. While this is a challenging control task, it is
not that interesting from a dynamics or celestial mechanics point of view since
these uncontrolled relative orbits are not closed relative orbits (i.e. they don’t
repeat each orbit). The second type of spacecraft formations consist of a cluster
of satellites of equal type and built. Here each satellite ideally has the same
ballistic coefficient. Thus each orbit will decay nominally at the same rate. For
this case it is possible to analytically find closed relative orbits. These relative
orbits describe a fixed geometry as seen by the rotating spacecraft reference
frame. This frame will be defined more carefully in the next section.

This chapter develops the relative orbit descriptions of two or more satellites
for both circular and elliptic reference orbits. All satellite constellations are
assumed to be comprised of spacecraft of equal type and built. Thus, the relative
drag effect will only have a secondary effect on the relative orbit. The dominant
dynamical effect studied in this chapter will be the gravitational attraction of
the planet. In particular, the effect of both a spherical or oblate body are
considered. Finally, some relative orbit control laws will be presented that are
able to establish and maintain a desired relative orbit among the spacecraft.
While the relative orbit equations of motion developed here could be used to
develop rendez-vous or docking control laws, this type of spacecraft formation
flying is not specifically discussed in this paper. An excellent survey of the
spacecraft rendez-vous problem is provided by Carter in Reference 1.
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13.1 General Relative Orbit Description

This section develops the relative orbit equations of motion and presents meth-
ods to establish closed relative orbits. Both the Cartesian coordinates and the
orbit element description will be used. The spacecraft formation flying nomen-
clature used in this chapter is as follows. The simplest type of spacecraft for-
mation flying geometry is the leader-follower type of formation flying shown in
Figure 13.1. Here the two spacecraft are essentially in identical orbits, but are
separated only by having different anomalies. If this orbit is circular, then the
spacecraft separation will remained fixed since both vehicles are always moving
at the same orbital speed. If the orbit is elliptical, then the spacecraft separation
will contract and expand, depending on whether the formation is approaching
the orbit apoapses or periapses.

Chief Satellite

Deputy Satellite

Inertial Orbit

ρ

x

y

ôr

ôh
ôθ

rc

rd

δf

Figure 13.1: Illustration of a Leader-Follower Type of a Two-Spacecraft
Formation

The satellite about which all other satellites are orbiting is referred to as
the chief satellite. The remaining satellites, referred to as the deputy satellites,
are to fly in formation with the chief. Note that it is not necessary that the
chief position actually be occupied by a physical satellite. Sometimes this chief
position is simply used as an orbiting reference point about which the deputy
satellites orbit.

The inertial chief position is expressed through the vector rc(t), while the
deputy satellite position is given by rd(t). To express how the relative orbit
geometry is seen by the chief, we introduce the Hill coordinate frame.2 Its origin
is at the chief satellite position and its orientation is given by the vector triad
{ôr, ôθ, ôh} shown in Figures 13.1 and 13.2. The vector ôr is in the orbit radius
direction, while ôh is parallel to the orbit momentum vector in the orbit normal
direction. The vector ôθ then completes the right-handed coordinates system.
Mathematically, these O frame orientation vectors are expressed as

ôr =
rc

rc
(13.1a)

ôθ = ôh × ôr (13.1b)

ôh =
h

h
(13.1c)
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with h = rc×ṙc. Note that if the inertial chief orbit is circular, then ôθ is parallel
to the satellite velocity vector. This rotating reference frame is sometimes also
referred to as the Hill frame.

Chief Satellite

Deputy
Satellite

Chief Inertial Orbit

Deputy Inertial Orbit
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tiv

e O
rbi

t

ρ

x
y

z

ôr

ôh
ôθ

rc

Figure 13.2: Illustration of a General Type of Spacecraft Formation with
Out-Of-Orbit Plane Relative Motion

A dynamically more challenging type of general spacecraft formation flying
than the leader-follower type is shown in Figure 13.2. The relative orbit position
vector ρ is expressed in O frame components as

ρ = (x, y, z)T (13.2)

Here the various spacecraft are on slightly different orbits that will satisfy some
specific constraints. These constraints ensure that the relative orbit is bounded
and that the spacecraft will not drift apart. With these types of orbit, the chief
satellite (or chief position) is the relative orbit interior point about which all
the other deputy satellites are orbiting.

13.2 Cartesian Coordinate Description

In this section we chose to describe the relative orbit in terms of the Cartesian
coordinate vector ρ = (x, y, z)T . The vector components are taken in the rotat-
ing chief Hill frame. The advantage of using Hill frame coordinates is that the
physical relative orbit dimensions are immediately apparent from these coordi-
nates. The (x, y) coordinates define the relative orbit motion in the chief orbit
plane. The z coordinate defines any motion out of the chief orbit plane.
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13.2.1 Clohessy-Wiltshire Equations

To derive the relative equations of motion using Cartesian coordinates in the
rotating Hill frame, we write the deputy satellite position vector as

rd = rc + ρ = (rc + x)ôr + yôθ + zôh (13.3)

where rc is the current orbit radius of the chief satellite. The angular velocity
vector of the rotating Hill frame O frame relative to the inertial N frame is
given by

ωO/N = ḟω̂h (13.4)

with f being the chief frame true anomaly. Taking two derivatives with respect
to the inertial frame, the deputy satellite acceleration vector is given by

r̈d =
(

r̈c + ẍ− 2ẏḟ − f̈y − ḟ2(rc + x)
)

ôr

+
(

ÿ + 2ḟ(ṙc + ẋ) + f̈(rc + x) − ḟ2y
)

ôθ + z̈ôh (13.5)

This kinematic expression can be simplified by making use of the following
identities. The chief orbit angular momentum magnitude is given by h = r2c ḟ .
Since h is constant for Keplerian motion, taking the first time derivative of h
yields

ḣ = 0 = 2rcṙcḟ + r2c f̈ (13.6)

This orbit element constraint can be used to solve for the true anomaly accel-
eration.

f̈ = −2
ṙc
rc
ḟ (13.7)

Further, we write the chief satellite position as rc = rcôr. Taking two time
derivatives with respect to the inertial frame and using the orbit equations of
motion, the chief acceleration vector is expressed as

r̈c =
(

r̈c − rcḟ
2
)

ôr = − µ

r3c
rc = − µ

r2c
ôr (13.8)

Equating vector components in Eq. (13.8), the chief orbit radius acceleration is
expressed as:

r̈c = rcḟ
2 − µ

r2c
= rcḟ

2

(

1 − rc
p

)

(13.9)

Substituting Eqs. (13.7) and (13.9) into Eq. (13.5), the deputy acceleration
vector expression is reduced to

r̈d =

(

ẍ− 2ḟ

(

ẏ − y
ṙc
rc

)

− xḟ2 − µ

r2c

)

ôr

+

(

ÿ + 2ḟ

(

ẋ− x
ṙc
rc

)

− yḟ2

)

ôθ + z̈ôh (13.10)
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Next, we substitute the kinematic acceleration expression in Eq. (13.10) into
the orbit equations of motion. The deputy satellite orbital equations of motion
are given by

r̈d = − µ

r3d
rd = − µ

r3d

O



rc + x
y
z



 (13.11)

with rd =
√

(rc + x)2 + y2 + z2. Equating Eqs. (13.10) and (13.11), the exact
nonlinear relative equations of motion are given by

ẍ− 2ḟ

(

ẏ − y
ṙc
rc

)

− xḟ2 − µ

r2c
= − µ

r3d
(rc + x) (13.12a)

ÿ + 2ḟ

(

ẋ− x
ṙc
rc

)

− yḟ2 = − µ

r3d
y (13.12b)

z̈ = − µ

r3d
z (13.12c)

The only assumption which has been made is that no disturbances are acting
on the satellites and thus the Keplerian motion assumption in the orbital equa-
tions of motion in Eq. (13.11) are correct. The relative equations of motion in
Eq. (13.12) are valid for arbitrarily large relative orbits and the chief orbit may
be eccentric. If the relative orbit coordinates (x, y, z) are small compared to the
chief orbit radius rc, then Eq. (13.12) can be further simplified. The deputy
orbit radius rd is approximated as

rd = rc

√

1 + 2
x

rc
+
x2 + y2 + z2

r2c
≈ rc

√

1 + 2
x

rc
(13.13)

This allows us to write

µ

r3d
≈ µ

r3c

(

1 − 3
x

rc

)

(13.14)

The term µ/r3c can also be written in the following useful forms:

µ

r3c
=
rc
p
ḟ2 =

ḟ2

1 + e cos f
(13.15)

Note that the orbit elements shown in Eq. (13.15) are chief orbit elements.
Neglecting higher order terms, we are able to simplify the right hand side of
Eq. (13.11) to

− µ

r3d

O



rc + x
y
z



 ≈ µ

r3c

(

1 − 3
x

rc

)
O



rc + x
y
z



 ≈ µ

r3c

O



rc − 2x
y
z



 (13.16)
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Substituting Eq. (13.16) into Eq. (13.12) and simplifying the resulting expres-
sions yields the relative orbit equations of motion assuming that x, y, z are small
compared to chief orbit radius rc.

ẍ− xḟ2

(

1 + 2
rc
p

)

− 2ḟ

(

ẏ − y
ṙc
rc

)

= 0 (13.17a)

ÿ + 2ḟ

(

ẋ− x
ṙc
rc

)

− yḟ2

(

1 − rc
p

)

= 0 (13.17b)

z̈ +
rc
p
ḟ2z = 0 (13.17c)

Using Eqs. (13.7) and (13.15), along with the true latitude θ = ω+f , the general
relative equations of motion are rewritten in the common form:3

ẍ− x

(

θ̇2 + 2
µ

r3c

)

− yθ̈ − 2ẏθ̇ = 0 (13.18a)

ÿ + xθ̈ + 2ẋθ̇ − y

(

θ̇2 − µ

r3c

)

= 0 (13.18b)

z̈ +
µ

r3c
z = 0 (13.18c)

If the chief satellite orbit is assumed to be circular, then e = 0, p = rc, and
the chief orbit radius rc is constant. Since for a circular orbit the mean orbital
rate n is equal to the true anomaly rate ḟ , the relative equations of motion
reduce to the simple form known as the Clohessy-Wiltshire (CW) equations.2, 4

ẍ− 2nẏ − 3n2x = 0 (13.19a)

ÿ + 2nẋ = 0 (13.19b)

z̈ + n2z = 0 (13.19c)

Note that these equations of motion are only valid if the chief orbit is circu-
lar and the relative orbit coordinates (x, y, z) are small compared to the chief
orbit radius rc. The simple form of the differential equations in Eq. (13.19)
allows them to be analytically integrated to find closed form solutions to the
relative equations of motion. For example, the differential equations of motion
for the relative orbit out-of-plane motion, shown in Eq. (13.17c), is that of a
simple spring-mass system which has a known solution. This development of
the analytic relative equations of motion solution is shown in the section 13.2.2.

The general relative equations of motion, shown in Eq. (13.17), take on a
very elegant form if written in a non-dimensional form. Let us define the non-
dimensional relative orbit coordinates (u, v, w) as

u =
x

rc
v =

y

rc
w =

z

rc
(13.20)
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Instead of differentiating with respect to time, we now differentiate with respect
to the chief orbit true anomaly f . This type of differentiation is written here as

()′ ≡ d()

df
(13.21)

To obtain the non-dimensional relative equations of motion, the following iden-
tities relating time derivatives of (x, y, z) coordinates to corresponding non-
dimensional derivatives of (u, v, w) will be used:

ẋ

rc
= u′ḟ + u

ṙc
rc

ẍ

rc
= u′′ḟ2 + uḟ2

(

1 − rc
p

)

(13.22a)

ẏ

rc
= v′ḟ + v

ṙc
rc

ÿ

rc
= v′′ḟ2 + vḟ2

(

1 − rc
p

)

(13.22b)

ż

rc
= w′ḟ + w

ṙc
rc

z̈

rc
= w′′ḟ2 + wḟ2

(

1 − rc
p

)

(13.22c)

Dividing the dimensional equations of motion in Eq. (13.17) by the chief orbit
radius rc, substituting the identities in Eq. (13.22) and simplifying leads to the
following elegant non-dimensional relative equations of motion:

u′′ − 2v′ − 3u

1 + e cos f
= 0 (13.23a)

v′′ + 2u′ = 0 (13.23b)

w′′ + w = 0 (13.23c)

The above relative equations of motion are valid for eccentric chief orbits, as
long as (u, v, w) � 1. Comparing Eq. (13.19) to Eq. (13.23), it is clear that
the form of the non-dimensional equations of motion is very close to that of the
Clohessy-Wiltshire equations. The only algebraic difference is the additional
fraction in the non-dimensional radial equations of motion in Eq. (13.23a).

13.2.2 Closed Relative Orbits in the Hill Reference Frame

Starting with the Clohessy-Wiltshire equations in Eq. (13.19), we would like to
find constraints for the relative orbit coordinates (x, y, z) which will guarantee
that the relative orbit geometry will remain bounded. The underlying assump-
tion here is that the chief orbit is circular and perturbations to the Keplerian
motion can be ignored. The relative equations of motion in terms of (x, y, z)
are repeated here for convenience:

ẍ− 2nẏ − 3n2x = 0 (13.24a)

ÿ + 2nẋ = 0 (13.24b)

z̈ + n2z = 0 (13.24c)

The z component decouples here from the radial and along track directions
and has the form of a simple un-forced oscillator differential equation. It’s



SECTION 13.2 CARTESIAN COORDINATE DESCRIPTION 485

general solution is given by

z(t) = B0 cos(nt+ β) (13.25)

where B0 and β are integration constants which are determined through the
initial conditions. Further, Eq. (13.24b) is of a perfect integrable form leading
to

ẏ = −2nx+ d (13.26)

where the integration constant d = ẏ0 + 2nx0 is defined through the initial
conditions. Substituting Eq. (13.26) into Eq. (13.24a), the equation of motion
in the x direction is written as the forced oscillator differential equation

ẍ+ n2x = 2nd (13.27)

Solving this differential equation, the radial position component is given by

x(t) = A0 cos(nt+ α) +
2d

n
(13.28)

where A0 and α are determined through the initial conditions. Defining the
scalar offset in the orbit radial direction as

xoff =
2d

n
(13.29)

the x(t) equation can be written as

x(t) = A0 cos(nt+ α) + xoff (13.30)

Substituting Eq. (13.28) into Eq. (13.26), the first order differential equation
for y(t) is written as

ẏ = −2nA0 cos(nt+ α) − 3d (13.31)

Integrating this differential equation and using yoff as the integration constant,
y(t) is written as

y(t) = −2A0 sin(nt+ α) − 3dt+ yoff (13.32)

Thus the analytical solution to the CW equations in Hill frame components is
summarized as

x(t) = A0 cos(nt+ α) + xoff (13.33a)

y(t) = −2A0 sin(nt+ α) − 3

2
ntxoff + yoff (13.33b)

z(t) = B0 cos(nt+ β) (13.33c)

Note the the expression for y(t) contains a secular term which will grow infinitely
large as t → ∞. All other terms in Eq. (13.33) are either sin or cos functions,
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or a constant offset. Thus, to avoid the secular growth in y(t) we must set xoff
equal to zero. This is equivalent to setting the integration constant d, defined in
Eq. (13.29), equal to zero. The bounded relative orbit constraint for a circular
chief orbit is given in terms of Hill frame coordinates as:

d = ẏ0 + 2nx0 = 0 (13.34)

Note that this requirement is identical to assuring that xoff = 0. The analytical
solutions for bounded solutions of the CW equations are then given by

x(t) = A0 cos(nt+ α) (13.35a)

y(t) = −2A0 sin(nt+ α) + yoff (13.35b)

z(t) = B0 cos(nt+ β) (13.35c)

Example 13.1: For the sparse aperture type of spacecraft formation mission,
the sensor requirements specify that the (y, z) projection of the relative orbit
be circular. Studying Eq. (13.35), the (y, z) trajectory will only describe
a circle if the along track offset yoff is to zero. Further, the along track
sinusoidal amplitude A0 and the out-of-plane sinusoidal amplitude B0 must
satisfy

B0 = 2A0

Note that the projection of the relative orbit onto the (x, y) plane always
forms an ellipse which is twice as large in the along track direction than in
the radial direction. Further, the phase angles α and β must satisfy

α = β or α = β + 180o

Adding 180 degrees to the phase angle difference makes the relative orbit
have a different relative inclination. This is illustrated in Figure 13.3. Both
relative orbits are computed using A0 = 0.5 km, B0 = 1.0 km and α = 0
degrees.

Therefore, assuming B0 = 2A0 and α = β, then the relative orbit trajectories
of interest are given in Hill frame vector components by

ρ =





x
y
z



 = A0





cos(nt+ α)
−2 sin(nt+ α)
2 cos(nt+ α)





with the local velocity as seen in the Hill frame being

Od(ρ)

dt
=





ẋ
ẏ
ż



 = −A0n





sin(nt+ α)
2 cos(nt+ α)
2 sin(nt+ α)





To map the relative vectors ρ and ρ̇ back to inertial position and velocity
vectors of the deputy satellite, it is assumed that the inertial position and
velocity vectors of the chief are given. Using the Hill frame orientation vectors
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180o

Figure 13.3: Relative Orbit Comparison in the Hill Reference Frame for
Different Phase Angle Differences

defined in Eq. (13.1), the direction cosine matrix which relates inertial frame
vector components to Hill frame components is computed through

[ON ] =





ôT
r

ôT
θ

ôT
h





The inertial deputy position vector rd is then computed as

rd = rc + [ON ]Tρ

where it is assumed that rc is given in inertial components. The inertial
deputy satellite velocity is found through

ṙd = ṙc + [ON ]T
(Od(ρ)

dt
+ nôh × ρ

)

13.3 Orbit Element Difference Description

While using the Hill frame coordinates (x, y, z) is a common method to describe
a relative orbit, they have the distinct disadvantage that their differential equa-
tions must be solved in order to obtain the relative orbit geometry. The relative
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orbit is determined through the chief orbit motion and the relative orbit initial
conditions

X = (x0, y0, z0, ẋ0, ẏ0, ż0)
T (13.36)

To find out where a deputy satellite would be at time t, the appropriate dif-
ferential equations in either Eq. (13.17) or Eq. (13.19) need to be integrated
forward to time t. Thus, the six initial conditions in Eq. (13.36) form six invari-
ant quantities of the relative orbit motion. However, they are not convenient to
determine the instantaneous geometry of the relative orbit motion. However,
if the chief orbit is circular, then the elegant CW equations have an analytical
solution shown in Eq. (13.35). This lead to the initial condition constraint in
Eq. (13.34) which guarantees bounded relative motion. However, this constraint
is only valid if the relative orbit dimension is small compared to the chief or-
bit radius (linearizing assumptions are valid), and if the chief orbit is circular
(e→ 0).

Instead of using the six relative orbit invariants shown in Eq. (13.36) to
define the relative orbit and obtain a bounded relative orbit constraint, we
would like to investigate other relative orbit invariant parameters that would
yield equivalent results without the need for the linearizing assumptions and
near-circular chief orbit requirements.

To do this, we first review how the inertial orbits are described and solved
for in a Keplerian two-body system. Let r be the inertial position vector of a
spacecraft about a spherical planet, then the differential equations to be solved
are given by

r̈ = − µ

r3
r (13.37)

with the initial conditions being r(t0) = r0 and ṙ(t0) = ṙ0. These six initial
conditions form the six invariant parameter of this dynamical system. However,
as is shown in Chapter 8, the Keplerian motion of a satellite can also be defined
through six orbit elements. For example, let us define the orbit element vector
e to contain the parameters

e = (a, e, i,Ω, ω,M0)
T (13.38)

where a is the semi-major axis, e is the eccentricity, i is the orbit inclination
angle, Ω is the longitude of the ascending Node, ω is the argument of the
pericenter and M0 is the initial mean anomaly. Instead of solving a differential
equation to find the current satellite states, the algebraic Kepler’s equation must
be numerically solved to find the current mean anomaly angle. Thus there is
essentially only one state M that must be solved to find the satellite position.
Compare this to using the X state vector. Here all six states are fast variables,
meaning that they vary throughout the orbit. Using the orbit elements thus
simplifies the orbit description and the satellite position computation. Further,
note that even with disturbances present such as gravitational perturbations or
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atmospheric or solar drag, these orbit elements will only change slowly. This is
illustrated in Chapter 11.

Assuming for now that no disturbances are present, then the six orbit el-
ements are invariant unless some control thrust is applied to the spacecraft.
Instead of defining the relative orbit in terms of the six Hill frame coordinates
in Eq. (13.36), let us propose to define the relative orbit in terms of the orbit
element difference vector δe

δe = ed − ec = (δa, δe, δi, δΩ, δω, δM0)
T (13.39)

where ed is the deputy satellite orbit element vector and ec is the chief orbit
element vector. Note that this relative orbit description using orbit element
differences is not constraint to the particular orbit elements used here. Any
complete set of orbit elements could be used. Given δe and ec, the deputy
satellite position can be computed at any instance of time by solving Kepler’s
equation. As is the case with the inertial orbit description, we are able to avoid
having to solve a differential equation. Note that the relative orbit description
in Eq. (13.39) does not make any assumptions on how large the relative orbit
is compared to the chief orbit radius, nor does it require that the chief orbit is
circular.

Working with orbit element differences also provides some insight into the
orbit geometry itself. Simply starting out with the Hill frame initial conditions
in Eq. (13.36), the relative orbit geometry is only determined after solving the
differential equations. However, by describing the relative orbit in terms of
orbit element differences, it is possible to make certain statements regarding
the relative orbit geometry. This concept is illustrated in Figure 13.4. Both
the inclination angle and ascending node differences will affect the magnitude
of the out-of-plane motion of the relative orbit. The inclination angle difference
δi specifies how much out-of-plane motion the relative orbit will have as the
the satellite cross the northern or southern most regions. The ascending node
difference shown what the out-of-plane motion will be as the satellite crosses the
equator. For example, if corresponding orbit element differences are computed
for a given relative orbit and δi is found to be zero, then it can immediately be
concluded that the relative orbit will have zero out-of-plane motion as the chief
passes the outer latitude extremes.

13.3.1 Linear Mapping Between Hill Frame Coordinates and
Orbit Element Differences

To map between the X and δe relative orbit coordinates, the nonlinear mapping
between inertial coordinates and orbit elements shown in Chapter 8 could be
used. However, if the relative orbit is small compared to the chief orbit radius,
then it is possible to obtain a direct linear mapping [A(ec)] between X and δe.

X = [A(ec)]δe (13.40)
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maximum
out-of-plane

i1
i2

(i) Inclination Angle Difference

1Ω
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maximum
out-of-plane

(ii) Ascending Node Difference

Figure 13.4: Relative Orbit Effect of Having Specific Orbit Element Dif-
ferences

To avoid some numerical difficulties for near circular orbits, let us use the orbit
element vector e is defined through

e = (a, θ, i, q1, q2,Ω)T (13.41)

with θ being the true latitude angle (sum of argument of perigee and true
anomaly), and q1 and q2 being defined through

q1 = e cosω (13.42)

q2 = e sinω (13.43)

Let us define the following three coordinates systems. Let C and D be the Hill
coordinate frames of the chief and deputy satellites, respectively, and let N be
the inertial frame. Then [CN ] = [CN (Ωc, ic, θc)] is the direction cosine matrix
mapping vector components in the inertial frame to components in the chief
Hill frame. To relate the orbit element difference vector δe to the corresponding
LVLH Cartesian coordinate vector X, we write the deputy spacecraft inertial
position vector rd in chief and deputy Hill frame components as

Crd = C(rc + x, y, z)T (13.44)
Drd = D(rd, 0, 0)T (13.45)

where r is the inertial orbit radius. The deputy position vector rd is now
mapped from the deputy Hill frame vector components to the chief Hill frame
vector components using

Crd = [CN ][ND] Drd (13.46)
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To simplify the notation from here on, the subscript c is dropped and any
parameter without a subscript is implied to be a chief orbit parameter. Taking
the first variation of [ND] and rd about the chief satellite motion leads to the
first-order approximations

[ND] ≈ [NC] + [δNC] (13.47)

rd ≈ r + δr (13.48)

Eq. (13.46) is then expanded to yield

Crd = ([I3×3] + [CN ][δNC])





r + δr
0
0



 (13.49)

Dropping second-order terms, the deputy position vector is written as

Crd =





r + δr
0
0



+ r [CN ]





δNC11

δNC21

δNC31



 (13.50)

with the matrix components δNCi1 given by

δNC11 = NC12 δθ −NC21 δΩ + NC31 sinΩ δi (13.51)

δNC21 = NC22 δθ + NC11 δΩ −NC31 cosΩ δi (13.52)

δNC31 = NC32 δθ + sin θ cos i δi (13.53)

Substituting Eqs. (13.51) - (13.53) into Eq. (13.50), the deputy position vector
is written in terms of orbit element differences as

Crd =





r + δr
0
0



+r





0
δθ + δΩ cos i

− cos θ sin iδΩ+ sin θδi



 (13.54)

To be able to write Eq. (13.54) in terms of the desired orbit elements and their
differences, the orbit radius r must be expressed in terms of the elements given
in Eq. (13.41).

r =
a(1 − q21 − q22)

1 + q1 cos θ + q2 sin θ
(13.55)

Thus, the variation of r is expressed as

δr =
r

a
δa+

Vr
Vt
r δθ − r

p
(2aq1 + r cos θ)δq1 −

r

p
(2aq2 + r sin θ)δq2 (13.56)

where the chief radial and transverse velocity components Vr and Vt are defined
as

Vr = ṙ =
h

p
(q1 sin θ − q2 cos θ) (13.57)

Vt = rθ̇ =
h

p
(1 + q1 cos θ + q2 sin θ) (13.58)
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with h being the chief orbit momentum magnitude and p being the semilatus
rectum. Comparing the chief Hill frame components of the deputy position
vector descriptions in Eqs. (13.44) and (13.54), the local Cartesian Hill frame
coordinates x, y and z are expressed in terms of the orbit element differences
as5, 6

x = δr (13.59a)

y = r(δθ + cos i δΩ) (13.59b)

z = r(sin θ δi− cos θ sin i δΩ) (13.59c)

At this point half of the desired mappings between orbit element differences
and the corresponding LVLH Cartesian coordinates have been developed. To
derive the linear relationship between the orbit element differences and the
Cartesian coordinate rates (ẋ, ẏ, ż), a similar approach as has been used to
derive Eqs. (13.59a) through (13.59c) could be used. In Reference 7, the deputy
velocity vector is expressed in both the chief and deputy frame. The desired
Cartesian coordinate rates are then extracted by comparing the two algebraic
expressions.

However, it is also possible to obtain the Cartesian coordinate rate ex-
pressions in terms of orbit element differences by differentiating Eqs. (13.59a)
through (13.59c) directly with respect to time. The only time-varying quanti-
ties in these three expressions are the chief true latitude θ and the difference
between deputy and chief latitude δθ. Only the latter quantity needs special
consideration. Using the conservation of angular momentum h, we express the
true latitude rate θ̇ as

θ̇ =
h

r2
(13.60)

The variation of Eq. (13.60) yields

δθ̇ =
δh

r2
− 2

h

r3
δr (13.61)

Using the angular momentum expression h =
√
µp, the δh variation is expressed

as

δh =
h

2p
δp (13.62)

where δp is given by

δp =
p

a
δa− 2a(q1δq1 + q2δq2) (13.63)

Thus the desired variation in the true latitude rate is expressed as

δθ̇ =
h

r2

(
δp

2p
− 2

δr

r

)

(13.64)
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After differentiating Eqs. (13.59a)-(13.59c) and making use of Eq. (13.64),
the Cartesian coordinate rates are expressed in terms of orbit element differences
as5, 6

ẋ = −Vr
2a
δa+ (

1

r
− 1

p
)hδθ

+ (Vraq1 + h sin θ)
δq1
p

+ (Vraq2 − h cos θ)
δq2
p

(13.65a)

ẏ = −3Vt
2a

δa− Vrδθ + (3Vtaq1 + 2h cos θ)
δq1
p

+ (3Vtaq2 + 2h sin θ)
δq2
p

+ Vr cos i δΩ

(13.65b)

ż = (Vt cos θ + Vr sin θ)δi+ (Vt sin θ − Vr cos θ) sin iδΩ (13.65c)

Combined, Eqs. (13.59)and (13.65) define the linear mapping [A(ec)] from
δe to X relative orbit states. The inverse of the matrix [A(e)] is developed in an
analogous manner.6 To simplify the expressions, the following non-dimensional
parameters are introduced

α = a/r (13.66)

ν = Vr/Vt (13.67)

ρ = r/p (13.68)

κ1 = α

(
1

ρ
− 1

)

(13.69)

κ2 = αν2 1

ρ
(13.70)

The non-zero matrix elements of [A(ec)]
−1 are given by:

A−1
11 = 2α

(

2 + 3κ1 + 2κ2

)

(13.71a)

A−1
12 = −2αν

(

1 + 2κ1 + κ2

)

(13.71b)

A−1
14 =

2α2νp

Vt
(13.71c)

A−1
15 =

2a

Vt

(

1 + 2κ1 + κ2

)

(13.71d)

A−1
22 =

1

R
(13.71e)

A−1
23 =

cot i

R
(cos θ + ν sin θ) (13.71f)

A−1
26 = − sin θ cot i

Vt
(13.71g)

A−1
33 =

sin θ − ν cos θ

R
(13.71h)
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A−1
36 =

cos θ

Vt
(13.71i)

A−1
41 =

ρ

R
(3 cos θ + 2ν sin θ) (13.71j)

A−1
42 = − 1

R

(

ρν2 sin θ + q1 sin 2θ − q2 cos 2θ
)

(13.71k)

A−1
43 = −q2 cot i

R
(cos θ + ν sin θ) (13.71l)

A−1
44 =

ρ sin θ

Vt
(13.71m)

A−1
45 =

ρ

Vt
(2 cos θ + ν sin θ) (13.71n)

A−1
46 =

q2 cot i sin θ

Vt
(13.71o)

A−1
51 =

ρ

R
(3 sin θ − 2ν cos θ) (13.71p)

A−1
52 =

1

R

(

ρν2 cos θ + q2 sin 2θ + q1 cos 2θ
)

(13.71q)

A−1
53 =

q1 cot i

R
(cos θ + ν sin θ) (13.71r)

A−1
54 = −ρ cos θ

Vt
(13.71s)

A−1
55 =

ρ

Vt
(2 sin θ − ν cos θ) (13.71t)

A−1
56 = −q1 cot i sin θ

Vt
(13.71u)

A−1
63 = −cos θ + ν sin θ

R sin i
(13.71v)

A−1
66 =

sin θ

Vt sin i
(13.71w)

Similarly as was done with the relative equations of motion in terms of Hill
frame Cartesian coordinates, it is possible to express the linear mapping [A(ec)]
in terms of the non-dimensional coordinates (u, v, w) defined in Eq. (13.20).
Often this non-dimensional form provides for more convenient algebraic ex-
pressions.5, 8, 9 Dividing Eq. (13.59) by the orbit radius r, the non-dimensional
relative orbit coordinates (u, v, w) are expressed as:

u =
x

r
=
δa

a
+ ν δθ − (2αq1 + cos θ)ρδq1

− (2αq2 + sin θ)ρδq2

(13.72a)

v =
y

r
= δθ + cos i δΩ (13.72b)

w =
z

r
= sin θ δi− cos θ sin i δΩ (13.72c)

Instead of differentiating (u, v, w) with respect to time, we choose to use the true
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latitude angle θ as the time dependent variable. Let a prime symbol indicate
a derivative with respect to θ. To differentiate the expressions in Eq. (13.72),
only the δθ terms must be given special consideration. Note that

∂(δθ)

∂θ

dθ

dt
= δθ′θ̇ = δθ̇ (13.73)

Using Eq. (13.64), the partial derivative of δθ with respect to the true latitude
is given by:

δθ′ =
δp

2p
− 2u (13.74)

Taking the partial derivative of Eqs. (13.72a)-(13.72c) while making use of
Eq. (13.74) yields the following non-dimensional rates with respect to true lati-
tude.

u′ = −3

2
ν
δa

a
+
(
ρ(q1 cos θ + q2 sin θ) − ν2

)
δθ

+ (3ναq1 + sin θ + ν cos θ) ρ δq1

+ (3ναq2 + cos θ − ν sin θ) ρ δq2

(13.75a)

v′ = −3

2

δa

a
− 2νδθ + (2 cos θ + 3αq1) ρ δq1

+ (2 sin θ + 3αq2) ρ δq2

(13.75b)

w′ = cos θδi+ sin θ sin iδΩ (13.75c)

Note that these non-dimensional rate expressions are not necessarily simpler
than their their dimensional counterparts. To map these rates with respect to
true latitude into the corresponding dimensional (x, y, z) time rates, the follow-
ing equations are used.

ẋ = Vtu
′ + Vru (13.76a)

ẏ = Vtv
′ + Vrv (13.76b)

ż = Vtw
′ + Vrw (13.76c)

13.3.2 Bounded Relative Motion Constraint

To find what conditions the orbit element differences must satisfy for the relative
orbit to remain bounded, let us examine the orbit period of the Keplerian two-
body problem. A bounded relative orbit is one that repeats itself after each
chief orbit. The orbit period P is given in Eq. (8.68) as

P = 2π

√

a3

µ
(13.77)

If two satellite have different orbit periods, then they will drift apart and the
relative orbit is considered to be unbounded. Since P only depends on the
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semi-major axis a, two satellites will have the same orbit periods if

δa = 0 (13.78)

is satisfied. The other five orbit element differences shown in Eq. (13.39) only
define the relative orbit geometry, but will not cause the relative orbit to drift
apart. Thus, while the Hill frame specialized bounded relative orbit constraint
is ẏ0 + 2nx0 = 0, the orbit element difference equivalent constraint is simply
δa = 0. However, while the Hill frame constraint is only valid assuming that
the relative orbit size is small compared to the chief orbit radius and that the
chief orbit is circular, the orbit element constraint is valid for any size relative
orbit and any type of chief orbit eccentricity.

If we do assume that the relative orbit radius is small compared to the chief
orbit radius, then we can use the linear mapping δe = [A(ec)]

−1X to determine
the general bounded relative orbit constraint for eccentric chief orbits. Using
Eqs. (13.71a) - (13.71d), the bounded relative orbit constraint in Eq. (13.78) is
written as

δa = 0 = 2α(2 + 3κ1 + 2κ2)x(t) + 2αν(1 − 2κ1 + κ2)y(t)

+
2α2νp

Vt
ẋ(t) +

2a

Vt
(1 + 2κ1 + κ2)ẏ(t) (13.79)

Note that Hill frame coordinates must satisfy this constraint at all times for the
relative orbit to be bounded (i.e. all orbits have the same period). This general
constraint can be further simplified by expressing it at the initial time, where t0
is defined as the time where the true anomaly f is equal to zero and the satellite
is at the orbit periapses. Note that the orbit radius is now given by

r(t0) = rp = a(1 − e) (13.80)

Further, the radial velocity Vr is given by

Vr(t0) = ṙ(t0) =
h

p
(q1 sinω − q2 cosω) = 0 (13.81)

Thus, using Eqs. (13.67) and (13.70) we find that ν = 0 and κ2 = 0. The
bounded relative orbit constraint equation is now written specifically for the
initial time as

0 = 2
a

rp

(

2 + 3
a

rp

(
p

rp
− 1

))

x0 + 2
a

Vt(t0)

(

1 + 2
a

rp

(
p

rp
− 1

))

ẏ0 (13.82)

Since Vt(t0) = rpθ̇p and making use of Eq. (13.80), this constraint is further
reduced to the simpler form

(2 + e)x0 +
1

θ̇p
(1 + e)ẏ0 = 0 (13.83)
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Expressing the true latitude rate θ̇ at perigee as

θ̇p =
h

r2p
=

√
µp

a2(1 − e)2
= n

√

1 + e

(1 − e)3
(13.84)

the constraint is written in its final form as10

ẏ0
x0

=
−n(2 + e)

√

(1 + e)(1 − e)3
(13.85)

Let us linearize this constraint about a small eccentricity. In this case terms
which are linear in e are retained and higher order terms in e are dropped.
Since we are already beginning with a linear mapping between orbit element
difference and Cartesian Hill frame coordinates where terms of order ρ/r are
dropped, this implies that e > ρ/r and higher order terms of e are less than or
equal to ρ/r. The bounded relative motion constraint on the initial Cartesian
coordinates is then given by

ẏ0 + (2 + 3e)nx0 = 0 (13.86)

The find the initial Cartesian coordinates constraint for bounded relative motion
at the chief orbit apoapses, we set r(t0) = ra = a(1 + e) and follow the same
steps. The resulting constraint for chief orbits with a general eccentricity is

ẏ0
x0

=
−n(2 − e)

√

(1 − e)(1 + e)3
(13.87)

while the constraint for chief orbits with a small eccentricity is given by

ẏ0 + (2 − 3e)nx0 = 0 (13.88)

Note that if the chief orbit is circular and e = 0, then this constraint reduces
to the familiar form of ẏ0 + 2nx0 = 0 found in Eq. (13.34). The more general
bounded relative orbit constraint in Eq. (13.85) is valid for eccentric chief orbits.
However, its form requires that t0 be defined to be at the orbit perigee point.

13.4 Relative Motion State Transition Matrix

The state transition matrix [Φ(t, t0)] is defined in Eq. (11.195) as the sensitivity
of the current state vector X(t) with respect to the state vector X(t0) at the
initial time.

[ΦX(t, t0)] =

[
∂X(t)

∂X(t0)

]

(13.89)

This matrix has many applications in orbital control theory and dynamical
analysis of relative orbit motion. Let X(t) be the relative orbit position vector
in Hill frame components of the deputy satellite relative to the chief position as
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defined in Eq. (13.36). We are allowing here the chief orbit to be either circular
or elliptical. However, no disturbance are considered and gravitational field
is idealized as that of a spherical Earth. For the nonlinear dynamical system
describing the relative motion of the satellites, the position vector at time t can
be approximated using the state transition matrix [ΦX(t, t0)] through

X(t) ≈ [ΦX(t, t0)]X(t0) (13.90)

If the dynamical relative equations of motion were linear, then this would
be a precise mapping between initial and current state vectors as shown in
Eq. (11.172).

One brute force method to generate this state transition matrix [ΦX(t, t0)]
would be to solve the relative equations of motion analytically for X(t) and the
take the required partial derivatives. For a circular chief orbit, the linearized
equations of motion have been solved using the CW equations. The result is
shown in Eq. (13.33). For general elliptical orbits, finding the analytical solution
of the relative equations of motion is substantially more complicated.11

We will pursue a simpler solution making direct use of the linear mapping
between the Hill frame relative Cartesian position vector and the corresponding
orbit element differences shown in Eq. (13.40). In particular, at times t and t0
we write express the relative orbit position vector as

X(t) = [A(e(t))]δe(t) (13.91)

X(t0) = [A(e(t0))]δe(t0) (13.92)

Note that unless stated otherwise, all inertial orbit elements are assumed to be
chief orbit elements. The state transition matrix of the orbit element difference
vector δe(t) is defined analogously to [ΦX(t, t0)] as

[Φδe(t, t0)] =

[
∂(δe(t))

∂(δe(t0)

]

(13.93)

Let the orbit element difference vector be defined using Eq. (13.41) as

δe = (δa, δθ, δi, δq1, δq2, δΩ)T (13.94)

where θ = ω + f is the true latitude and q1 and q2 are defined in Eqs. (13.42)
and (13.43). For the Keplerian motion assumed in this section, note that all
these orbit element difference will remain constant except for the true anomaly
difference δθ. It does evolve nonlinearly in time for general elliptical chief or-
bits. However, for the remaining orbit element differences, the sensitivity at
time t with respect to this state at time t0 will simply be 1. This will provide
a [Φδe(t, t0)] matrix which has a very simple structure. If perturbations are
included, then the computation of [Φδe(t, t0)] becomes more involved. See Ref-
erences 6 and 12 for a detailed study of including J2 perturbations and mean
orbit elements into the state transition matrix calculations. Given the state
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transition matrix [Φδe(t, t0)], the orbit element difference vector at time t is be
approximated as

δe(t) ≈ [Φδe(t, t0)]δe(t0) (13.95)

To compute the desired state transition matrix [ΦX(t, t0)] in terms of [A(e)]
and [Φδe(t, t0)], we substitute Eqs. (13.91) and (13.92) to find

[A(t)]δe(t) = [ΦX(t, t0)][A(t0)]δe(t0) (13.96)

Substituting Eq. (13.95) into the above equation and solving for [ΦX(t, t0)]
yields

[ΦX(t, t0)] = [A(t)][Φδe(t, t0)][A(t0)]
−1 (13.97)

The non-zero components of both [A(t)] and [A(t0)] were developed earlier.
Note that this [ΦX(t, t0)] computation is valid for both circular and non-circular
chief orbits. The assumption made here is that the orbit perturbations about
the Keplerian motion are negligible.

The only non-trivial term of the [Φδe(t, t0)] matrix computation is the true
latitude difference

δθ = δω + δf (13.98)

Since the argument of perigee difference δω will not change with time, we can
state that

δθ(t) = δω + δf(t) (13.99)

δθ(t0) = δω + δf(t0) (13.100)

and thus focus our treatment on the search of δf(t) as a function of δe(t0).
Kepler’s equation is given by

M(t) = M0 +

√
µ

a3
(t− t0) (13.101)

For notational convenience, a subscript “0” will indicated that a state is taken
at time t0. No subscript means the state is taken at time t. Taking the first
variation of Kepler’s equation, we are able to relate differences in mean anomaly
at times t and t0 through

δM = δM0 −
3

2

δa

a
(M −M0) (13.102)

To express the mean anomaly differences in terms of other anomaly differences,
we make use of the mean anomaly definition

M = E − e sinE (13.103)
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and take its first variation to yield

δM =
∂M

∂E
δE +

∂M

∂e
δe

= (1 − e cosE)δE − sinEδe
(13.104)

Using the mapping between eccentric anomaly E and true anomaly f

tan
f

2
=

√

1 + e

1 − e
tan

E

2
(13.105)

and taken its first variation, differences in E are then expressed as differences
in f and e through

δE =
η

1 + e cos f
δf − sin f

1 + e cosf

δe

η
(13.106)

with η =
√

1 − e2. Substituting Eq. (13.106) into Eq. (13.104) and solving for
δM using the orbit identities in Appendix E yields

δM =
η

(1 + e cos f)2
(
η2δf − sin f(2 + e cosf)δe

)
(13.107)

Analogously, the initial mean anomaly difference δM0 is expressed by taking
advantage of the fact that only the anomalies will differ in time through

δM0 =
η

(1 + e cosf0)2
(
η2δf0 − sin f0(2 + e cos f0)δe

)
(13.108)

Substituting Eqs. (13.107) and (13.108) into Eq. (13.102) and solving for δf
yields9

δf = −3

2

aη

r2
(M −M0)

︸ ︷︷ ︸

A

δa+

(
r

r0

)2

︸ ︷︷ ︸

B

δf0

+

(

sin f(2 + e cos f) − sin f0(2 + e cosf0)

(
r

r0

)2
)

1

η2

︸ ︷︷ ︸

C

δe (13.109)

Let us write the true anomaly differences in the following compact form

δf = Aδa+Bδf0 + Cδe (13.110)

In terms of the orbit elements used in Eq. (13.41), the scalar parameters are
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defined as

A = −3

2

aη

r2
(M −M0) (13.111)

B =

(
r

r0

)2

(13.112)

C =
1

η2
√

q21 + q22

(

(sin θq1 − cos θq2)(2 + q1 cos θ + q2 sin θ)

− (sin θ0q1 − cos θ0q2)(2 + q1 cos θ0 + q2 sin θ0)

(
r

r0

)2 )
(13.113)

with the orbit radius r being defined in Eq. (13.55) and η =
√

1 − q21 − q22 .
Using the definitions of q1 and q2 in Eq. (13.42) and (13.43), the differences in
eccentricity and argument of perigee as expressed as

δe =
1

√

q21 + q22
(q1δq1 + q2δq2) (13.114)

δω =
1

q21 + q22
(q1δq2 − q2δq1) (13.115)

Substituting Eqs. (13.99), (13.100), (13.114) and (13.115) into Eq. (13.110), we
are able to express true latitude differences at time t in terms of initial orbit
element differences through

δθ = Aδa+Bδθ0 +

(

C
q1

√

q21 + q22
− (1 −B)

q2
q21 + q22

)

︸ ︷︷ ︸

C1

δq1

+

(

C
q2

√

q21 + q22
+ (1 −B)

q1
q21 + q22

)

︸ ︷︷ ︸

C2

δq2

(13.116)

Since all orbit element differences except for the anomalies and latitude angles
are the same at any time, we are now able to write the orbit element difference
state transition matrix as

[Φδe(t, t0)] =











1 0 0 0 0 0
A B 0 C1 C2 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1











(13.117)

Using this matrix in Eq. (13.97), we are able to directly compute the state
transition matrix [ΦX(t, t0)] of the rotating Hill frame relative orbit position
vector X at any time. The presented method could also be used to develop the
state transition matrix using other orbit elements in an analogous manner.
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13.5 Linearized Relative Orbit Motion

Note that Eq. 13.59 provides us a direct linear mapping between orbit element
differences δe and the Hill frame Cartesian coordinate vector ρ. The only lin-
earizing assumption that was made is that the relative orbit radius ρ is small
compared to the inertial chief orbit radius r. Since this mapping must hold
at any instance of time, however, these linearized equations also approximate
a solution for the relative orbit motion ρ in terms of the true anomaly angle
f . To map between time and the true anomaly we must solve Kepler’s equa-
tion. However, to be able to describe the relative orbit geometry in terms of
the Hill frame Cartesian coordinates, the solution in terms of the true anomaly
f is preferred. The reason for this is that by sweeping f through a complete
revolution, the (x, y, z) coordinates found through these equations will yield
the linearized relative orbit approximation that results due to a prescribed set
of constant orbit element differences. Note that no differential equations are
solved here to determine the relative orbit motion, and that the dominant rela-
tive orbit radial (x-direction), along-track (y-direction) and out-of-plane motion
(z-direction) can be trivially extracted.

13.5.1 General Elliptic Orbits

However, when describing a relative orbit through orbit element differences, it
is not convenient to describe the anomaly difference through δθ or δf . For el-
liptic chief orbits, the difference in true anomaly between two orbits will vary
with throughout the orbit. To avoid this issue, the desired anomaly difference
between two orbits is typically expressed in terms of a mean anomaly differ-
ence δM . This anomaly difference will remain constant, assuming unperturbed
Keplerian motion, even if the chief orbit is elliptic. Using Eq. (13.107), differ-
ences in true anomaly are written in terms of differences in mean anomaly and
differences in eccentricity as

δf =
(1 + e cosf)2

η3
δM +

sin f

η2
(2 + e cosf)δe (13.118)

Let us define the orbit element difference vector δe to consist of

δe = (a, δM, δi, δω, δe, δΩ)T (13.119)

Note that all these orbit element differences are constants for Keplerian two-
body motion. Further, while using q1 and q2 instead of e and ω allows us to
avoid singularity issues for near-circular orbits, for the following relative orbit
geometry discussion such singularities do not appear. In fact, describing the
relative orbit path using δe and δω instead of δq1 and δq2 yields a simpler and
more elegant result. Using Eqs. (13.42) and (13.43), the differences in the qi
parameters are expressed as

δq1 = cosωδe− e sinωδω (13.120a)

δq2 = sinωδe+ e cosωδω (13.120b)



SECTION 13.5 LINEARIZED RELATIVE ORBIT MOTION 503

After substituting Eqs. (13.118) and (13.120) into the linear mapping in Eq. (13.59)
and simplifying the result, we are able to express the relative position coordi-
nates (x, y, z) in terms of the orbit element differences in Eq. (13.119) through

x(f) ≈ r

a
δa+

ae sin f

η
δM − a cos fδe (13.121a)

y(f) ≈ r

η3
(1 + e cosf)2δM + rδω +

r sin f

η2
(2 + e cosf)δe+ r cos iδΩ

(13.121b)

z(f) ≈ r(sin θδi− cos θ sin iδΩ) (13.121c)

Note that with this linearized mapping the difference in the argument of perigee
δω does not appear in the x(f) expression. Further, these equations are valid
for both circular and elliptic chief orbits. Only the δM and δe terms contribute
periodic terms to the radial x solution. Due to the dependence of r on the
true anomaly f , all orbit element difference terms in the along-track y motion
contribute both static offsets as well as periodic terms. For the out-of-plane z
motion both the δi and δΩ terms control the out-of-plane oscillations.

However, note that Eq. (13.121) does not explicitly contain any secular terms
as is the case with the general solution to the CW equations in Eq. (13.33).
For the classical two-body orbital motion, the only condition on two inertial
orbits to have a closed relative orbit is that their orbit energies must be equal
and thus δa = 0. This constraint is valid for both circular and elliptical chief
orbits. Also, note that this constraint is the precise requirement of the Keplerian
motion for bounded relative orbit paths; no linearizations have been made here.
For Keplerian two-body motion, all the orbit element differences will naturally
remain constant except for the mean anomaly difference. If δa is not zero
between two orbits, then these orbits will drift apart due to having different orbit
periods. In this case δM will not remain a constant but grow larger with time.
The linearization in Eq. (13.121) can still be used to predict the relative orbit
motion, but only until the relative orbit radius ρ is no longer small compared
to the inertial chief orbit radius r. If perturbations such as the J2 gravitational
perturbations are included, then the appropriate orbit element differences must
be treated as slowly time varying. Thus the potential secular drift of a relative
orbit is hidden within the behavior of the orbit element differences themselves.

By dividing the dimensional (x, y, z) expressions in Eq. (13.121) by the chief
orbit radius r and making use of Eq. (13.55), we obtain the non-dimensional
relative orbit coordinates (u, v, w).

u(f) ≈ δa

a
+ (1 + e cosf)

e sin f

η3
δM − (1 + e cosf)

η2
cos fδe (13.122a)

v(f) ≈ (1 + e cos f)2
δM

η3
+ δω +

sin f

η2
(2 + e cosf)δe+ cos iδΩ (13.122b)

w(f) ≈ sin θδi− cos θ sin iδΩ (13.122c)
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Since (y, z) << r, the non-dimensional coordinates (v, w) are the angular deputy
satellite relative orbit position with respect to the chief orbit radius axis.

However, the present form of Eq. (13.122) is not convenient to determine
the overall non-dimensional shape of the relative orbit. Reason is that there are
several sin() and cos() functions being added here. Using the identities

A sin t+B cos t =
√

A2 +B2 cos

(

t− tan−1

(
A

B

))

= −
√

A2 +B2 sin

(

t− tan−1

(
B

−A

)) (13.123)

as well as standard trigonometric identities, we are able to rewrite the linearized
non-dimensional relative orbit motion as

u(f) ≈ δa

a
+

1

η2

√

e2δM2

η2
+ δe2 cos(f − fu)

− eδe

2η2
+

e

2η2

√

e2δM2

η2
+ δe2 cos(2f − fu)

(13.124a)

v(f) ≈
((

1 +
e2

2

)
δM

η3
+ δω + cos iδΩ

)

+
2

η2

√

e2δM2

η2
+ δe2 cos(f − fv)

+
e

2η2

√

e2δM2

η2
+ δe2 cos(2f − fv)

(13.124b)

w(f) ≈
√

δi2 + sin2 iδΩ2 cos (θ − θw) (13.124c)

with the phase angles fu, fv and θw being defined as

fu = tan−1

(
eδM

−ηδe

)

(13.125a)

fv = tan−1

(
ηδe

eδM

)

= fu −
π

2
(13.125b)

θw = tan−1

(
δi

− sin i δΩ

)

(13.125c)

At these phase angles, the trigonometric terms will reach either their minimum
or maximum value. Note that 180 degrees can be added or subtracted from
these angles to yield the second extrema point of the trigonometric functions.
To further reduce the expression in Eq. (13.124), let us introduce the small
states δu and δw:

δu =

√

e2δM2

η2
+ δe2 (13.126a)

δw =
√

δi2 + sin2 iδΩ2 (13.126b)
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Using these δu and δw definitions as well as Eq. (13.125b), the linearized relative
orbit motion is described through

u(f) ≈ r

a
δa− eδe

2η2
+
δu
η2

(

cos(f − fu) +
e

2
cos(2f − fu)

)

(13.127a)

v(f) ≈
((

1 +
e2

2

)
δM

η3
+ δω + cos iδΩ

)

− δu
η2

(

2 sin(f − fu) +
e

2
sin(2f − fu)

) (13.127b)

w(f) ≈ δw cos (θ − θw) (13.127c)

Note that the cos(2f) and sin(2f) terms are multiplied by the eccentricity e.
Only if the chief orbit is very eccentric will these terms have a significant con-
tribution to the overall relative orbit dimension. For the more typical case of
having a chief orbit with a small eccentricity e, these terms only provide small
perturbations to the dominant sin(f) and cos(f) terms. Using Eq. (13.127), it
is trivial to determine the maximum radial, along-track and out-of-plane dimen-
sion of a relative orbit provided that the relative orbit geometry is prescribed
through the set of orbit element differences {δa, δe, δi, δΩ, δω, δM}. Note that
this linearized relative orbit motion is valid for both circular and elliptic chief
reference orbits. The only linearizing assumption made so far is that the rel-
ative orbit radius is small compared to the planet centric inertial orbit radius.
However, note that we are only estimating the non-dimensional relative orbit
shape. To obtain the true radial, along-track and out-of-plane motions, we need
to multiply (u, v, w) by the chief orbit radius r. Since r is time dependent
for an elliptic chief orbit, the points of maximum angular separation between
deputy and chief satellites may not correspond to the point of maximum phys-
ical distance. To plot the dimensional linearized relative orbit motion, we use
Eq. (13.121) instead. However, due to the ratio’s of sin() and cos() terms, it is
not trivial to obtain the maximum physical dimensions of the relative orbit.

Let us take a closer look at the out-of-plane motion. The true latitude angle
θw, at which the maximum angular out-of-plane motion will occur, is given by
Eq. (13.125c). As expected, if only a δΩ is prescribed, then the maximum w
motion occurs during the equator crossing at θ = 0 or 180 degrees. If only a δi
is prescribed, then the maximum w motion occurs at θ = ±90 degrees.

The maximum angular out-of-plane motion is given by the angle δw as shown
in Figure 13.5. This angle δw is the tilt angle of the deputy orbit plane relative
to the chief orbit plane. As such, it is the angle between the angular momentum
vector of the chief orbit and the angular momentum vector of the deputy orbit.
To prove that δw is indeed this angle, let us make use of the spherical law of
cosines for angles. Using the spherical trigonometric law of cosines, we are able
to relate the angles δΩ, i, δi and δw through:13

cos δw = cos i cos(i+δi) + sin i sin(i+δi) cosδΩ (13.128)

Assuming that δΩ, δi and δw are small angles, we approximate sinx ≈ x and



506 SPACECRAFT FORMATION FLYING CHAPTER 13

Ω
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Figure 13.5: Illustration of Orbit Plane Orientation Difference between
Chief and Deputy Satellites

cosx ≈ 1 − x2/2 to solve for δw.

δw =
√

δi2 + sin2 iδΩ2 (13.129)

Using the angle δw, the out-of-plane motion u in Eq. (13.127c) is written in the
compact form shown.14, 15

13.5.2 Chief Orbits with Small Eccentricity

In this section we assume that the chief orbit eccentricity e is a small quantity.
In particular, we assume that e is small but greater than ρ/r, while powers of
e are smaller than ρ/r. In this case we only retain terms which are linear in e
and drop higher order terms of e. The orbit radius r is now approximated as

r =
aη2

1 + e cosf
≈ a(1 − e cos f) (13.130)

while η2 ≈ 1. The linearized dimensional relative orbit motion in Eq. (13.121)
is written for the small eccentricity case as:

x(f) ≈ (1 − e cosf)δa+
ae sin f

η
δM − a cos fδe (13.131a)

y(f) ≈ a

η
(1 + e cos f)δM + a(1 − e cosf)δω

+ a sin f(2 − e cosf)δe+ a(1 − e cos f) cos iδΩ
(13.131b)

z(f) ≈ a(1 − e cosf)(sin θδi− cos θ sin iδΩ) (13.131c)
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Making use of the trigonometric identity in Eq. (13.123), the (x, y, z) motion is
written as

x(f) ≈ δa+ aδx cos(f − fx) (13.132a)

y(f) ≈ a

(
δM

η
+ δω + cos iδΩ

)

− aδy sin(f − fy) −
ae

2
sin(2f)δe (13.132b)

z(f) ≈ aδz cos(θ − θz) −
ae

2
δz cos(2f − fz)

− ae

2
(sinωδi− cosω sin iδΩ)

(13.132c)

with the small states δx, δy and δz defined as

δx =

√

e2δM2

η2
+

(

δe+
δa

a

)2

(13.133a)

δy =

√

4δe2 + e2
(
δM

η
− δω − cos iδΩ

)2

(13.133b)

δz =
√

δi2 + sin2 iδΩ2 (13.133c)

and the phase angles fx, fy, θz and fz defined as

fx = tan−1

(

eδM

−η
(
δe+ δa

a

)

)

(13.134a)

fy = tan−1




e
(
δM
η − δω − cos iδΩ

)

−2δe



 (13.134b)

θz = tan−1

(
δi

− sin iδΩ

)

(13.134c)

fz = tan−1

(
cosωδi+ sinω sin iδΩ

sinωδi− cosω sin iδΩ

)

(13.134d)

Note that the orbital radial motion x(f) for the small eccentricity case is iden-
tical to the general orbit radial coordinate in Eq. (13.121a) if δa is zero. The
semi-major axis different must be zero for bounded relative motion if no pertur-
bations are present. With perturbations present, δa may be non-zero and the
orbit radial coordinate will then be different between the linearizing approxi-
mations. The estimated along-track motion y(f) and out-of-plane motion z(f)
will always be numerically different between the generally elliptic case and the
small eccentricity case.

The dimensional form of the relative orbit motion in Eq. (13.131) is conve-
nient to determine the amplitudes of the sinusoidal motion in either the along-
track, orbit radial or out-of-plane motion. Note that since e is considered small,
the double-orbit frequency terms sin(2f) are only a minor perturbation to the
dominant orbit frequency sinusoidal terms.
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13.5.3 Near-Circular Chief Orbit

If the chief orbit is circular or near-circular, then the linearized relative equations
of motion are given through the famous Clohessy-Wiltshire or CW equations.4

Assuming the bounded relative motion constraint ẏ0 + 2nx0 = 0 is satisfied,
then the differential CW equations can now be solved for the analytical solution
of the relative orbit motion shown in Eq. (13.33).

x(t) = A0 cos(nt+ α) (13.135a)

y(t) = −2A0 sin(nt+ α) + yoff (13.135b)

z(t) = B0 cos(nt+ β) (13.135c)

The integration constants A0, B0, α, β and yoff are determined through the
relative orbit initial conditions. These equations have been extensively used
to generate relative orbits if the chief orbit is circular. Let us now compare
the predicted (x, y, z) motion in terms of the true anomaly in Eq. (13.132) to
the CW solution in Eq. (13.33) if the chief orbit is assumed to be near-circular
(i.e. e < ρ/r). In this case terms containing the eccentricity e are dropped,
as compared to the small eccentricity case studied earlier where only higher
order terms of e were dropped. Assuming that all δe components are small
(i.e. the relative orbit radius is assumed to be small compared to the inertial
orbit radius), and letting e → 0, we find that r → a and η → 1. Further,
note that fx and fy approach 0. Using Eq. (13.132) the relative orbit motion
(x(f), y(f), z(f)) is expressed for the near-circular chief orbit special case as

x(f) ≈ δa− a cos fδe (13.136a)

y(f) ≈ a(δω + δM + cos iδΩ) + 2a sin fδe (13.136b)

z(f) ≈ a
√

δi2 + sin2 iδΩ2 cos (θ − θz) (13.136c)

Note that the maximum width of the oscillatory along-track motion y is given
by 2aδe. This result has been previously presented in References 15 and 16.
Comparing Eqs. (13.33) and (13.136) and noting that nt = f for this case, we
are able to establish a direct relationship between the CW constants and the
orbit element differences.

A0 = −aδe (13.137a)

B0 = a
√

δi2 + sin2 iδΩ2 (13.137b)

α = 0 (13.137c)

β = ω − θz (13.137d)

yoff = a(δω + δM + cos iδΩ) (13.137e)

Recall that Eqs. (13.33) require that the bounded relative motion constraint is
satisfied. Thus the δa term is set to zero when comparing the two forms of the
relation orbit motion expression.
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Example 13.2: The following numerical simulations verify that the relative
motion approximation in Eqs. (13.121), (13.132) and (13.136) do indeed
predict the spacecraft formation geometry. These simulations also illustrate
the accuracy at which these simplified linearized solutions are valid. Let the
chief orbit be given by the orbit elements shown in Table 13.1.

Table 13.1: Chief Orbit Elements

Orbit Elements Value Units
a 7555 km
e 0.03 or 0.13
i 48.0 deg
Ω 20.0 deg
ω 10.0 deg
M0 0.0 deg

The relative orbits are studied for two different chief eccentricities. For the
relative orbits studied, the ratio ρ/r is about 0.003. The smaller of the two
eccentricities considered is already an order of magnitude larger than this,
while the second eccentricities is even larger again. The numerical simulations
show that the small eccentricity assumption (i.e. retaining terms in e but
dropping higher order terms in e) will still yield a reasonable relative orbit
prediction for e = 0.03, even though it is larger than the small term ρ/r. The
orbit element differences which define the relative orbit are given in Table 13.2.
Since these simulations assume a two-body Keplerian motion of the satellites,
the semi-major axis difference δa must be zero to achieve a bounded relative
motion.

Table 13.2: Orbit Element Differences Defining the Spacecraft Forma-
tion Geometry

Orbit Elements Value Units
δa 0 km
δe 0.00095316
δi 0.0060 deg
δΩ 0.100 deg
δω 0.100 deg
δM0 -0.100 deg

The following figures compare the relative orbit motion for four different
cases. Case 1 is the relative motion that will result using the true nonlinear
equations of motion. Case 2 uses the dimensional linearized analytical relative
orbit solution in Eq. (13.121). The only assumption that has been made here
is that ratio between the relative orbit radius ρ and the inertial chief orbit
radius r is small and terms involving ρ/r have been dropped. Case 3 assumes
that the chief orbit eccentricity is small, but not near zero. As such, higher
order terms in e are dropped, while terms which depend linearly on e are
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Cases 1–4 with e = 0.03 and e = 0.13.
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kept. The relative orbit motion is described through Eq. (13.132). Case 4
assumes that the chief orbit is near-circular and that e is very close to zero.
Any terms involving the eccentricity e are dropped here to yield the classical
CW equations in Eq. (13.136). Case 4 is not included here to suggest that
a circular orbit assumption should be made when the chief orbit is clearly
eccentric. The circular chief orbit assumption case is included to provide a
relative comparison illustrating the extent of the eccentricity effect.

The resulting relative orbit motion is illustrated in Figure 13.6. Figures 13.6(i)
and 13.6(ii) show the three-dimensional relative orbits for cases 1 through 4
as seen by the rotating Hill reference frame. The relative orbit radii vary be-
tween 10 and 20 kilometers. When e = 0.03, note that the relative orbits for
cases 1–3 are virtually indistinguishable. Only the relative orbit prediction as-
suming a circular orbit (case 4) has a clearly visible distinct motion. Studying
Figure 13.6(ii) with e = 0.13, the case 2 relative orbit is still indistinguish-
able on this scale from the true relative motion in case 1. With this larger
eccentricity the relative motion predicted in case 3 (dropping higher order
terms in e) does show some visible departure from the true relative motion.
As expected, the circular chief orbit assumption (case 4) yields a very poor
prediction of the relative orbit motion.

In Figures 13.6(iii) and 13.6(iv) the RMS relative orbit errors are shown in
polar plots versus the chief orbit true anomaly. For the e = 0.03 simulations,
the relative orbit errors for case 2 lie between 20 and 40 meters. Since the
relative orbit radius is roughly 10 kilometers, this corresponds to a 0.2–0.4
percent relative motion error. The RMS relative motion error for case three is
only marginally worse. As was discussed earlier, dropping the higher order e
terms should begin to have a noticeably affect on the relative motion errors.
For the e = 0.13 simulations, the relative motion errors for case 2 lie between
50 and 100 meters (roughly 0.5–1.0 percent errors). However, dropping the
higher order e terms in case 3 has a very noticeable effect with the relative
motion errors growing as large as 500 meters (about 5.0 percent error).

13.6 J2-Invariant Relative Orbits

To motivate the discussion in this chapter, let us revisit one particular class of
spacecraft formations where the satellite constellation is composed to form a
rotating sparse aperture. These types of formations are typically considered in
remote sensing missions where each satellite is an individual element of a large,
virtual antenna formed by the formation. By sharing the individual measure-
ments, the resolution of the spacecraft cluster is potentially much higher then
the resolution of any individual craft. To minimize secular relative drift among
the spacecraft, these missions typically are comprised of identical spacecraft to
reduce the differential atmospheric drag. The spacecraft formation orbit will
decay due atmospheric drag. However, all satellites orbits will decay are nomi-
nally the same rate. Thus, the atmospheric drag has only a secondary effect on
the relative orbit geometry. The gravitational perturbations are typically the
dominant factor producing the secular drift in this case. Ignoring these pertur-
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bations leads to relative orbit designs which require more frequent corrections,
and thus use more fuel.

Adding the J2 perturbation to the classical Keplerian orbit motion causes
three types of changes in the osculating orbit elements, short period and long
period oscillations, and secular growth. The long period term is the period of
the apsidal rotation. Over a short time this looks like a secular growth of O(J 2

2 ).
The short period growth manifests itself as oscillations of the orbit elements, but
doesn’t cause the orbits to drift apart. The relative secular growth is the motion
that needs to be avoided for relative orbits to be J2 invariant. This growth is
best described through mean orbit elements rather than the osculating elements.
These orbit elements have the short and long period oscillations removed. A
direct mapping between the osculating (instantaneous) orbit element and the
mean (orbit averaged) orbit elements is provided by Brouwer in Reference 17.
A popular modification to make this algorithm more robust near zero eccen-
tricities and orbit inclinations was introduced by Lyddane in Reference 18. A
numerical algorithm providing a first order approximation to this osculating to
mean element mapping is provided in Appendix G. By studying the relative
motion through the use of mean orbit elements,19–21 we are able to ignore the
orbit period specific oscillations and address the secular drift directly. It is not
possible to set all of the individual orbit drifts equal to zero. However, instead
we choose to set the relative mean orbit element drifts to zero to avoid relative
secular growth.

The J2 perturbations cause secular drift in the mean longitude of the as-
cending node Ω, the mean argument of perigee ω and the mean anomaly M .
As shown in Eq. (11.87), the non-zero mean orbit element rates due to the J2

gravitational perturbation are given by:

dΩ

dt
= −3

2
J2n

(
req
p

)2

cos i (13.138a)

dω

dt
=

3

4
J2n

(
req
p

)2

(5 cos2 i− 1) (13.138b)

dM

dt
= n+

3

4
J2n

(
req
p

)2√

1 − e2(3 cos2 i− 1) (13.138c)

The magnitude of the secular drifts are determined by the semi-major axis a,
eccentricity e and the inclination angle i.22 If these quantities aren’t carefully
selected, then the relative drift rates will cause secular drift among the various
spacecraft in the formation.19

13.6.1 Ideal Constraints

For Keplerian motion (i.e. no gravitational perturbations present), only the
mean anomaly M is a time dependent orbit element. The rate at which M
grows is given by the mean orbit rate n. For the relative motion between to
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satellites to be bounded, the mean anomaly rates must be equal.

δṀ = Ṁd − Ṁc = nd − nc =

√
µ

a3
d

−
√

µ

a3
c

= 0 (13.139)

Since the mean anomaly rate only depends on a, the difference in mean anomaly
rates δṀ can also be approximated to first order as

δṀ ≈ ∂Ṁc

∂ac
δa = −3

2

√
µ

a5
c

δa = 0 (13.140)

This leads to the same result as is shown in Eq. (13.78) which states that δa = 0
must be true for the relative orbit to be bounded in a Keplerian system. Note
that here δa is defined as

δa = ad − ac (13.141)

We would like to expand this method of finding bounded relative orbit con-
straints to orbit which include the J2 gravitational perturbation effect. We
attack this problem by working in the mean element space such that the mean
orbit element drift rates shown in Eq. (13.138) are valid. For notational conve-
nience the overbar notation to denote a parameter as being a mean element is
dropped here. Unless stated otherwise, all shown orbit parameters are assumed
to be mean elements with the short and long period motion removed. The
following algebra is greatly simplified if we work with dimensionless variables.
Therefore distances will be measured in Earth radii req and time is normal-

ized by the mean motion neq =
√

µ/r3eq of a satellite at one Earth radius. Let

τ = tneq be the new time, then mean ascending node rate is written as

dΩ

dt
=
dΩ

dτ

dτ

dt
= Ω′ neq (13.142)

where the notation ()′ = d()/dτ is introduced. Using η =
√

1 − e2, the non-
dimensional ascending node rate can then be expressed as

Ω′ = −3

2
J2

√

r7eq
a7

cos i

η4
(13.143)

Let us define the non-dimensional semi-major axis measure L as

L =

√
a

req
(13.144)

This allows us to write the there non-dimensional mean orbit element rates as

Ω′ = −3

2
J2

cos i

L7η4
(13.145a)

ω′ =
3

4
J2

(5 cos2 i− 1)

L7η4
(13.145b)

M ′ =
1

L3
+

3

4
J2

(3 cos2 i− 1)

L7η3
(13.145c)
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Since the mean angle quantities M , ω and Ω do not directly contribute to
the secular growth caused by J2, their values can be chosen at will. However,
the values of L, η and i (and therefore implicitly a, e and i) must be carefully
chosen to match the secular drift rates shown in Eq. (13.145). To keep the
satellites from drifting apart over time, it would be desirable to match all three
rates (Ω′, ω′,M ′) between the various satellites in a given formation. However,
this can only be achieved by having the L, η and i being equal, which in return
severely restricts the possible relative orbits. Therefore we chose the bounded
relative orbit condition to define the relative average drift rate of the angle
between the satellite position vectors be zero. This results in

Ω′
d = Ω′

c (13.146)

θ′Md
= M ′

d + ω′
d = θ′Mc

(13.147)

where θM is the mean argument of latitude. Thus, the arguments of perigee and
the mean anomalies are allowed to drift apart. In fact, they end up drifting apart
at equal and opposite rates.19 Imposing equal latitude rates instead of forcing
equal argument of perigee and mean anomaly drift has little consequence on
the general spacecraft formation geometry if the eccentricity is small. For the
case of having a circular orbit (i.e. e = 0), then having the relative ω and M
drift apart has no consequence at all. However, for relative orbits with a larger
eccentricity, having the ω and M drift apart at equal and opposite rates causes
the relative orbit to “balloon” out and in again as the argument of perigees drift
apart from their nominal values. Combining Eqs. (13.145b) and (13.145c), the
mean latitude rate θ′M is expressed as

θ′M =
1

L3
+

3

4
J2

1

L7η4

[
η
(
3 cos2 i− 1

)
+
(
5 cos2 i− 1

)]
(13.148)

The drift rate θ′Md
of a neighboring orbit can be written as a series expansion

about the chief orbit element as

θ′Md
= θ′Mc

+
∂θ′Mc

∂L
δL+

∂θ′Mc

∂η
δη +

∂θ′Mc

∂i
δi+H.O.T. (13.149)

where we make use of the fact that θ′M = θ′M (L, η, i) only. Let the difference
in latitude rates be δθ′M , then a first order approximation of Eq. (13.149) is
written as

δθ′M = θ′Md
− θ′Mc

=
∂θ′Mc

∂L
δL+

∂θ′Mc

∂η
δη +

∂θ′Mc

∂i
δi (13.150)

Similarly, the difference in nodal rate Ω′ is expressed as

δΩ′ =
∂Ω′

c

∂L
δL+

∂Ω′
c

∂η
δη +

∂Ω′
c

∂i
δi (13.151)

For notational convenience, the sub-script “c” is dropped from here on. Unless
noted otherwise, all orbit parameters are assumed to be chief orbit parameters.
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To enforce equal drift rates θ′M and Ω′ between neighboring orbits, we must set
δθ′M and δΩ′ equal to zero in Eqs. (13.150) and (13.151). Taking the appropriate
partial derivatives of Eq. (13.61) and substituting them into Eq. (13.150), the
condition that enforces equal latitude rates is rewritten as:

− 3

L4
δL+ J2

21

4L8η4

[
η(1 − 3 cos2 i) + (1 − 5 cos2 i)

]
δL

+ J2
3

4L7η5

[
3η(1 − 3 cos2 i) + 4(1 − 5 cos2 i)

]
δη

− J2
3

2L7η4
(3η + 5) cos i sin iδi = 0 (13.152)

Note that only the term δL appears without being multiplied by the small
parameter J2. Thus δL must be itself of O(J2) and the term involving J2δL
is dropped as a higher order term. The first orbit element constraint is then
simplified to

− δL+ J2
1

4L3η5

[
3η(1 − 3 cos2 i) + 4(1 − 5 cos2 i)

]
δη

− J2
1

2L3η4
(3η + 5) cos i sin iδi = 0 (13.153)

Taking the partial derivatives of Eq. (13.145a), the second condition for J2

invariant orbits is written as

J2
3

2L7η5

[
7

L
cos iδL+ 4 cos iδη + η sin iδi

]

= 0 (13.154)

Since δL = O(ε) the δL term is dropped. Thus, the condition that results in
equal nodal precession rates for two neighboring orbits is:

δη = −η
4

tan iδi (13.155)

Observe that as the chief satellite approaches a polar orbit (i.e. i=90 degrees),
the necessary change in eccentricity results in an eccentricity greater than unity
(hyperbolic orbit) or less than zero. This issue will be discussed in more detail
later on. Using the δi defined in Eq. (13.155), we are able to simplify the equal
relative latitude rate condition in Eq. (13.153) to

δL =
J2

4L4η5
(4 + 3η)

(
1 + 5 cos2 i

)

︸ ︷︷ ︸

D

Lδη (13.156)

Combined, Eqs. (13.155) and (13.156) provide the two necessary conditions
on the mean element differences between two neighboring orbits to yield a J2

invariant relative orbit. When designing a relative orbit using the mean orbit
element differences, either δi, δe or δa is chosen, and the other two element



516 SPACECRAFT FORMATION FLYING CHAPTER 13

differences are then prescribed through the two constraints. The remaining
mean orbit element differences δΩ, δω and δM can be chosen at will without
affecting the J2 invariant conditions. Further, note that these two conditions
are not precise answers to the nonlinear problem, but are only valid up to a first
order approximation. Thus, relative orbits designed with these two conditions
will still exhibit some small relative drift.

Example 13.3: Let us investigate the effect of dropping the terms con-
taining J2δL when developing the two orbit element constraint equations
in Eq. (13.155) and (13.156). The reason for this simplification is that in
Eq. (13.152) δL is the only term appearing without being multiplied by J2,
and thus must itself be of order J2. However, as the inclination angle ap-
proaches either 0 or 90 degrees, then the term in Eq. (13.152) which contains
δi would also become very small. Thus, ignoring the J2δL terms in these
cases could potentially contribute lead to significant numerical errors.

The following development will show that the error introduced by neglecting
the J2δL terms in minimal. If the J2δL terms are retained, then the two J2

invariant relative orbit conditions take on a more complicated form:

δη = −η
(
7J2(η − 2)(5 + 3η) cos i sin i+ η(4L4η4 − 7J2(1 + η)) tan i

)

16L4η5 − 7J2(4η2 + η − 4) + 7J2(η(11 + 12η) − 20) cos2 i
δi

δL =
J2(4 + 3η)(1 + 5 cos2 i)

η(4L4η4 − 7J2(1 + η)) + 14J2(η − 2)(5 + 3η) cos2 i
Lδη

Note that these orbit element constraints perfectly satisfy the first order con-
ditions in Eqs. (13.152) and (13.154). If the higher order terms are dropped,
then the previously presented J2 invariant orbit constraints are retrieved.
However, these more precise conditions on the mean orbit element are also
more complex and analytically less trackable than their simplified cousins.
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Figure 13.7: Percent Error in Computing δL by dropping the εδL Terms

Figure 13.7 illustrates the percent error in computing the δL correction for a
range of eccentricities and inclination angles. Here L is set to be 1.054. As
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the figure shows, the numerical errors involved in using the simplified orbit
constraint conditions are typically less than or equal to 1.5 percent. Only as
the eccentricities grow larger do the numerical errors start to grow larger. It is
interesting to note that dropping the J2δL term causes the largest numerical
errors for near-zero inclination angles, while near-polar orbits show the least
numerical errors. The numerical errors in computing δη and δi are essentially
equivalent. Thus, using the simplified J2 orbit element constraints results in
minimal numerical errors. For cases where the numerical errors are too large,
the more precise expressions can be used.

For more physical insight into the J2 invariant relative orbit constraints, it
is convenient to map the differences in L into differences in the semi-major axis
a. Recalling that L =

√

a/req (L is a non-dimensional variable), the variations
in L and a are related through

δL =
1

2L

δa

req
(13.157)

Substituting Eqs. (13.157) into Eq. (13.156), the constraint enforcing equal lat-
itude rates between two orbits is rewritten as

δa = 2D
a2

req
δη (13.158)

Combined, Eqs. (13.155) and (13.158) form the two necessary mean orbit ele-
ment constraints expressed in terms of a difference in semi-major axis, eccen-
tricity and inclination angle.

Note that it is numerically preferable to express the differences in eccentricity
in terms of δη, and not in terms of the eccentricity δe itself. The reason for this
is clear when we observe the variation of η =

√
1 − e2.

δe = −η
e
δη (13.159)

Using Eq. (13.159) clearly poses numerical difficulties whenever the orbits be-
come circular. A finite change in η would erroneously appear as an infinite
change in e. Thus, it is preferable to deal with δη quantities and then use the
precise mapping η =

√

(1 − e2) to map these differences into corresponding δe
quantities.

If J2 is set to zero (i.e. pure Keplerian motion), then we are only left with
the constraint that δa = 0. This makes sense intuitively, since the semi-major
axis a determines the orbit period. For Keplerian motion, if the orbit periods
are not equal, then the two spacecraft will drift apart. Thus, for Keplerian
motion the initial conditions that result in relative motion orbits that do not
drift apart are constrained to a five dimensional manifold , or in the (a, e, i)
space to a two dimensional manifold, the surface of the sphere as illustrated in
Figure 13.8. For a particular chief orbit with a, e and i, the neighboring orbit
momenta elements must lie on this surface. However, once the J2 perturbation
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Figure 13.8: Drift Free Constraint Illustration In Momenta Space

is included, the geometric constraint on the momenta elements to achieve drift
free relative motion is a straight line which is not tangent to the sphere surface.
Thus, the presence of gravitational perturbations changes the dimension of the
constraint manifold from two to one.

Example 13.4: Let us illustrate the relative orbit drifts that may be intro-
duced if the relative orbit is not setup correctly. The chief orbit elements
using in this numerical simulation are shown in Table 13.3. The dynami-
cal orbit model used in the numerical simulation includes the J2 through J5

gravitational perturbations. The relative orbit is described by choosing the

Table 13.3: Mean Chief Satellite Orbit Elements.

Orbit Elements Value Units
a 7153 km
e 0.05
i 48 deg
Ω 0.0 deg
ω 30.0 deg
M0 0.0 deg

following mean orbit element differences. To achieve some out-of-plane mo-
tion, an ascending node difference of δΩ = 0.005 degrees is prescribed. The
line of perigee and initial mean anomaly differences are set equal and opposite
in sign as δω = 0.01 degrees and δM0 = -0.01 degrees. Further, we chose
to prescribe a change in eccentricity δe = 0.0001 to exaggerate the in-plane
relative orbit. Using Eqs. (13.155) and (13.158), the corresponding changes
in a and i must be δa = -0.351765 meters and δi = 0.001035 degrees. Note
that both the required δa and δi to compensate for this δe are rather small.

The relative orbits of two different simulation runs are shown in Figure 13.9
as seen in the rotating Hill frame. The plots show the data of 45 orbits, which
correspond to roughly 3 days of simulation time. The initial relative orbit is
shown as a solid black line, while the path of the remaining 45 orbits is shown
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Figure 13.9: Relative Orbit Drift for a Non-Polar Master Orbit

as a red line. Both simulations use the same initial orbit element differences.
However, in Figure 13.9(i) the initial orbit element differences, which deter-
mine the initial shape of the relative orbit, are chosen in osculating element
space. Substantial relative orbit drift is apparent due to the perturbative in-
fluence of J2. Figure 13.9(ii) illustrates the drastic improvements that may
occur if the initial orbit geometry is setup in mean element space. Since the
matching conditions in Eq. (13.158) and (13.155) are only up to first order,
the relative orbit will not necessarily be perfectly J2 invariant. While some
periodic thrusting is still necessary, the frequency of these orbit corrections
can be greatly reduced.

13.6.2 Energy Levels between J2-Invariant Relative Orbits

It is interesting to study the energy levels of two neighboring orbits that are J2

invariant using the necessary first order conditions established in Eqs. (13.155)
and (13.158). For the system studied, the Hamiltonian H is the total energy.
Including the J2 term, the averaged energy in terms of normalized orbit elements
is given by

H = − 1

2L2
− J2

1

4L6η3
(3 cos2 i− 1) (13.160)

Where for Keplerian motion the energy level of an orbit only depends on the
semi-major axis measure L, including the J2 effect makes the energy expression
depend on all three elements L, η and i. The difference in energy δH of a
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neighboring orbit and a reference orbit is approximated as

δH ≈ ∂H

∂L
δL+

∂H

∂η
δη +

∂H

∂i
δi (13.161)

Computing the partial derivatives in Eq. (13.160) while keeping in mind that
δL is of order O(J2), we find that

δH =
1

L3
δL+ J2

3

4L6η4

[
(3 cos2 i− 1)δη + 2η sin i cos iδi

]
(13.162)

For two neighboring orbits to be J2 invariant, the differences in L, η and i must
satisfy the two conditions in Eqs. (13.156) and (13.155). Substituting these
variational constraints, the energy difference between two J2 invariant orbits is
given by

δH = −J2
tan i

4L6η4
(1 + 5 cos2 i)δi (13.163)

Eq. (13.163) states that if the two orbits have a non-zero difference in inclination
angle δi (or implicitly a difference in η or L), then the two orbits must have
different energies. Only if all three elements L, η and i between two orbits are
equal will the orbit energies themselves be equal. Note that this condition still
allows the two orbits to have different mean M , Ω and ω between the orbits.
Thus is it possible to have J2 invariant relative orbits with zero energy difference
between deputy and chief satellites. This energy difference must be non-zero
however if the relative orbit is to have out-of-plane relative motion due to having
a difference in inclination angles.

From this energy study an interesting conclusion can be made on the out-
of-plane stability of the CW equations in Eq. (13.19c). The linearized relative
equations of motion clearly indicate that the out-of-plane motion will take on
a stable sinusoidal form. The bounded relative orbit constraint ẏ0 + 2nx0 = 0
does not even involve the out-of-plane coordinate z. This constraint was shown
to be equivalent to saying that δa = or that the orbit energies must be equal.
Thus, solely considering the CW equations, it appears that the relative orbit
motion is bounded for any out-of-plane motion. However, if any of this out-
of-plane motion is due to a difference in inclination angles, then Eq. (13.163)
clearly shows the relative energy difference can not be zero if the relative orbit
is to be bounded. This illustrates that the CW equations are not well suited for
performing any long-term stability study of the relative orbit.

13.6.3 Constraint Relaxation Near Polar Orbits

For near-polar orbits, where the inclination i approaches 90 degrees, the equal
relative nodal rate condition in Eq. (13.155), given by

δη = −η
4

tan i δi
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may pose some practical problems in designing J2 invariant relative orbits. The
issue here is that as i approaches 90 degrees, and the relative orbit design
commands out-of-plane motion at the maximum latitude (i.e. δi is non-zero),
then the corresponding change in eccentricity becomes unpractically large. The
result is that the relative orbit becomes excessively large. Note that this near-
polar issue only arises if a specific mean inclination angle difference is prescribed
and the two J2 constraints are then used to compute the necessary mean δa and
δi. If a change in mean semi-major axis or eccentricity were required for a near-
polar orbit, then the equal nodal rate condition in Eq. (13.155) would require a
very small corresponding mean inclination angle difference. Thus, achieving out-
of-plane motion the maximum latitude poses the greatest challenge in designing
J2 invariant relative orbits. If the out-of-plane motion should occur during
the equator crossing, then this can be achieved by describing a difference in
ascending nodes δΩ. Since the three angular quantities δΩ, δω and δM can be
chosen at will, no practical issues would arise here.

That the relative orbits become excessively large for near-polar orbits if
a δi is prescribed was also shown in the previous relative energy discussion.
Studying Eq. (13.163) is it clear that if the chief orbit is a polar orbit, a finite
δi requires an infinite difference in orbit energy, an unrealistic condition. Thus,
as the inclination approaches 90 degrees the size of the relative motion orbits
increases.

The problem posed by attempting to design a J2 invariant relative orbit for
a near-polar chief orbit is illustrated in the following numerical simulation. The
chief mean orbit elements used are shown in Figure 13.4.

Table 13.4: Mean Chief Satellite Orbit Elements for Near-Polar Case
Study.

Mean
Orbit Elements Value Units

a 7153 km
e 0.05
i 88 deg
h 0.0 deg
g 30.0 deg
l 0.0 deg

The numerical simulations are performed by integrating the nonlinear orbit
equation

r̈ = − µ

|r|3 r + f(r) (13.164)

where the perturbative acceleration f(r) includes the zonal J2 through J5 ef-
fects. The relative orbit is described by choosing the mean orbit element dif-
ferences δΩ = 0.0 degrees (all out-of-plane motion produced through δi), δω =
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Figure 13.11: Mean and Osculating Orbit Element Differences for Case
2

0.1 degrees and δM = -0.1 degrees. Case 1 assumes the relative orbit geometry
requires a δi of 0.01 degrees to achieve roughly 1 km of out-of-plane motion at
maximum latitude. To achieve a desired δi of 0.01 degrees without inducing
relative drift in the other orbit elements, the remaining two momenta elements
differences must be δe = 0.020648 degrees and δa = -27.2122 meters. The result-
ing relative orbit is shown in Figure 13.10(i). Note that the necessary difference
in eccentricity is very large, causing the relative orbit to become very large in
the along track and radial direction. However, no apparent drift is visible for
the 45 orbits plotted on the scale shown.

One method suggested in Reference 19 is to drop the equal relative nodal
rate condition in Eq. (13.155) when a δi is prescribed for a near-polar chief
orbit. The δi of 0.01 degrees is retained in case 2 shown in Figure 13.10(ii), but
it is not used to prescribe a corresponding difference in eccentricity. Instead, a
δe of 0.0001 is chosen and the corresponding δa of -0.24157 meters is computed
through the equal relative latitude rate condition in Eq. (13.158). The resulting
relative orbit does exhibit some drift since the ascending nodes are drifting apart.
Over a year, the ∆v required to compensate for this drift is roughly 56.8 m/s.
However, for case 3 the equal latitude rate condition is also dropped (i.e. δa =
0 meters for the same δe), then the resulting orbit shown in Figure 13.10(iii)
has some clear along-track drift. Case 4 has the same initial orbit element
differences as the ones used in case e, but here the orbits were established using
osculating orbit elements instead of mean orbit elements. The resulting relative
orbit is shown in Figure 13.10(iv). This would be analogous to setting up the
relative orbit initial conditions using the CW or Hills equations. Over the 45
orbits shown, clearly substantial drift would result. This emphasized the point
that one should be working with mean orbit elements when design the relative
orbits.

Figure 13.11 illustrates the relative nodal and latitude rate drifts for case 2.
By dropping the equal nodal rate condition, the nodes clearly drift apart over
time. The corresponding osculating relative ascending node variations are not
visible due to the large drift. While the relative latitude drift is not perfectly
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zero, it is kept very small. The fuel estimate to compensate for the δθM drift
over one year is only 1.45 m/s, while it would be about 14.1 m/s if the equal
latitude rate condition is dropped. However, as a comparison, to compensate
for the relative ascending node drift it would take about a fuel cost of 56 m/s
over year to compensate.

Thus, it is possible to design relative orbits with out-of-plane motion created
by an inclination change and a chief orbit that is near-polar. However, the equal
ascending node rate condition must be dropped here to obtain a relative orbit of
practical value. Periodic maneuvers will be required to compensate for the δΩ
drift. References 20 and 21 present continuous feedback and impulsive control
schemes respectively in terms of the mean orbit elements. These methods will
be discussed later in this chapter. For an orbit such as is presented in case 2,
it would make sense to use the impulsive control scheme where the ascending
node is correct during the polar region crossings using the out-of-plane burn:

∆vhΩ
=
h sin i

r sin θ
∆Ω for θ = ±90 degrees (13.165)

Note that θ = ω + f is the true latitude angle.

13.6.4 Near-Circular Chief Orbit

As the chief’s orbit eccentricity becomes small, the eccentricity differences com-
manded by the equal nodal rate condition may cause the relative orbit to become
very large in the along-track direction. This is clear from the linear mapping of
differences in e to differences in η shown in Eq. (13.159) to be:

δe =
η

e
δη

However, the change in e does not become infinitely large as e → 0. The equal
nodal rate condition in Eq. (13.155) shows a finite required difference in η as e
goes to zero and η goes to one. Using the nonlinear relationship η =

√
1 − e2,

this finite δη corresponds to a finite δe for a circular orbit. However, these
eccentricity changes may still result in a relative orbit which is too large for
practical use. Again, as was the case with near-polar chief orbits, if the out-
of-plane motion can be produced by a change in node instead of a change in
inclination angle, then having a chief orbit with a small eccentricity would not
pose any practical difficulties.

A numerical simulation is performed to illustrate this behavior. The chief
orbit elements are shown in Table 13.3. The relative orbit is established using the
mean orbit element differences of δΩ = 0.01 degrees, δω = 0.01 degrees and δM
= -0.01 degrees. An inclination angle difference δi of 0.01 degrees is requested.
The relative orbits were computed for the three mean chief eccentricities 0.04,
0.05 and 0.06.

Figure 13.12(i) compares the resulting three relative orbits. For the case
where e = 0.06, the requested δi required a δe of 0.000799. The case where
e = 0.05 resulted in a δe of 0.000957 and the case with e = 0.04 resulted in δe =
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0.001191. Clearly the smaller chief eccentricities result in a larger relative orbit
in the along track direction.

This general behavior is also illustrated in Figure 13.12(ii) where the required
δe for a δi of 0.01 degrees are displayed for various chief eccentricities e and
inclination angles i. Due to the tan i term in the equal nodal rate condition,
the effect of having small eccentricities is enhances for larger inclination angles.
The δe here were computed using the nonlinear mapping between η and e.
While the required eccentricity for the relative motion orbit does grow large as
e approaches zero, it reaches a finite limit for a circular chief orbit case and does
not become infinite.

This result is interesting in that it states that it is easier to compensate for
out-of-plane motion induced by δi if the chief orbit has a larger eccentricity. The
richer dynamics of having a more eccentric orbit makes it easier to compensate
for the relative nodal drift condition.

13.6.5 Relative Argument of Perigee and Mean Anomaly Drift

To establish the J2 invariant orbits, conditions are established which set the
relative ascending node rate δΩ̇ and latitude rate δθ′M equal to zero. While
this guarantees that the angle between the chief and deputy position vector
remains constant, it is possible that the argument of perigee and mean anomaly
differences drift apart. The effect of this is that for chief orbits with non-zero
eccentricity, the relative orbit geometry swells larger as δω and δM drift apart
and then shrinks again as they eventually approach each other. Since the relative
latitude rate is equal to zero when the two presented J2 constraint conditions
are satisfied, then we know that

δω′ = −δM ′ (13.166)

To compute the relative drift in the argument of perigee, we take the partial
derivative of Eq. (13.145b).

δω′ =
∂ω′

∂L
δL+

∂ω′

∂η
δη +

∂ω′

∂i
δi (13.167)

After substituting the J2 invariant conditions in Eqs. (13.158) and (13.155), the
relative perigee drift rate is found to be

δω′ = J2
3

4L7η4

(
tan i(5 cos2 i− 1) − 5 sin(2i)

)
δi (13.168)

The following numerical simulation illustrates the effect of the perigee/mean
anomaly drift has on the relative orbit geometry. The chief orbit elements are
the same as are shown in Table 13.3 with an eccentricity set to be 0.05. A mean
δi of 0.01 degrees is prescribed and the mean δΩ is set equal to 0.01 degrees.
The argument of perigee and mean anomaly differences are set equal to

δω = −δM = 0.0, 0.5 or 1.0 degrees
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The resulting three relative orbits are illustrated in the rotating Hill frame
in Figure 13.13. As the argument of perigee and mean anomaly differences
drift apart, the overall relative orbit geometry is expanded without changing
the shape itself appreciably. Not that the presented orbit has a relatively large
eccentricity of 0.05. If the eccentricity were closer to zero, then the effect of the
perigee/mean anomaly drift on the relative orbit geometry would be even less.
At the limiting case where the chief orbit becomes circular, the perigee/mean
anomaly drift would have no effect on the relative geometry.
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Figure 13.13: Relative Orbits in LVLH Frames for Three Different Ar-
gument of Perigee and Mean Anomaly Differences

While this drift in δω and δM is an effect that may have to be periodically
compensated for, the argument of perigee and mean anomaly drift occurs very
slowly. For the presented numerical simulation, the δω had only drifted 0.05
degrees after 45 revolutions (roughly three days). Thus, for δω to drift the 1.0
degrees shown in Figure 13.13, it would take at approximately 60 days.

To correct such specific orbit element differences, Reference 21 developed
an impulsive feedback control scheme with the mean orbit element errors as
the feedback quantity. While this scheme is able to correct any types of orbit
element errors, the ω and M correction are of interest to the present problem.
Let ∆vrp

a orbit radial thrust performed at perigee, and ∆vra
the orbit radial

thrust performed at apogee. In order to correct a specific ∆ω = −∆M error,
the following control is used.

∆vrp
= −na

4

(
(1 + e)2

η
− 1

)

∆ω (13.169)

∆vra
=
na

4

(
(1 − e)2

η
− 1

)

∆ω (13.170)

The advantage of this impulsive firing scheme is that only the osculating ω
and M are adjusted in a near-optimal manner. Reference 21 goes into further
details describing how this scheme can also be used to correct for mean orbit
element errors.
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13.6.6 Fuel Consumption Prediction

As has been shown in the previous discussion, at times it may be beneficial to
relax the two constraints on the mean orbit elements in order to obtain a relative
orbit solution which is of practical value. We would like to present convenient
formulas which allow us to predict the fuel cost in terms of ∆v’s that must
be applied to cancel any J2 induced drift if the orbit elements a, e and i do
not perfectly match the conditions in Eqs. (13.155) and (13.158). To perform
this analysis, it is convenient to use the dimensional mean orbit element drift
equations.

Ω̇ = −3

2
J2
r2e
a2

n

η4
cos i (13.171)

ω̇ =
3

4
J2
r2e
a2

n

η4
(5 cos2 i− 1) (13.172)

Ṁ = n− 3

4
J2
r2e
a2

n

η3
(1 − 3 cos2 i) (13.173)

The methodology to compute the fuel cost to combat the J2 induced drift
will be the same for all the cases. First, we will compute how much drift the
momenta orbit element differences δa, δe and δi will cause over one orbit. Then,
using impulsive control, we are able to provide an estimate of what ∆v would be
required to cancel the J2 induced drift. Note that these fuel estimates will not
be precise predictions, but rather they provide a convenient method to quickly
assess how much fuel would be required to combat the J2 perturbation if the
orbit element differences are not set at their ideal J2 invariant values.

Ascending Node Relative Drift Correction Cost Estimate

First, we find an estimate of the fuel required to control the J2 induced ascending
node drift. The derivative of Eq. (13.171) is used to compute the relative nodal
drift δΩ̇. Note that advantage is taken here of the fact that the semi-major axis
differences δa are assumed to be of order J2 and are thus ignored here as higher
order terms.

δΩ̇ =
3

2
J2
r2e
a2

n

η5
(η sin i δi+ 4 cos i δη) (13.174)

The orbit period P of the chief satellite is given by

P =
2π

n
(13.175)

The J2 induced drift in the ascending node over one orbit period is then given
by

∆Ωorbit = δΩ̇ · P = 3J2π
r2e
a2η5

(η sin i δi+ 4 cos i δη) (13.176)
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Eq. (13.176) provides an estimate of the amount of ascending node correction
that would be required per orbit. To compute what ∆v would be required
to perform these corrections, the impulsive control scheme developed in Refer-
ence 21 is used here. The impulses developed in this control law correct specific
orbit element errors are based on Gauss’ variational equations.22 The ideal time
to perform a node correction is during the polar crossings where θ = ±90 de-
grees. Firing an impulse ∆vh in the orbit normal direction, the following node
correction is achieved:

∆vh =
h sin i

rh
∆h (13.177)

Note that rh is the orbit radius at θ = ±90 degrees. After substituting Eq. (13.176)
into Eq. (13.177), and performing several simplifications, the following fuel es-
timate is found to counter a J2 induced nodal drift.

∆vh = 3J2π
r2e
rh

n

η4
sin i (η sin i δi+ 4 cos i δη) (13.178)

Note that this ∆v estimate is the fuel required per orbit. To find a yearly fuel
budget estimate, this figure needs to be multiplied by the number of orbits that
occur in one year.

As expected, if the mean orbit element differences δi and δη satisfy the equal
nodal rate condition in Eq. (13.155), then the predicted fuel budget is zero.
Note that the actual fuel budget would not be zero though. This is because
several first order approximations were made in developing the two constraints
in Eqs. (13.155) and (13.158).

Eq. (13.178) does provide a very convenient method to quickly estimate the
fuel budget if the J2 invariant conditions are not setup perfectly. Assume the
relative orbit is designed using the linear CW equations. Here the chief orbit
is circular and we set the inclination angle equal to 70 degrees and the semi-
major axis equal to 7000 km. To obtain an out-of-plane motion of roughly one
kilometer, a δi of 0.01 degrees is required. Using Eq. (13.178), this leads to
an annual fuel budget estimate of 43.6 m/s solely to correct for the relative
ascending node drift. A cost which could be avoided if the J2 perturbation is
taking into account when designing the relative orbit.

Argument of Perigee and Mean Anomaly Relative Drift Correction Cost
Estimate

After having found a fuel budget estimate to correct the relative nodal drift, fuel
budget estimates are now developed to correct for both the relative argument of
perigee drift and mean anomaly drift. Taking the derivative of Eq. (13.172) and
making use again of the fact that δa is of the order of J2, the relative argument
of perigee drift rate is expressed as

δω̇ = −3

4
J2
r2e
a2

n

η5

(
5η sin(2i)δi+ 4 (5 cos2 i− 1)δη

)
(13.179)
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Using Eq. (13.175), the perigee drift over one orbit is estimated to be

∆ωorbit = δġ · P = −J2
3π

2η4

r2e
a2

(
5η sin(2i)δi+ 4 (5 cos2 i− 1)δη

)
(13.180)

The mean anomaly drift over orbit is computed in an analogous manner.
Note, however, that here δa appears without being multiplied by J2 and is thus
retained.

∆lorbit = δl̇ · T = −3π

a
δa− 9π

2
J2
r2e
a2

n

η4

(
η sin(2i)δi− (1 − 3 cos2 i)δη

)

(13.181)

Again, note that Eqs. (13.180) and (13.181) provide angular drift estimates for
one orbit period. To compute the annual drift, these figures would be multiplied
by the number of orbit period in a year.

To compute ∆v’s necessary to perform the required ∆ω and ∆M corrections,
the two impulse technique presented in Reference 21 is used. Here an orbit radial
thrust is applied at both perigee and apogee to achieve the desired orbit element
corrections in a near-optimal manner and without affecting the remaining orbit
elements. Using this method, the two ∆v are then computed through

∆vrp
= −na

4

(
(1 + e)2

η
∆ω + ∆M

)

(13.182)

∆vra
=
na

4

(
(1 − e)2

η
∆ω + ∆M

)

(13.183)

where ∆ω and ∆M are computed through Eqs. (13.180) and (13.181) respec-
tively. The total fuel estimate required to control either relative argument of
perigee drift, relative mean anomaly drift or both is then computed as

∆vω,M = |∆vrp
| + |∆vra

| (13.184)

Relative Mean Latitude Drift Correction Cost Estimate

While Eq. (13.184) is convenient to estimate the fuel budget to correct for g or
l relative drifts, for the formation flying problem this is of lesser importance.
What is more critical is what is the fuel budget to combat the latitude drift,
i.e. the sum of both the relative perigee and mean anomaly drift. For nearly
circular orbits the argument of perigee and mean anomaly can drift apart with
negligible effect on the relative orbit geometry, as long the sum of their drifts is
zero. In this section we will provide a fuel budget estimate to control the relative
latitude drift. The amount of mean latitude drift rate is computed through

δθ̇M = δω̇ + δṀ (13.185)

To estimate how much fuel is required to correct a latitude error, it is as-
sumed that a ∆v is applied to change the semi-major axis a (and thus the orbit
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period) which will speed up or slow down the satellite such that it correct the
δθM error over one orbit. At the end of the correction, a second such δa adjust-
ment must be made to reinsert the satellite in the previous orbit. From Gauss’
variational equation in Eq. (11.153a), the required ∆v for a given δa is

∆v =
h

2a2(1 + e)
δa =

n

2

√

1− e

1 + e
δa (13.186)

if the ∆v is applied at perigee. To relative the change in semi-major axis δa to
the corresponding change in orbit period δP , we differentiate Eq. (13.175) and
make use of n =

√

µ/a3.

δa =
2a

3

δP

TP
(13.187)

The final step is to relate the latitude drift amount δθM per orbit to the required
orbit period change δP which will accomplish this correction. This is found
through

δθMorbit
= δθ̇M · P = n · δP (13.188)

Substituting Eqs. (13.187) and (13.188) into Eq. (13.186), a fuel budget estimate
to correct the per orbit latitude drift is

∆vθM
=
a

3

√

1 − e

1 + e
δθ̇M (13.189)

If the δa, δe and δi differences satisfy the conditions in Eqs. (13.155) and
(13.158), then the latitude drift δθ̇M becomes zero, resulting in a zero fuel
budget estimate.

13.7 Relative Orbit Control Methods

This section develops various relative orbit control laws. Typically, this feedback
control laws operates on the orbit elements. Gauss’ variational equations of
motion, shown in Eq. (11.153), provide a convenient set of equations relating
the effect of a control acceleration vector u to the osculating orbit element time
derivatives.22 They are repeated here for convenience:

da

dt
=

2a2

h

(

e sin fur +
p

r
uθ

)

(13.190a)

de

dt
=

1

h
(p sin fur + ((p+ r) cos f + re) uθ) (13.190b)

di

dt
=
r cos θ

h
uh (13.190c)

dΩ

dt
=
r sin θ

h sin i
uh (13.190d)
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dω

dt
=

1

he
[−p cosfur + (p+ r) sin fuθ] −

r sin θ cos i

h sin i
uh (13.190e)

dM

dt
= n+

η

he
[(p cos f − 2re)ur − (p+ r) sin fuθ] (13.190f)

where the control acceleration vector u is written in the deputy Hill frame
components as

u =
(
ur, uθ, uh

)T
(13.191)

with ur pointing radially away from Earth, uh being aligned with the orbit
angular momentum vector and uθ being orthogonal to the previous two direc-
tions. The parameter f is the true anomaly, r is the scalar orbit radius, p is the
semilatus rectum and the true latitude angle is θ = ω + f .

13.7.1 Mean Orbit Element Continuous Feedback Control Laws

Since the relative orbit is being described in terms of relative differences in
mean orbit elements when establishing J2 invariant relative orbits, we examine
a feedback law in terms of mean orbit elements instead of the more traditional
approach of feeding back position and velocity vector errors. Doing so will allow
us to control and correct specific orbit element errors. Not all orbit position
errors are created equal. An error in the ascending node should be controlled
at a different time in the orbit than an error in the inclination angle.

The mean angular velocity n is defined as

n =

√
µ

a3
(13.192)

Note that Gauss’ variational equations in Eq. (13.190) were derived for Keplerian
motion. In matrix form they are expressed as

ėosc = (0, 0, 0, 0, 0, n)T + [B(eosc)]u (13.193)

with eosc = (a, e, i,Ω, ω,M)T being the osculating orbit element vector and the
6 × 3 control influence matrix [B] being defined as

[B(e)] =












2a2e sin f
h

2a2p
hr 0

p sin f
h

(p+r) cos f+re
h 0

0 0 r cos θ
h

0 0 r sin θ
h sin i

−p cos f
he

(p+r) sin f
he − r sin θ cos i

h sin i
η(p cos f−2re)

he −η(p+r) sin f
he 0












(13.194)

Let the vector e =
(
a, e, i,Ω, ω,M

)T
be the classical mean orbit element vector,

and

e = ξ(eosc) (13.195)
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be an analytical transformation from the osculating orbit elements eosc to the
mean elements e. In this study, a first order truncation of Brouwer’s analyti-
cal satellite solution is used as shown in Appendix G.17 Incorporating the J2

influence, we write Gauss’ variational equations for the mean motion as

ė = [A(e)] +

[
∂ξ

∂eosc

]T

[B(eosc)]u (13.196)

with the 6 × 1 plant matrix [A(e)] being defined as

[A(e)] =















0
0
0

− 3
2J2

(
req

p

)2

n cos i

3
4J2

(
req

p

)2

n(5 cos2 i− 1)

n+ 3
4J2

(
req

p

)2

ηn(3 cos2 i− 1)















(13.197)

Studying Brouwer’s transformation between osculating and mean orbit ele-
ments, it is evident that the matrix [∂ξ/∂eosc] is approximately a 6× 6 identity
matrix with the off-diagonal terms being of order J2 or smaller. Therefore, for
the purposes of developing a feedbac



534 SPACECRAFT FORMATION FLYING CHAPTER 13

Note that ∆e is a fixed mean orbit element difference. Therefore it doesn’t
matter if the chief orbit was slightly perturbed by other influences such as
atmospheric or solar drag. The relative orbit is always defined as a specific
difference relative to the current chief mean orbit elements, in order to maintain
a specific relative motion.

Given the true set of mean orbit elements êd of the deputy satellite, the
relative orbit tracking error δe is expressed in terms of mean orbit elements as

δe = êd − ed (13.200)

The Lyapunov control theory, presented in Chapter 7, is used here to develop
a feedback control law. We define the Lyapunov function V as a positive definite
measure of the mean orbit element tracking error δe.

V (δe) =
1

2
δeT δe (13.201)

Assuming the desired relative orbits are J2 invariant (i.e. are natural, unforced
solutions of the relative equations of motion), the derivative of ed is

ėd = [A(ed)] (13.202)

where no control is required to maintain this evolving orbit. Clearly non-J2

perturbations are being treated as minor disturbances and are not considered
in Eq. (13.202). Taking the derivative of V and substituting Eqs. (13.198) and
(13.200), we find

V̇ = δeT δė = δeT ([A(êd)] − [A(ed)] + [B(e)]u) (13.203)

Setting V̇ equal to the negative definite quantity

V̇ = −δeT [P ]δe (13.204)

where [P ] is a positive definite feedback gain matrix, we arrive at the following
control constraint for Lyapunov stability of the closed-loop departure motion
dynamics.

[B]u = −([A(êd)] − [A(ed)]) − [P ]δe (13.205)

Note that [P ] does not have to be a constant matrix. In fact, later on, we
will make use of this fact to encourage certain orbit element corrections to
occur during particular phases of the orbit. Using Eq. (13.194) to study the
effectiveness of the control vector to influence a particular orbit element, one
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choice is to give the feedback gain matrix [P ] the following diagonal form

P11 = Pa0 + Pa1 cosN
f

2
(13.206a)

P22 = Pe0 + Pe1 cosN f (13.206b)

P33 = Pi0 + Pi1 cosN θ (13.206c)

P44 = PΩ0 + PΩ1 sinN θ (13.206d)

P55 = Pω0 + Pω1 sinN f (13.206e)

P66 = PM0 + PM1 sinN f (13.206f)

withN being an even integer. The various feedback gains are now at a maximum
whenever the corresponding orbit elements are the most controllable, and at a
minimum or essentially zero when they are the least controllable. The size of
N is chosen such that the Pi1 gain influence drops off and rises sufficiently
fast. Clearly there are an infinity of heuristic feedback gain logics that could be
used here which belong to the stabilizing family. We could alternatively pose
an optimization problem and optimize [P (t)] to extremize some performance
measure. For illustration purposes, we simply choose several stable controllers
in this text.

One issue of writing the satellite equations of motion in first-order form in
Eq. (13.198) becomes quickly apparent. Since the control vector only has three
components, and we are attempting to control six orbit elements, we can’t
directly solve the control constraint equation in Eq. (13.205) for the control
vector u. Since the system of equations is over determined, we employ a least-
square type inverse to solve for u.

u = −
(
[B]T [B]

)−1
[B]T (([A(êd)] − [A(ed)]) + [P ]δe) (13.207)

Due to the imprecise nature of the least-squares inverse, the resulting control
law is no longer guaranteed to satisfy the stability constraint in Eq. (13.205).
However, as numerical simulations show, this control law does successfully cancel
mean element tracking errors and reestablish the desired relative orbit.

Other control methods could be employed to control the mean element track-
ing error defined in Eq. (13.200). The advantage of this method is the presence
of the time varying 6 × 6 feedback gain matrix [P ]. In particular, it allows us
to selectively cancel particular orbit element errors at any time. A classical
example is correcting for ascending node and inclination angle errors. Studying
Eq. (13.190) or (13.194), it is evident that the feedback gain for δΩ should be
large whenever θ = ±90 degrees and near-zero whenever θ = 0, 180 degrees.
Near the equator it is known that the control effort required to correct for a δΩ
would be very large. Therefore nodal corrections are best performed near the
polar regions. Analogously, the inclination angle changes are best performed
near the equator, with little or no inclination corrections being done near the
polar region. Depending on the chief orbit elements, similar statements can
be made for the remaining orbit elements. The result is that one can easily
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design a variable gain control law which will wait for the satellite to be in an
advantageous position within the orbit before correcting certain orbit element
errors. Note that this approach enables one to simultaneously control the long
term secular orbital dynamics (by considering orbit element control and using
mean orbit elements) and to effectively time the control corrections during each
orbit to “cooperate with the physics” of orbital dynamics.

The feedback law in Eq. (13.207) contains a term computing the difference
in natural mean element rates between the actual mean orbit element vector
êd of the deputy satellite and the desired mean orbit element vector ed. If the
difference in actual and desired mean orbit elements of the deputy is small, as
is typically the case with spacecraft formation flying, then it can be shown that
this difference is very small and has a negligible influence on the control law.
Linearizing this difference about the desired mean orbit element vector ed, we
find

[A(êd)] − [A(ed)] '
[
∂A

∂e

]∣
∣
∣
∣
ed

δe = [A∗(ed)]δe (13.208)

Using Eq. (13.208), we are able to write the linearized mean element error
dynamics as

δė ' [A∗(ed)]δe + [B(e)]u (13.209)

Note that the plant matrix is time dependent due to ed, and the control influence
matrix is state dependent. Because [A] only depends on the mean a, e and i
parameters, the 6 × 6 matrix [A∗] has block structure:

[A∗(ed)] =

[
03×3 03×3

A∗
21 03×3

]

(13.210)

Substituting Eq. (13.208) back into the control law in Eq. (13.207), we approx-
imate u as

u ' −
(
[B]T [B]

)−1
[B]T ([A∗(ed)] + [P ]) δe (13.211)

Taking the partial derivatives of Eq. (13.197) with respect to e, the submatrix
[A∗

21] is found to be

[A∗
21] =





21ε
4a cos i −6ε eη2 cos i 3

2ε sin i

− 21ε
16a (5 cos2 i− 1) 3ε eη2 (5 cos2 i− 1) − 15

4 ε sin(2i)

− 3
2a

[
n+ 7

8ε(3 cos2 i− 1)
]

3ε eη2 (3 cos2 i− 1) − 9
4ε sin(2i)





(13.212)

with the small parameter ε being defined as

ε = J2

(
req
p

)2

n (13.213)
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An approximate analysis of the [A∗
21] matrix entry magnitudes in terms of metric

units yields the following. Because both J2 and n are of order 10−3, and req/p
is of order 1, the parameter ε is of order 10−6. Most entries of [A∗

21] contain ε
multiplied by either e, a small quantity of order 10−2 or smaller, or divided by
a, a large quantity of order 103. These entries are then at least of order 10−8 or
smaller. The largest entries contain only ε or n/a. Either one is of order 10−6.
Therefore, studying Eq. (13.211) shows that unless the feedback gain matrix
[P ] is of order 10−5 or less, the [A∗] matrix has a negligible influence on the
control performance. In fact, if the feedback gain matrix [P ] is at least two or
more magnitudes larger than the [A∗] matrix, the ([A(êd)] − [A(ed)]) term can
be dropped from the control law without any apparent performance loss.

Dropping the ([A(êd)]− [A(ed)]) term from the mean element feedback law,
we are able to provide a rigorous stability proof for the special case where the
feedback gain matrix [P ] is simply a positive constant scalar P .

u = −P
(
[B]T [B]

)−1
[B]T δe (13.214)

Note that restraining the feedback gain to be a constant scalar would have a
negative impact on the control performance, since it is no longer possible to use
the celestial mechanics insight to guide when certain orbit elements should be
corrected. But, this proof does provide some more analytical confidence in the
control law and could be of use when only certain orbit elements have to be
controlled.23 We define a modified time dependent Lyapunov function V (δe, t)
as23

V (δe, t) =
1

2
(α1 + α2e

−α3t)δeT δe (13.215)

with both α1 and α2 being positive constants. Due to having V (δe, t) explicitly
depend on time, further steps are required in proving that V is positive or
negative definite. This Lyapunov function V (δe, t) is positive definite since
there exists a time-invariant positive definite V0(δe) such that24

V (δe, t) ≥ α1

2
δeT δe = V0(δe) (13.216)

Further, this V is decrescent since there exists a time-invariant positive definite
function V1(δe) such that24

V (δe, t) ≤ α1 + α2

2
δeT δe = V1(δe) (13.217)

Since V (δe, t) → ∞ if |δe| → ∞ it is also radially unbounded. Taking the
derivative of Eq. (13.215) and making use of δė = [B(e)]u and Eq. (13.214), we
find

V̇ (δe, t) = − α2α3e
−α3tδeT δe

− (α1 + α2e
−α3t)PδeT [B]([B]T [B])−1[B]T δe

(13.218)
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Mean Element Error

δe = −ed

Add
∆e

-

+

Chief rc, ṙc Osc. Elements

Osc. Elements Mean Elements ed

Mean Elements ec

Desired Deputy
Mean Elements ed

Deputy rd, ṙd e
d

d

d

Figure 13.14: Mean Element Control Illustration

This time dependent function is negative definite since there exists a time-
invariant negative definite function

V̇0(δe) = −α2α3δe
T δe − α1Pδe

T [B]([B]T [B])−1[B]T δe (13.219)

such that24

V̇ (δe, t) ≤ V̇0(δe) (13.220)

Since V (δe, t) is positive definite, decrescent and radially unbounded, while
V̇ (δe, t) is negative definite, the simplified control in Eq. (13.214) provides global
uniform asymptotic stability under the assumption that the feedback gain P is
large enough such that the term ([A(êd)] − [A(ed)]) can be dropped. Again, it
should be noted thought that only having a scalar feedback gain P may provide
un-acceptable fuel cost since the feedback control law may try to compensate
for orbit element errors when it is very inefficient to do so.

A schematic layout of the mean element control is shown in Figure 13.14.
Inertial position and velocity vectors are assumed to be available for both the
chief and deputy satellite. After transforming both sets of vectors into corre-
sponding mean orbit element vectors, the desired deputy mean elements are
computed through a specified orbit element difference ∆e relative to the chief
satellite. The tracking error δe is then computed as the difference between the
desired and actual deputy mean orbit elements. As mentioned earlier, the first
order transformation used in this study to transform back and forth between
osculating and mean orbit elements is not perfect. Taking a cartesian position
and velocity vector, transforming first to mean elements and then back to carte-
sian coordinates can result in position differences in the dozens of meters. This
is not a problem for typical orbit applications. However, for spacecraft forma-
tion flying, where the satellite relative orbit is to be controlled very precisely,
this transformation error is significant. In the control strategy presented in
Figure 13.14, both sets of mean elements are computed from inertial cartesian
coordinates. While there is a minor error associated with this transformation,
the error will be roughly the same for both sets of coordinates since the cartesian
coordinates are relatively close to begin with. Because a di�erence in mean or-
bit elements is fed back, these transformation errors are found to approximately
cancel each other and do not degrade the controller performance. Of course,
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this transformation error could be further reduced by expanding the analytic
orbit solution to higher order. However, even here it is beneficial to always deal
with differences in orbit elements to achieve higher numerical accuracy.

13.7.2 Cartesian Coordinate Continuous Feedback Control Law

Traditional feedback laws depend on cartesian position and velocity error vector
measurements. A nonlinear cartesian coordinate feedback law is presented which
illustrates the steps necessary to track a prescribed relative orbit expressed in
terms of mean orbit element differences. A related nonlinear feedback law is
presented in Ref. 25.

The inertial equations of motion of the chief satellite r1 and deputy satellite
r2 are

r̈c = f(rc) (13.221)

r̈d = f(rd) + u (13.222)

where the chief satellite is assumed to be in a free, uncontrolled orbit and only
the deputy satellite is being controlled to maintain the desired relative orbit.
The vector function f(r) contains the gravitational acceleration. Expressing
the inertial position vector in terms of inertial components r = (x, y, z) and
including the J2 perturbation, this function is defined as

f(r) = − µ

r3




r − J2

3

2

(req
r

)2






5x
(
z
r

)2 − x

5y
(
z
r

)2 − y

5z
(
z
r

)2 − 3z









 (13.223)

where r is the scalar orbit radius. Let rdd
be the desired inertial position vector

of the deputy satellite for a J2 invariant relative orbit. The position tracking
error δr is then defined as

δr = rd − rdd
(13.224)

Using this error vector and its derivative, the positive definite Lyapunov function
V is defined as

V (δr, δṙ) =
1

2
δṙT δṙ +

1

2
δrT [K1]δr (13.225)

where [K1] is a positive definite 3×3 position feedback gain matrix. Taking the
derivative of V we find

V̇ = δṙT (r̈d − r̈dd
+ [K1]δr) (13.226)

Substituting Eq. (13.222) and making use of the fact that the desired relative
orbit is J2 invariant (i.e. control free), the Lyapunov rate is written as

V̇ = δṙT (f(rd) − f(rdd
) + u + [K1]δr) (13.227)
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Enforcing V̇ to be equal to the negative definite quantity

V̇ = −δṙT [K2]δṙ (13.228)

where [K2] is a positive definite 3×3 velocity feedback gain matrix, the asymp-
totically stabilizing control law u is found to be

u = − (f(rd) − f(rdd
)) − [K1]δr − [K2]δṙ (13.229)

Note that this control law controls the inertial deputy orbit directly. The orbit
errors δr are only the difference between the desired and actual inertial deputy
orbit. This control law can be used for formation flying control by having the
desired deputy position r2d

be defined relative to the chief orbit. As is, the
feedback control law in (13.229) could be also be used to maintain the inertial
orbit of a single satellite. The asymptotic stability property of this control law
can be verified by checking the higher order derivatives of V on the set where
V̇ is zero (i.e. evaluated at δṙ = 0).26 The first non-zero higher derivative of V
on this set is found to be the third derivative

...
V (δṙ = 0) = −δrT [K1]

T [K2][K1]δr < 0 (13.230)

which is negative definite in δr. Thus the order of the first non-zero derivative
is odd and the control law is asymptotically stabilizing.

Where the mean orbit element feedback law feeds back a difference in the
natural orbit element rates, the cartesian coordinate feedback law in Eq. (13.229)
feeds back a difference in gravitational accelerations. Linearizing this difference
about the desired motion rdd

(t) we find

f(rd) − f(rdd
) '

[
∂f

∂r

]∣
∣
∣
∣
rdd

δr = [F (rdd
)]δr (13.231)

Using Eq. (13.231), the closed-loop dynamics are now written in the linear form
as

δr̈ ' [F (rdd
)]δr + u (13.232)

and the control law is linearized as

u ' −([F (rdd
)] + [K1])δr − [K2]δṙ (13.233)

The matrix [F ] can be written as [F ] = [FKepler ] + [FJ2
] where [FKepler ] is the

term due to the inverse square gravitational attraction and [FJ2
] is the term

due to the J2 perturbation. Doing a similar dimensional study of [FKepler ] and
[FJ2

], as for [A∗] earlier, the matrix [FKepler ] is found to be of order µ/r and
[FJ2

] of order J2µ/r
3. Since both J2 and 1/r are roughly 10−3, this means

that [FJ2
] is on the order of 10−9 smaller than [FKepler ]. This means that

excluding the J2 term in the f(r) calculation will have a negligible effect on
the performance. Therefore the largest component of [F ] is of order µ/r = 101
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δr = rd − rd δṙ = ṙd − ṙd
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Figure 13.15: Tracking Error Computation Logic for Cartesian Coordi-
nate Feedback Control

in metric units. For the cartesian feedback law, feeding back the difference
in gravitational accelerations has a large influence on the performance. For
example, if the gains are very small to allow the maneuver to take several orbit
revolutions, then the control effort will still be large due to this gravitational
acceleration difference term. This is in contrast to the mean orbit element
feedback law where the maneuvers can easily be stretched over several orbit
revolutions.

A critical detail in this cartesian coordinate feedback law is how to com-
pute the desired deputy position and velocity vectors, because the relative orbit
trajectory is described in terms of mean orbit element differences relative to
the chief orbit. Figure 13.15 illustrates this process. After translating the
chief cartesian coordinates into corresponding mean orbit elements, the desired
deputy position and velocity vectors are computed by first adding the desired
mean orbit element difference vector ∆e and then transforming these desired el-
ements back to cartesian space. However, if these desired inertial deputy states
are differenced with the actual inertial deputy states, serious numerical difficul-
ties may arise. The reason for this is the transformation error that occurs when
mapping between osculating and mean orbit elements. The closed loop position
errors will stop decaying once the accuracy of this transformation is reached.
To avoid this limitation, we don’t use the actual states of the deputy when
computing the tracking error. Instead, we map these states first to mean orbit
elements and then back to cartesian coordinates before differencing them with
the desires states. With the difference between the chief and deputy position and
velocity vectors being very small, the transformation error due to the forward
and backward mapping will be essentially identical and cancel themselves when
being differenced. This qualitative observation is consistent with our numerical
experiments. The result is a nonlinear cartesian coordinate feedback law that
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is able to establish the J2 invariant orbit and overcome some of the limitations
of having a first-order transformation between the osculating and mean orbit
elements.

13.7.3 Impulsive Feedback Control Law

The previous two formation flying control law provide a continuous thrust vector
to cancel any relative orbit errors. This section develops an impulsive control
scheme to control the relative orbit. Instead of continuously controlling the
relative orbit errors, the tracking errors will only be controlled at specific periods
within the orbit. This impulsive feedback control law was born out of the quest
to find a method to correct for the argument of perigee and mean anomaly drifts
experienced by J2 invariant orbits, while minimally impacting the remaining
orbit elements. While the presented method is attractive to correct specific sets
of orbit elements, it is also possible to use this method to correct for arbitrary
relative orbit errors. Further, the results of this sections were used earlier in the
development of control effort estimates for maintaining J2 invariant orbits.

Gauss’ variational equations are used again in this development to derive the
required control law. Studying the dΩ/dt and di/dt expressions in Eq. (13.190),
it is evident that the individual ascending node or inclination angles are adjusted
best when the spacecraft passes through either the polar or the equatorial regions
respectively. However, if both an inclination angle and nodal correction are to
be performed, it is more fuel efficient to perform both corrections with one
impulse only. Both elements are adjusted with an orbit normal impulsive ∆vh
as shown in Eq. (13.190). The corresponding inclination angle and ascending
node corrections are given by

∆i =
r cos θ

h
∆vh (13.234)

∆Ω =
r sin θ

h sin i
∆vh (13.235)

Dividing Eq. (13.235) by (13.234), the critical true latitude angle θc at which
to perform this orbit normal thrusting maneuver is

θc = arctan
∆Ω sin i

∆i
(13.236)

Squaring and summing Eqs. (13.234) and (13.235), the required ∆vh to perform
the desired inclination correction ∆i and ascending node correction ∆Ω is

∆vh =
h

r

√

∆i2 + ∆Ω2 sin i2 (13.237)

Note that applying this ∆vh only affects the orbit elements i, Ω and ω. This
cross-coupling between the (i,Ω) correction and ω is the only coupling between
osculating orbit element set corrections in this firing scheme. Note that while
there always exists two possible critical true latitude angles θc from Eq. (13.236),
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only the solution corresponding to a positive ∆vh is used in this control method.
Thus (i,Ω) are only corrected at one point in the orbit.

Substituting the ∆vh in Eq. (13.235) into Eq. (13.190d), the ∆Ω correction
results in the following ∆ω change:

∆ω(∆vh) = − cos i∆Ω (13.238)

This secondary effect will be taken into account when specifying the impulse
required to correct the argument of perigee.

The argument of perigee and the mean anomaly are also corrected together
together as an orbit element pair, but with two impulsive maneuvers over one
orbit. Each impulsive thrust is in the orbit radial direction only and is applied
at both the orbit perigee and apogee. Let ∆vrp

be the radial impulse applied
at perigee and ∆vra

be the impulse at apogee. Computed over one orbit, and
taking into account that an ascending node correction ∆Ω could be occurring
(which causes an additional change in ω), the ∆vrp

and ∆vra
impulses cause

the following osculating orbit element changes.

∆ω =
1

he
(−p(∆vrp

− ∆vra
) − ∆Ω cos i) (13.239)

∆M =
η

he

(
(p− 2rpe)∆vrp

− (p+ 2rae)∆vra

)
(13.240)

with η =
√

1 − e2. To solve these two equations for the radial ∆v’s, the following
identities are useful

p− 2rpe = p
1 − e

1 + e
(13.241a)

p− 2rae = p
1 + e

1 − e
(13.241b)

along with h/p = na/η. Substituting these expressions into Eqs. (13.239) and
(13.240) we find

∆vrp
− ∆vra

= −(∆ω + ∆Ω cos i)
nae

η
(13.242)

(1 − e)2∆vrp
− (1 + e)2∆vra

= nae∆M (13.243)

Solving these two equations for the required radial impulses to achieve a desired
∆ω and ∆M we find

∆vrp
= −na

4

(
(1 + e)2

η
(∆ω + ∆Ω cos i)+∆M

)

(13.244)

∆vra
=
na

4

(
(1 − e)2

η
(∆ω + ∆Ω cos i) + ∆M

)

(13.245)

Note that if a ∆Ω correction is performed during this orbit, then its effect is
immediately taken into account in the above two equations.
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The argument of perigee and mean anomaly corrections, provided by Eqs. (13.244)
and (13.245), are convenient to compensate for the natural secular drift in these
orbit elements that will occur with the J2-invariant orbit presented in Refer-
ence 19. Only ω and M of the six orbit elements will not have an equal relative
drift rate, but rather their sum will. This relative drift difference is not very
large, but depending on the tolerances of the relative orbit it will have to be
compensated for periodically. Further, the smaller the eccentricity of the or-
bit, the less effect the relative drift of ω and M will have on the orbit geometry.
However, Eqs. (13.244) and (13.245) provide an impulsive control method which
is able to directly readjust the argument of perigee and mean anomaly while
minimally affecting the other osculating orbit elements.

The remaining two orbit elements to be corrected are the semi-major axis a
and the eccentricity e. As is the case with the argument of perigee and mean
anomaly corrections, the semi-major axis and eccentricity are adjusted together
through two impulsive maneuvers over one orbit. However, these impulsive
thrusts are fired in the tangential uθ direction. One impulsive correction ∆vθp

is fired at perigee and the other impulse ∆vθa
is fired at apogee. With this

firing sequence a and e are adjusted efficiently and without disturbing the other
osculating orbit elements. From Eq. (13.190), the a and e corrections over one
orbit are

∆a =
2a2

h

(
p

rp
∆vθp

+
p

ra
∆vθa

)

(13.246)

∆e =
1

h

(

(p+ rp + rpe)∆vθp
+ (−p− ra + rae)∆vθa

)

(13.247)

Note that in deriving Eqs. (13.246) and (13.247) it is assumed that the orbit
corrections ∆a and ∆e are relatively small. Otherwise a and e could not be
held constant during the two maneuvers. To solve these two equations for the
tangential ∆v’s, the following identities are used.

p+ rp + rpe = 2p (13.248)

−p− ra + rae = −2p (13.249)

Eqs. (13.246) and (13.247) are now rewritten as

(1 + e)∆vθp
+ (1 − e)∆vθa

=
h2

2a2
∆a (13.250)

∆vθp
− ∆vθa

=
h

2p
∆e (13.251)

Using h/a = naη, with η =
√

1 − e2, the required tangential impulses are found
to be

∆vθp
=
naη

4

(
∆a

a
+

∆e

1 + e

)

(13.252)

∆vθa
=
naη

4

(
∆a

a
− ∆e

1 − e

)

(13.253)
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Note that in both the (ω,M) and (a, e) corrections, the sequence of impulsive
maneuvers over an orbit is irrelevant. The first maneuver may occur at either
perigee or apogee.

To implement these impulsive ∆v’s, the mean orbit element errors are estab-
lished at some arbitrary point in the orbit, and are then held constant during
the orbit while appropriate ∆v’s are applied as discussed earlier. This impul-
sive firing scheme assumes that all the mean orbit element errors will remain
constant over an orbit. If the a, e and i elements do not satisfy the J2 invariant
conditions, then Ω, ω and M will experience some J2 induced secular relative
drift. However, this drift is relatively small over an orbit and can be ignored.
The impulsive feedback control will correct, or at least substantially reduce, any
remaining mean orbit element errors during the following orbit. The exception
is if the deputy semi-major axis is substantially different from that of the chief.
In this case the different orbit periods will cause the mean anomaly to exhibit
substantial relative drift over one orbit. In this case it cannot be assumed that
∆M is constant over an orbit. Thus, the (ω,M) corrections do not begin until
the second orbit. Doing this allows the a, e and i variables to be corrected
during the first obit, which will set the orbit periods equal between deputy and
chief satellite. During further orbits, any remaining relative mean anomaly er-
rors will remain constant over an orbit. If the (ω,M) corrections are applied
during the first orbit with a large semi-major axis error present, then the im-
pulsive feedback control law still corrects the relative orbit. However, the fuel
cost typically increases since incorrect (ω,M) corrections are performed during
the first orbit.

Since it is advantageous to describe the relative orbit in terms of orbit el-
ement differences of the deputy satellite relative to the chief satellite, this im-
pulsive firing sequence is a convenient method to correct orbit errors from the
desired orbit element differences. If only one or two elements are to be adjusted,
then this control solution is essentially optimal. If several orbit elements are to
be corrected, then preliminary studies have shown this method to still yield a
near-optimal solution with a fuel cost increase of only a few percent over the
multi-impulse optimal solution. The advantage of this method is that through
its simplicity and low computational overhead, it lends itself well to be imple-
mented in an autonomous manner. Little ground support would be required
for a cluster of spacecraft to maintain their formation as long as they are able
to sense their inertial orbits themselves. This could be achieved through GPS
measurements or direct line of sight measurements between the various satel-
lites. Feeding back mean orbit element errors has the benefit that any short
period oscillations are ignored.

Further, it is convenient to be able to adjust only certain orbit elements,
leaving the remaining elements virtually untouched. For relative orbits designed
using the J2 orbit element constraints, the resulting relative orbit will be J2

invariant in an angular sense. This means that the neighboring orbits will have
equal nodal and mean latitude drift rates. However, the argument of perigee and
mean anomaly will still drift apart at equal and opposite rates. The consequence
of this drift is that the relative orbit will go through cycles of symmetrically



546 SPACECRAFT FORMATION FLYING CHAPTER 13

growing and shrinking as the chief satellite completes one orbit. This effect is
more noticeable for satellite clusters with larger eccentricities. For a cluster with
nominally zero eccentricity, having the argument of perigee and mean anomaly
grow apart at equal and opposite rates has no affect on the overall relative orbit
geometry. Further, this impulsive firing scheme could also be used as the initial
conditions for an optimizer solving for the true minimum fuel orbit correction.
Often indirect optimizing methods are sensitive to initial conditions, and the
presented impulsive feedback law could provide reasonable initial guess as to
the structure of the optimal control solution.

13.7.4 Hybrid Feedback Control Law

The use of Eq. (13.40) is investigated here to create a hybrid continuous feedback
control law in terms of Cartesian Hill frame coordinates, while describing the
desired relative orbit geometry through a desired set of orbit element differences
δe∗. Any desired states are denoted here with a superscript asterisk. The
advantage of this type of hybrid control law is that the actual relative orbit
is expressed in terms of coordinates in which it would actually be measured
(i.e. the chief frame local Hill coordinates), while the desired relative orbit is
conveniently expressed as a set of orbit element differences.

Let x = (x, y, z)T be the deputy position vector and v = (ẋ, ẏ, ż)T be
the deputy velocity vector expressed in the chief Hill frame coordinates. The
general linearized relative equations of motion for a Keplerian system, given in
Eq. (13.18), are expressed here as3

ẋ = v (13.254)

v̇ =





2 µ
R3 + θ̇2 θ̈ 0

−θ̈ θ̇2 − µ
R3 0

0 0 − µ
R3





︸ ︷︷ ︸

[A1]

x

+





0 2θ̇ 0

−2θ̇ 0 0
0 0 0





︸ ︷︷ ︸

[A2]

v +





ux
uy
uz





︸ ︷︷ ︸

u

(13.255)

with θ being the true latitude. These relative equations of motion are valid for
both circular and elliptic chief orbits. The true latitude acceleration is computed
through

θ̈ = −2
µ

R3
(q1 sin θ − q2 cos θ) (13.256)

with q1 and q2 being defined in Eqs. (13.42) and (13.43).
Let us define the relative orbit tracking errors as

∆x = x − x∗ (13.257)

∆v = v − v∗ (13.258)
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with the desired position and velocity vectors computed using

X∗ =

(
x∗

v∗

)

= [A(e)]δe∗ (13.259)

Note that if the desired orbit element differences call for a fixed mean anomaly
difference, as is done in References 19, 20 and 21, then the vector δe∗ is not
constant, but rather δθ must be computed at each instant by solving Kepler’s
equation. Further, note that ∆ẋ = ∆v.

Let us define the control law u as

u = v̇∗ −A1x −A2v − [K]∆x − [P ]∆v (13.260)

with [K] and [P ] being positive definite matrices. To prove that u is asymptot-
ically stabilizing, a positive definite Lyapunov function V is defined as

V (∆x,∆y) =
1

2
∆vT∆v +

1

2
∆xT [K]∆x (13.261)

Substituting Eqs. (13.255) and (13.258), the derivative of V along the state
trajectory must be negative semi-negative

V̇ = ∆vT (∆v̇ + [K]∆x) = −∆vT [P ]∆v (13.262)

which guarantees that u is globally stabilizing. To prove that the control law
is also asymptotically stabilizing, the higher order time derivatives of V are
investigated. The second derivative of V is zero when evaluated on the set
where V̇ = 0. The third derivative

...
V (∆v = 0) = −2∆xT [K][P ][K]∆x (13.263)

is negative definite in the state vector ∆x. Since this first non-zero derivative
is an odd derivative, the control u is asymptotically stabilizing.26

Note that v̇∗ − [A1]x
∗ − [A2]v

∗ is zero if the desired relative motion is a
natural solution to the linearized equations of motion shown in Eq. (13.255).
Assuming that our chosen v̇∗ abides by

v̇∗ = [A1]x
∗ + [A2]v

∗ (13.264)

the control law u is written as

u = −
[
A1 +K A2 + P

]
((

x

v

)

− [A(e)]δe∗
)

(13.265)

Note, however, that the desired relative motion may not necessarily be a natural
solution. The control law in Eq. (13.260) is also valid for forced relative orbits.
Studying this form of control law in Eq. (13.265), the hybrid nature of u is
evident in that the desired relative orbit is prescribed through a set of orbit
element differences, while the actual motion is expressed in terms of the chief
Hill frame Cartesian components. The advantage here is that we are able to



548 SPACECRAFT FORMATION FLYING CHAPTER 13

express the actual and desired relative motion in coordinates that best suit their
task. The continuous feedback control law in Eq. (13.229), in contrast, feeds
back tracking errors in terms of the inertial deputy position vector. The hybrid
control law in Eq. (13.265) takes advantage of the fact that the deputy satellite
position is controlled relative to the chief position by expressing the tracking
errors in terms of the relative Hill frame coordinates.

Since the [A2] matrix is skew-symmetric, it could be dropped from the con-
trol expression in Eq. (13.265). The Lyapunov-based stability proof remains
the same and asymptotic stability is still guaranteed. However, computing V̇
the term ∆vT [A2]∆v is dropped since it is always zero. The modified control
expression is then

u = −
[
A1 +K P

]
((

x

v

)

− [A(e)]δe∗
)

(13.266)

This control would no longer feedback-linearize the closed-loop dynamics, but
it still guarantees asymptotic stability.

Note that while the control expression in Eq. (13.265) takes advantage of the
linear mapping [A(e)] between orbit element differences and their corresponding
Hill Cartesian coordinates, the control expression in Eq. (13.260) does not rely
on this mapping. In fact, the relative orbit tracking errors ∆x and ∆v could
be computed using the complete nonlinear mapping between orbit elements
and local Cartesian coordinates. Further, it is possible to incorporate the J2

effect here by using Brouwer’s theory to compute the relative orbit errors in
mean element space and then map the error vector back to osculating space for
control purposes.

Problems

13.1 Write a program that will display the orbit of satellite as seen by the rotating Hill
reference frame of another satellite.

13.2
Let the chief orbit be determined through the orbit elements a = 7500km, e =
0.01, i = 45 degrees, Ω = 0.0 degrees, ω = 30 degrees and M0 = 0 degrees.
The deputy orbit has the same orbit elements except for the i = 45.1 degrees
and ω = 29 degrees.

a) Use the nonlinear relative equations of motion in Eq. (13.12) and plot the
relative orbit in the Hill frame.

b) Compute the relative orbit by using the inertial equations of motion in
Eq. (13.11) and computing first the inertial deputy and chief orbits and
then differencing them. Plot the result in the rotating Hill frame and
compare to the previous answer.

13.3 Using the chief and deputy orbit elements in Problem 13.2, compute the relative
orbit using both the nonlinear relative equations of motion in Eq. (13.18) and the
linear CW equations in Eq. (13.19) for different chief orbit eccentricities. Start
with a zero eccentricity and increase it until a critical value is found where the
CW relative orbit calculation is off by 1 km.
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13.4 ♣ Starting with the nonlinear relative equations of motion in Eq. (13.17), derive
the non-dimensional relative equations of motion shown in Eq. (13.23). Include
the derivation of the intermediate results shown in Eq. (13.22).

13.5 Create a program that will perform both the forward and inverse mapping between
the a relative orbit Cartesian position vector X and corresponding orbit element
difference vector δe shown in Eq. (13.40). Verify that the [A(ec)][A(ec)]

−1 does
yield the identity matrix.

13.6 ♣ Derive the non-dimensional Cartesian rate computation in Eq. (13.75). Show all
intermediate steps.

13.7 Use the orbit constraint condition in Eq. (13.85) to generate initial conditions
that will yield a bounded relative orbit. Assume that the chief orbit is given by
the orbit elements shown in Problem 13.2. Plot the resulting relative orbit in the
rotating chief Hill frame.

13.8 Verify the two J2-invariant orbit element constraints in Eqs. (13.155) and
(13.156). Start with the J2-invariant relative orbit definition in Eqs. (13.146)
and (13.147) and show all intermediate steps.

13.9 ♣ Create a numerical simulation to compute the relative orbit shown in Exam-
ple 13.4 by including the J2 through J5 perturbations. This program should
compute the inertial orbit of both the deputy and chief satellite and then map
the relative orbit into the rotating chief Hill reference frame. Use the mapping
shown in Appendix G to map between the mean and osculating orbit elements.

a) Show how much the relative orbit still drifts despite the J2-invariant con-
ditions.

b) Of the J2-J5 gravitational perturbations, which one is the main cause for
this drift.

c) Show how fast the argument of perigee and mean anomaly are drifting
away from their initial values.
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Appendix A

Transport Theorem Derivation
Using Linear Algebra

Previously the kinematic differential equation of the direction cosine matrix [C]
and the Transport Theorem were derived using vector algebra results. This
appendix will derive the same results using linear algebra arguments. While
not as easy to visualize as the vector algebra results, the advantage here is that
the derivation illustrates that these results hold for any N-dimensional space.

Any NxN orthogonal matrix [C] must satisfy the constraints

[C]T [C] = IN×N (A.267)

[C][C]T = IN×N (A.268)

where IN×N is an NxN identity matrix. Taking the derivative of Eq. (A.268)
we find that

[Ċ][C]T + [C][Ċ ]T = 0N×N (A.269)

Note that taking the derivative of a matrix here only involves a series of scalar
derivatives when taking the time derivatives of the various matrix elements.
Contrary to the vector algebra developments, we are not concerned with different
reference frames here. Eq. (A.269) can be rearranged to the form

[Ċ][C]T = −[C][Ċ]T = −
(

[Ċ][C]T
)T

= [Q] (A.270)

where, by definition, the “angular-velocity-like” matrix [Q] must be skew-sym-
metric. Therefore the derivative of aNxN orthogonal matrix can be written in
the general form

[Ċ] = [Q][C] (A.271)

To illustrate that for the rigid body dynamics case [Q] = −[ω̃], we write the
direction cosine matrix in terms of the B frame unit vector components. Let bi
be the 1x3 matrices whose elements are the N frame components of the unit
vectors b̂i. The 3x3 matrix [C] is then written as

[C] =





b1
b2
b3



 (A.272)
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The time derivative of [C] is then expressed as

[Ċ ] =





ḃ1
ḃ2
ḃ3



 (A.273)

Since the B frame unit vectors are fixed within the B frame, their differential
equation is of the form given in Eq. (1.14).

b̂i = ω × b̂i (A.274)

Substituting Eq. (A.274) into Eq. (A.273) and making use of ω = ω1b̂1 +ω2b̂2 +

ω3b̂3, the direction cosine matrix derivative is written as

[Ċ] =





−ω2b3 + ω3b2
ω1b3 − ω3b1
−ω1b2 + ω2b1



 (A.275)

Using the definition of the 3x3 tilde matrix in Eq. (3.23), this is written in the
desired form.

[Ċ] = −





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0









b1
b2
b3



 = −[ω̃][C] (A.276)

Therefore, for the case where [C] represents a rigid body attitude, the skew-
symmetric matrix [Q] is equal to

[Q] = −[ω̃] (A.277)

Let a N-dimensional vector v have components taken in the N and B frame.
The Nx1 matrix vn contains the N frame components of v, and vb contains the
B frame components. These components are mapped from one reference frame
to another through the corresponding direction cosine matrix [C].

vb = [C]vn (A.278)

Note that both vb and vn in Eq. (A.278) are not treated as vectors, but as a list
of scalars (i.e. a matrix). Therefore, taking the derivative of vb is equivalent to
taking the derivative of the vector v as seen by the B frame.

v̇b '
Bd
dt

(v) (A.279)

v̇n '
Nd
dt

(v) (A.280)

Taking the derivative of Eq. (A.278), we find

v̇b = [C]v̇n + [Ċ]vn (A.281)
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Substituting Eqs. (A.271) and (A.278), this is rewritten as

v̇b = [C]v̇n + [Q][C]vn = [C]v̇n + [Q]vb (A.282)

Solving for v̇n we find a generalization of the transport theorem developed earlier
using matrix notation.

v̇n = [C]T (v̇b − [Q]vb) (A.283)

To show that Eq. (A.283) is equivalent to the transport theorem for the rigid
body case presented in Chapter 1, we first use the identity [Q] = −[ω̃]

v̇n = [C]T (v̇b + [ω̃]vb) (A.284)

Using the relationships in Eqs. (A.279) and (A.280) and the equivalent vector
operator to the tilde matrix operator, the transport theorem is written as a
vector algebra expression as

Nd
dt

(v) =
Bd
dt

(v) + ω × v (A.285)

where ω = ωB/N . Strictly speaking, Eqs. (A.284) and (A.285) are only equiva-
lent if all the vector quantities in Eq. (A.285) have components taken in the N
frame.
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Appendix B

State Space Analysis

text here
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Appendix C

Various Euler Angle
Transformations

This appendix contains mappings between the 12 sets of Euler angles θ =
(θ1, θ2, θ3)

T and either the direction cosine matrix [C] or the body angular
velocity vector ω.

The direction cosine matrix is defined as

{b̂} = [C(θ1, θ2, θ3)]{n̂}

Thus, it maps vectors with components in the inertial frame into vector with
components taken in the body frame. The short hand notation cθi = cos θi and
sθi = sin θi is used here.

Direction Cosine Matrix in Terms of the 12 Euler Angle Sets

1-2-1





cθ2 sθ2sθ1 −sθ2cθ1
sθ3sθ2 −sθ3cθ2sθ1 + cθ3cθ1 sθ3cθ2cθ1 + cθ3sθ1
cθ3sθ2 −cθ3cθ2sθ1 − sθ3cθ1 cθ3cθ2cθ1 − sθ3sθ1





1-2-3





cθ3cθ2 cθ3sθ2sθ1 + sθ3cθ1 cθ3sθ2cθ1 + sθ3sθ1
−sθ3cθ2 −sθ3sθ2sθ1 + cθ3cθ1 sθ3sθ2cθ1 + cθ3sθ1
sθ2 −cθ2sθ1 cθ2cθ1





1-3-1





cθ2 sθ2cθ1 sθ2sθ1
−cθ3sθ2 cθ3cθ2cθ1 − sθ3sθ1 cθ3cθ2sθ1 + sθ3cθ1
sθ3sθ2 −sθ3cθ2cθ1 − cθ3sθ1 −sθ3cθ2sθ1 + cθ3cθ1





1-3-2





cθ3cθ2 cθ3sθ2cθ1 + sθ3sθ1 cθ3sθ2sθ1 − sθ3cθ1
−sθ2 cθ2cθ1 cθ2sθ1
sθ3cθ2 +sθ3sθ2cθ1 − cθ3sθ1 sθ3sθ2sθ1 + cθ3cθ1




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2-1-2





−sθ3cθ2sθ1 + cθ3cθ1 sθ3sθ2 −sθ3cθ2cθ1 − cθ3sθ1
sθ2sθ1 cθ2 sθ2cθ1

cθ3cθ2sθ1 + sθ3cθ1 −cθ3sθ2 cθ3cθ2cθ1 − sθ3sθ1





2-1-3





sθ3sθ2sθ1 + cθ3cθ1 sθ3cθ2 sθ3sθ2cθ1 − cθ3sθ1
cθ3sθ2sθ1 − sθ3cθ1 cθ3cθ2 cθ3sθ2cθ1 + sθ3sθ1

cθ2sθ1 −sθ2 cθ2cθ1





2-3-1





cθ2cθ1 sθ2 −cθ2sθ1
−cθ3sθ2cθ1 + sθ3sθ1 cθ3cθ2 cθ3sθ2sθ1 + sθ3cθ1
sθ3sθ2cθ1 + cθ3sθ1 −sθ3cθ2 −sθ3sθ2sθ1 + cθ3cθ1





2-3-2





cθ3cθ2cθ1 − sθ3sθ1 cθ3sθ2 −cθ3cθ2sθ1 − sθ3cθ1
−sθ2cθ1 cθ2 sθ2sθ1

sθ3cθ2cθ1 + cθ3sθ1 sθ3sθ2 −sθ3cθ2sθ1 + cθ3cθ1





3-1-2





−sθ3sθ2sθ1 + cθ3cθ1 sθ3sθ2cθ1 + cθ3sθ1 −sθ3cθ2
−cθ2sθ1 cθ2cθ1 sθ2

cθ3sθ2sθ1 + sθ3cθ1 −cθ3sθ2cθ1 + sθ3sθ1

3

-

1

-

2

4� cθ1 sθ
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The following list provides the various forward and inverse mappings between
the body angular velocity vector ω and the Euler angle rates θ̇ = (θ̇1, θ̇2, θ̇3)

T .
The matrix [B] is defined as

θ̇ = [B(θ)]ω

The short hand notation cθi = cos θi and sθi = sin θi is used again here.

Mapping Between Body Angular Velocity Vector and the Euler Angle Rates

[B(θ)] [B(θ)]−1

1-2-1 1
sθ2





0 sθ3 cθ3
0 sθ2cθ3 −sθ2sθ3
sθ2 −cθ2sθ3 −cθ2cθ3









cθ2 0 1
sθ2sθ3 cθ3 0
sθ2cθ3 −sθ3 0





1-2-3 1
cθ2





cθ3 −sθ3 0
cθ2sθ3 cθ2cθ3 0

−sθ2cθ3 sθ2sθ3 cθ2









cθ2cθ3 sθ3 0
−cθ2sθ3 cθ3 0
sθ2 0 1





1-3-1 1
sθ2





0 −cθ3 sθ3
0 sθ2sθ3 sθ2cθ3
sθ2 cθ2cθ3 −cθ2sθ3









cθ2 0 1
−sθ2cθ3 sθ3 0
sθ2sθ3 cθ3 0





1-3-2 1
cθ2





cθ3 0 sθ3
−cθ2sθ3 0 cθ2cθ3
sθ2cθ3 cθ2 sθ2sθ3









cθ2cθ3 −sθ3 0
−sθ2 0 1
cθ2sθ3 cθ3 0





2-1-2 1
sθ2





sθ3 0 −cθ3
sθ2cθ3 0 sθ2sθ3

−cθ2sθ3 sθ2 cθ2cθ3









sθ2sθ3 cθ3 0
cθ2 0 1

−sθ2cθ3 sθ3 0





2-1-3 1
cθ2





sθ3 cθ3 0
cθ2cθ3 −cθ2sθ3 0
sθ2sθ3 sθ2cθ3 cθ2









cθ2sθ3 cθ3 0
cθ2cθ3 −sθ3 0
−sθ2 0 1





2-3-1 1
cθ2





0 cθ3 −sθ3
0 cθ2 sθ3 cθ2cθ3
cθ2 −sθ2cθ3 sθ2sθ3









sθ2 0 1
cθ2cθ3 sθ3 0

−cθ2sθ3 cθ3 0




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[B(θ)] [B(θ)]−1

2-3-2 1
sθ2





cθ3 0 sθ3
−sθ2sθ3 0 sθ2cθ3
−cθ2cθ3 sθ2 −cθ2sθ3









sθ2cθ3 −sθ3 0
cθ2 0 1

sθ2sθ3 cθ3 0





3-1-2 1
cθ2





−sθ3 0 cθ3
cθ2cθ3 0 cθ2sθ3
sθ2sθ3 cθ2 −sθ2cθ3









−cθ2sθ3 cθ3 0
sθ2 0 1
cθ2cθ3 sθ3 0





3-1-3 1
sθ2





sθ3 cθ3 0
sθ2cθ3 −sθ2sθ3 0

−cθ2sθ3 −cθ2cθ3 sθ2









sθ3sθ2 cθ3 0
sθ2cθ3 −sθ3 0
cθ2 0 1





3-2-1 1
cθ2





0 sθ3 cθ3
0 cθ2cθ3 −cθ2sθ3
cθ2 sθ2sθ3 sθ2cθ3









−sθ2 0 1
cθ2sθ3 cθ3 0
cθ2cθ3 −sθ3 0





3-2-3 1
sθ2





−cθ3 sθ3 0
sθ2sθ3 sθ2cθ3 0
cθ2cθ3 −cθ2sθ3 sθ2









−sθ2cθ3 sθ3 0
sθ2sθ3 cθ3 0
cθ2 0 1







Appendix D

Various Proofs

This appendix contains various proofs and developments of identities used within
the text. Typically proving these identities where they were used would have
been distracting, so these proofs were added to this appendix.

In developing the MRP rates relative to a rotating orbit frame O, the identity

[B(σ)][BO(σ)] = [B(σ)]T (D.286)

was used. This identity can be developed from the basic MRP definitions of the
[B] and [BO] matrices. Using Eqs. (3.144) and (3.150) we find

. . . =
((

1 − σ2
)
I3×3 + 2[σ̃] + 2σσT

)
(

I3×3 +
8[σ̃]2 − 4(1− σ2)[σ̃]

(1 + σ2)2

)

(D.287)

Substituting the identity

[σ̃]2 = σσT − σ2I3×3 (D.288)

and expanding the matrix product, [B(σ)][BO(σ)] is rewritten as

[B(σ)][BO(σ)] =
(
1 − σ2

)
I3×3 + 2[σ̃] + 2σσT +

4

(1 + σ2)2

(

2σσT (1 − σ2)

− 2σ2(1 − σ2)I3×3 − (1 − σ2)2[σ̃] − 4σ2[σ̃] − 2(1 − σ2)[σ̃]2
)

(D.289)

Using Eq. (D.288) again, this is then reduced to

[B(σ)][BO(σ)] =
(
1 − σ2

)
I3×3 + 2[σ̃] + 2σσT − 4(1 + σ2)2[σ̃]

(1 + σ2)2
(D.290)

=
(
1 − σ2

)
I3×3 − 2[σ̃] + 2σσT (D.291)

= [B(σ)]T (D.292)
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Appendix E

Conic Section Transformations

Various transformations exist between the conic section elements. The com-
monly used mappings were developed in the previous celestial mechanics chap-
ters. This appendix provides a complete list of all possible transformations
between the orbit elements a, b, p, ra, rp and e for both the elliptical and
hyperbolic case, as well as various anomaly mappings and sensitivities.

Elliptic Orbit Elements

p

1 − e2
ra

1 + e

ra + rp

2

r2a

2ra − p

b2 + r2a

2ra

a
b√

1 − e2

rp

1 − e

b2

p

r2p

2rp − p

b2 + r2p

2rp

p√
1 − e2

√
ap

√
2ara − r2a ra

√

1 − e

1 + e
ra

√

p

2ra − p

b

a
√

1 − e2
√
rarp

√
2arp − r2p rp

√

1 + e

1 − e
rp

√

p

2rp − p

a(1 − e2) ra(1 − e)
2rarp

ra + rp

2b2ra

b2 + r2a
2ra − r2

a

a

p

b
√

1 − e2 rp(1 + e)
b2

a
2b2rp

b2+r2
p

2rp − r2

p

a
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√

1 − p

a

ra

a
− 1 1 − p

ra

√
√
√
√1 −

(

b

a

)2
r2a − b2

r2a + b2

e

ra − rp

ra + rp
1 − rp

a

p

rp
− 1

√
√
√
√1 −

(

p

b

)2
b2 − r2p

b2 + r2p

a(1 + e)
p

1 − e
rp

1 + e

1 − e
a+

√
a2 − b2 a

(

1 +

√

1 − p

a

)

ra

2a− rp

b2

rp
b

√

1 + e

1 − e

prp

2rp − p

b2

p



1+

√
√
√
√1 −

(

p

b

)2




a(1 − e)
p

1 + e
ra

1 − e

1 + e
a−

√
a2 − b2 a

(

1 −
√

1 − p

a

)

rp

2a− ra

b2

ra
b

√

1 − e

1 + e

pra

2ra − p

b2

p



1−

√
√
√
√1 −

(

p

b

)2




Elliptic Anomaly Mapping and Sensitivities:

sin f =

√
1 − e2 sinE

1 − e cosE
sinE =

√
1 − e2 sin f

1 + e cosf

cos f =
cosE − e

1 − e cosE
cosE =

e+ cos f

1 + e cos f

tan
f

2
=

√

1 + e

1 − e
tan

E

2
tan

E

2
=

√

1 − e

1 + e
tan

f

2

df

dE
=

√
1 − e2

1 − e cosE
=

1 + e cos f√
1− e2

=
b

r

dM

dE
= 1 − e cosE =

1 − e2

1 + e cos f
=
r

a

dM

df
=

(1 − e cosE)2√
1− e2

=
(1 − e2)3/2

(1 + e cos f)2
=
r2

ab

Hyperbolic Orbit Parameter Transformations

Note that by convention the semi-axis a and b are chosen to be negative quanti-
ties for the hyperbolic case. Since ra → ∞ for a hyperbola, the transformations
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using ra are omitted from the following list.

b√
e2 − 1

p

1 − e2
r2p − b2

2rp

a

− b
2

p

rp

1 − e

r2p

2rp − p

a
√
e2 − 1

− p√
e2 − 1

−
√
rp(rp − 2a)

b

−√−ap −rp

√

e+ 1

e− 1
−rp

√

p

p− 2rp

a(1 − e2) −b
√
e2 − 1 rp

(

2 − rp

a

)

p

rp(1 + e) − b
2

a

2rpb
2

b2 − r2p

1 +
rp

a

b2 + r2p

b2 − r2p

√
√
√
√1 +

(

b

a

)2

e

p

rp
− 1

√

1 +
p

a

√
√
√
√1 +

(

p

b

)2

a(1 − e) −b
√

e− 1

e+ 1
a

(

1 −
√

1 +
p

a

)

rp

p

1 + e
a−

√
a2 − b2

b2

p





√
√
√
√1 +

(

p

b

)2

− 1




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tan
f

2
=

√

e+ 1

e− 1
tanh

H

2
tanh

H

2
=

√

e− 1

e+ 1
tan

f

2

df

dH
=

√
e2 − 1

e coshH − 1
=
e cos f + 1√

e2 − 1
= − b

r

dN

dH
= e coshH − 1 =

e2 − 1

e cos f + 1
= − r

a

dN

df
=

(e coshH − 1)2√
e2 − 1

=
(e2 − 1)3/2

(e cos f + 1)2
=
r2

ab



Appendix F

MATLAB M-Files

A rigid body kinematics MATLAB toolbox is included with this textbook in
the form of a series of M-Files. The operators perform transformations between
various sets of attitude coordinates, form the composition of two successive
rotations, compute the relative attitude vector between two orientations and
computes the time derivative of the attitude parameter vector. The attitude
coordinates covered in this toolbox include the direction cosine matrix [C], the
Gibbs or classical Rodrigues parameter vector q, the modified Rodrigues pa-
rameter vector σ, the principal rotation vector γ and the 12 sets of Euler angle
vectors θijk . The scalar indices i, j and k are either 1, 2 or 3. All transforma-
tions used in this toolbox are introduced in Chapter 3.

The function DirCos. . .(q) returns the 3 × 3 direction cosine matrix [C]
corresponding to the particular choice in attitude coordinates. Instead of . . . ,
the user adds what type of attitude vector q is. For Euler parameters, an EP is
added. If q is a Gibbs vector, then Gibbs is added. The MRP vector simply has
MRP added, while the principal rotation vector has PRV added. If q is an Euler
angle vector, then Eulerijk is added where i, j and k are replaced with the
appropriate rotation sequence. Therefore, if q is a (3-2-1) Euler angle vector,
then the corresponding direction cosine matrix is found through the command
DirCosEuler321(q). The attitude coordinate abbreviations introduced here
are used throughout the MATLAB subroutines. A direction cosine matrix [C] is
translated back to the various attitude parameters using the command C2. . .(C).

To translate between various 3 or 4 parameter attitude coordinate sets, the
command . . .2. . . (q) is used, where the . . . are replaced with the previously
discussed attitude coordinate choice abbreviations. Whenever possible, direct
transformations between the various sets are used to provide numerically effi-
cient code.

The command q = add. . .(q1,q2) computes the composition of the two
successive rotations q1 and q2. Note that both q1 and q2 must be the type
of attitude parameters. Let N , B and F be three reference frames, then q is
defined through the relationship

[FN(q)] = [FB(q2)][BN(q1)] (F.293)

To compute the relative orientation vector q2, the attitude vector q1 is “rota-
tionally” subtracted from q. Using the direction cosine matrix notation, this

569
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corresponds to

[FB(q2)] = [FN(q)][BN(q1)]
T (F.294)

The command to find the relative orientation vector q2 is sub. . .(q,q1).
The attitude coordinate rate vector q̇ is related to ω through a matrix [B(q)].

q̇ = [B(q)]ω (F.295)

The MATLAB command d. . .(q,w) computes the time derivative of the atti-
tude vector q for a given body angular velocity vector w. For example, if q is
a (1-2-3) Euler angle vector, then the command dEuler123(q) would be in-
voked. Subroutines are also provided that compute just the [B(q)] matrix and
it’s inverse. All attitude coordinates discussed have compact analytical inverse
formulas for [B(q)] as shown in Chapter 3. The [B(q)] matrix is computed with
the command Bmat. . .(q) and its inverse with Binv. . .(q).

The following alphabetical list details the purpose of each MATLAB function
provided in the rigid body kinematics toolbox.

addEP(q1,q2) Sum the two Euler parameter vectors.

addEulerijk(q1,q2) Sum the two (i-j-k) Euler angle vectors.

addGibbs(q1,q2) Sum the two Gibbs vectors.

addMRP(q1,q2) Sum the two MRP vectors.

addPRV(q1,q2) Sum the two principal rotation vectors.

BinvEP(q) Compute the inverse of [B(β)].

BinvEulerijk(q) Compute the inverse of [B(θijk)].

BinvGibbs(q) Compute the inverse of [B(q)].

BinvMRP(q) Compute the inverse of [B(σ)].

BinvPRV(q) Compute the inverse of [B(γ)].

BmatEP(q) Compute the matrix [B(β)]

BmatEulerijk(q) Compute the matrix [B(θijk)]

BmatGibbs(q) Compute the matrix [B(q)]

BmatMRP(q) Compute the matrix [B(σ)]

BmatPRV(q) Compute the matrix [B(γ)]

C2EP(C) Extract the Euler parameters from [C].

C2Eulerijk(C) Extract the (i-j-k) Euler angles from [C].

C2Gibbs(C) Extract the Gibbs vector from [C].

C2MRP(C) Extract the MRP vector from [C].

C2PRV(C) Extract the principal rotation vector from [C].

dEP(q,w) Compute the Euler parameter time derivative.

dEulerijk(q,w) Compute the (i-j-k) Euler angles time derivative.

dGibbs(q,w) Compute the Gibbs vector time derivative.

DirCosEP(q) Translate the Euler parameters into [C].

DirCosEulerijk(q) Translate the (i-j-k) Euler angles into [C].

DirCosGibbs(q) Translate the Gibbs vector into [C].

DirCosMRP(q) Translate the MRP vector into [C].

DirCosPRV(q) Translate the principal rotation vector into [C].
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dMRP(q,w) Compute the MRP vector time derivative.

dPRV(q,w) Compute the principal rotation vector time

derivative.

elem2PRV(q) Translates the (Φ, ê1, ê2, ê3) into the

principal rotation vector.

EP2Eulerijk Translate Euler parameters into (i-j-k) Euler angles.

EP2Gibbs Translate Euler parameters into a Gibbs vector.

EP2MRP Translate Euler parameters into a MRP vector.

EP2PRV Translate Euler parameters into a PRV vector.

Euler1(theta) Returns the elementary rotation matrix

about the first body axis.

Euler2(theta) Returns the elementary rotation matrix

about the second body axis.

Euler3(theta) Returns the elementary rotation matrix

about the third body axis.

Eulerijk2EP(q) Translate the (i-j-k) Euler angles into Euler

parameters.

Eulerijk2Gibbs(q) Translate the (i-j-k) Euler angles into the

Gibbs vector.

Eulerijk2MRP(q) Translate the (i-j-k) Euler angles into MRPs.

Eulerijk2PRV(q) Translate the (i-j-k) Euler angles into the

principal rotation vector.

Gibbs2EP(q) Translate the Gibbs vector into Euler parameters.

Gibbs2Eulerijk(q) Translate the Gibbs vector into (i-j-k) Euler angles.

Gibbs2MRP(q) Translate the Gibbs vector into MRPs.

Gibbs2PRV(q) Translate the Gibbs vector into the principal

rotation vector.

MRP2EP(q) Translate the MRPs into Euler parameters.

MRP2Eulerijk(q) Translate the MRPs into (i-j-k) Euler angles.

MRP2Gibbs(q) Translate the MRPs into the Gibbs vector.

MRP2PRV(q) Translate the MRPs into the principal rotation

vector.

MRPswitch(q,S) Switch the MRP vector such that |σ|2 < S.

PRV2elem(q) Translates the principal rotation vector

to (Φ, ê1, ê2, ê3).

PRV2EP(q) Translates the principal rotation vector to

Euler parameters.

PRV2Eulerijk(q) Translates the principal rotation vector to

(i-j-k) Euler angles.

PRV2Gibbs(q) Translates the principal rotation vector to the

Gibbs vector.

PRV2MRP(q) Translates the principal rotation vector to MRPs.

subEP(q,q1) Compute the relative Euler parameter vector from

q1 to q.

subEulerijk(q,q1) Compute the relative (i-j-k) Euler angles vector

from q1 to q.
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subGibbs(q,q1) Compute the relative Gibbs vector from q1 to q.

subMRP(q,q1) Compute the relative MRP vector from q1 to q.

subPRV(q,q1) Compute the relative PRV vector from q1 to q.



Appendix G

First-Order Mapping Between
Mean and Osculating Orbit

Elements

A first-order mapping algorithm is outlined in this Appendix based on the the-
ory developed by Brouwer in Reference 1 and Lyddane in Reference 2. The
modifications suggested by Lyddane allow for a more robust mapping near zero
eccentricities and inclination angles.

This mapping directly translates any osculating (instantaneous) orbit ele-
ments into mean (orbit averaged, with short and long period motion removed)
orbit element equivalent values. Only first order J2 terms are retained in this
algorithm. Note that the forward and inverse transformation here is not perfect
due to the first-order truncation of the infinite series. Small errors of order J2

are to be expected.
Note that since a first-order truncation is performed of the infinite power

series solution, the forward and inverse mapping function between the mean
and osculating orbit elements only differs by a sign. Let the original orbit
elements be given by e = (a, e, i,Ω, ω,M). Note that these elements could
be either mean or osculating orbit elements. The transformed elements will
be given through e′ = (a′, e′, i′,Ω′, ω′,M ′). With re being Earth’s equatorial
radius, the parameter γ2 is either defined as

γ2 =
J2

2

(re
a

)2

(G.296)

if the algorithm maps mean orbit elements to osculating orbit elements, or as

γ2 = −J2

2

(re
a

)2

(G.297)

if the algorithm maps osculating orbit elements to mean orbit elements.
Defining η =

√
1 − e2, the parameter γ′2 is then defined as

γ′2 =
γ2

η4
(G.298)

The mean anomaly M is translated into the corresponding eccentric anomaly
E using Kepler’s equation.

M = E − e sinE (G.299)
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The true anomaly f is computed using

f = 2 tan−1

(√

1 + e

1 − e
tan

(
E

2

))

(G.300)

The ratio a/r is computed using

a

r
=

1 + e cos f

η2
(G.301)

with r being the current orbit radius.

The transformed semi-major axis a′ (which could be either the mean or
osculating state, depending on whether a is an osculating or mean element) is
computed through

a′ = a+ aγ2

(

(3 cos2 i− 1)

((a

r

)3

− 1

η3

)

+ 3(1 − cos2 i)
(a

r

)3

cos(2ω + 2f)
)

(G.302)

To following parameters are intermediate results used to transform the re-
maining orbit elements.

δe1 =
γ′2
8
eη2

(

1 − 11 cos2 i− 40
cos4 i

1− 5 cos2 i

)

cos(2ω) (G.303)

δe = δe1 +
η2

2

{

γ2

[3 cos2 i− 1

η6

(

eη +
e

1 + η
+ 3 cos f

+ 3e cos2 f + e2 cos3 f
)

+ 3
1− cos2 i

η6

(
e

+ 3 cos f + 3e cos2 f + e2 cos3 f
)
cos(2ω + 2f)

]

− γ′2(1 − cos2 i) (3 cos(2ω + f) + cos(2ω + 3f))
}

(G.304)

δi = − eδe1
η2 tan i

+
γ′2
2

cos i
√

1 − cos2 i
(

3 cos(2ω + 2f)

+ 3e cos(2ω + f) + e cos(2ω + 3f)
) (G.305)
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M ′ + ω′ + Ω′ = M + ω + Ω +
γ′2
8
η3
(

1 − 11 cos2 i− 40
cos4 i

1− 5 cos2 i

)

− γ′2
16

(

2 + e2 − 11(2 + 3e2) cos2 i

− 40(2 + 5e2)
cos4 i

1 − 5 cos2 i
− 400e2

cos6 i

(1 − 5 cos2 i)2

)

+
γ′2
4

(

− 6 ∗ (1 − 5 cos2 i)(f −M + e sin f)

+ (3 − 5 cos2 i)(3 sin(2ω + 2f) + 3e sin(2ω + f)

+ e sin(2ω + 3f))
)

− γ′2
8
e2 cos i

(

11 + 80
cos2 i

1− 5 cos2 i
+ 200

cos4 i

(1− 5 cos2 i)2

)

− γ′2
2

cos i
(

6(f −M + e sin f)

− 3 sin(2ω + 2f) − 3e sin(2ω + f) − e sin(2ω + 3f)
)

(G.306)

(eδM) =
γ′2
8
eη3
(

1 − 11 cos2 i− 40
cos4 i

1− 5 cos2 i

)

− γ′2
4
η3
{

2(3 cos2 i− 1)

((aη

r

)2

+
a

r
+ 1

)

sin f

+ 3(1 − cos2 i)
[(

−
(aη

r

)2

− a

r
+ 1

)

sin(2ω + f)

+

((aη

r

)2

+
a

r
+

1

3

)

sin(2ω + 3f)
]}

(G.307)

δΩ = −γ
′
2

8
e2 cos i

(

11 + 80
cos2 i

1− 5 cos2 i
+ 200

cos4 i

(1− 5 cos2 i)2

)

− γ′2
2

cos i
(

6(f −M + e sin f) − 3 sin(2ω + 2f)

− 3e sin(2ω + f) − e sin(2ω + 3f)
)

(G.308)

Now we are ready to compute the remaining transformed orbit elements. By
defining

d1 = (e+ δe) sinM + (eδM) cosM (G.309)

d2 = (e+ δe) cosM − (eδM) sinM (G.310)

the mean anomaly M ′ is computed using

M ′ = tan−1

(
d1

d2

)

(G.311)
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while the eccentricity e′ is computed using

e′ =
√

d2
1 + d2

2 (G.312)

Similarly, we define

d3 =

(

sin

(
i

2

)

+ cos

(
i

2

)
δi

2

)

sin Ω + sin

(
i

2

)

δΩ cosΩ (G.313)

d4 =

(

sin

(
i

2

)

+ cos

(
i

2

)
δi

2

)

cosΩ − sin

(
i

2

)

δΩ sin Ω (G.314)

to compute the ascending node Ω′ through

Ω′ = tan−1

(
d3

d4

)

(G.315)

and the inclination angle i′ through

i′ = 2 sin−1

(√

d2
3 + d2

4

)

(G.316)

Finally, the argument of perigee ω′ is computed through

ω′ = (M ′ + ω′ + Ω′) −M ′ − Ω′ (G.317)

Note that when computing the inverse tangent functions in the algorithm above,
care must be taken such that the resulting angle lies in the proper quadrant.
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Continuous body, 51
Rigid body, 115
Single particle, 35
System of particles, 45

Angular velocity vector, 8
Attitude control, 205
Autonomous system, 206

Body cone, 136

Cayley-Klein Parameters, 107
Classical Rodrigues Parameters, 91
Clohessy-wiltshire equations, 483

Closed relative orbit constraint, 486
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Asymptotic, 448
Cartesian, 5
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Spherical, 6

Direction Cosine Matrix, 64
Cayley-Klein Parameters, 107
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Euler Angles, 71
Euler Parameters, 86
Modified Rodrigues Parameters, 99
Principal Rotation Vector, 81

Encke’s method, 390
Energy ellipsoid, 129
Equilibrium state, 206
Euler Angles, 70
Euler Parameters, 85
Euler’s rotational equations of motion,

123

Formation flying, 477

Gauss’ variational equations, 417

Gravitational attraction, 26
Gravitational constants, 302
Gravitational field modeling

Finite bodies, 366
Spherical harmonic gravity potential,
372

Gravitaty field models, 365
Gravity gradient satellite, 145
Gravity gradient torque, 145

Higher Order Rodrigues Parameters, 105
Hill coordinate frame, 479
Hohmann transfer orbit, 437

Inertia matrix, 117–123
Parallel axis theorem, 118
Similarity transformation, 121

J2-invariant relative orbits, 511
Constraints, 515, 517
Definition, 514
Energy levels, 519

Kepler
First law, 298
Second law, 297
Third law, 300

Kinetic energy
Continuous body, 49
Rigid body, 124
Single particle, 34
System of particles, 41

Lagrange’s planetary equations, 406
Lagrange’s three-body solution, 326
Lagrangian brackets, 395
Lambert’s Problem, 442
Legendre polynomials, 367
Linear momentum

Continuous body, 50
Single particle, 35
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System of particles, 43
Linearization, 210
Lyapunov function, 214
Lyapunov’s direct method, 212
Lyapunov’s linearization method, 212

MacCullagh’s approximation, 369
Method of patched conics, 384, 455
Minimum energy orbit, 434

Semi-major axis, 435
Modified Rodrigues Parameters, 96
Momentum sphere, 129
Multi-body gravitational acceleration, 381

Negative definite function, 213
Semi-definite, 213

Neighborhood, 207
Newton’s laws, 25
Non-autonomous system, 206

Parallel axis theorem, see Inertia ma-
trix, Parallel axis theorem

Perturbation methods, 389
Planetary fly-by, 472
Poisson brackets, 408
Positive definite function, 213

Semi-definite, 213
Principal Rotation Vector, 78

Radially unbounded, 215
Reference Frames, 64
Relative motion state transition matrix,

497
Relative orbit control, 531

Continous Mean Orbit Element Dif-
ference Feedback, 535
Continuous inertial cartesian feedback,
540
Hybrid cartesian hill frame and orbit
element difference continuous feedback,
547
Impulsive orbit element error feedback,
542

Relative orbit equations of motion, 483
Closed relative orbit constraint, 496,
497

Relative orbit fuel consumption predic-
tion, 528

Restricted three-body problem, 325

Schur Complement, 109

Sepratrix, 132
Space cone, 136
Sphere of influence, 383, 455
Stability, 206

Asymptotic, 209, 216
Exponential, 209, 216
Global, 210, 215
Lagrange, 207
Linear, 218
Lyapunov, 208, 215

State transition matrix
Keplerian motion, 427
Linear system

Homogeneous system, 418
Non-homogeneous system, 420

Non-linear system, 422
Stereographic Parameters, 103
Super Particle Theorem, 40
Super particle theorem, 49
Symplectic matrix, 425
System of particles, 38

Torque free rotation, 128–137
Axisymmetric body, 135
General body, 133

Transport theorem, 12
Two-body problem, 285

Variation of parameters, 392
Variation of the

Argument of perigee, 414
Eccentric anomaly, 414
Eccentricity, 410
Inclination angle, 411
Longitude of the ascending node, 411
Mean anomaly, 414
Semi-major axis, 410
True anomaly, 413


